
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6

Static, Vibration, and Buckling Analysis of Nanobeams

Şeref Doğuşcan Akbaş

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67973

Abstract

Static, vibration, and buckling analysis of nanobeams is studied based on modified
couple stress theory (MCST) in this chapter. The inclusion of an additional material
parameter enables the new beam model to capture the size effect. The new nonclassical
beam model reduces the classical beam model when the length scale parameter is set to
zero. The finite element formulations are derived for static, free vibration, and buckling
problems of nanobeams within MCST and the Euler-Bernoulli beam theory. The effect of
the material length scale parameter and geometry parameters on the static, vibration,
and buckling responses of the nanobeam is investigated in both the classical beam
theory (CBT) and MCST by using finite element method. Also, the difference between
the classical beam theory (CBT) and modified couple stress theory is investigated.

Keywords: nanobeams, couple stress theory, finite element method, static, vibration,
buckling

1. Introduction

With the great advances in technology in recent years, micro and nanostructures have found

many applications. In these structures, micro beams and micro tubes are widely used in

nanoscale electromechanical systems such as sensors (Zook et al. [1], Pei et al. [2]), actuators

(Senturia [3], Rezazadeh et al. [4]). In investigation of micro and nanostructures, the classical

continuum mechanics are not effort of describing of the size-dependent mechanics.

Nonclassical continuum theories such as higher-order gradient theories and the couple stress

theory are capable of explanation of the size-dependent behaviors, which occur in micro/

nanoscale structures.

At the present time, the experimental investigations of the micro/nano materials are still a

challenge because of difficulties confronted in the micro/nanoscale. Therefore, mechanical
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theories and atomistic simulations have been used for nanostructural analysis. The process of

the atomistic simulations is very difficult and takes much time. So, continuum theory is the

most preferred method for the analysis of the micro and nanostructures. Classical continuum

mechanics does not contain the size effect, because of its scale-free character. The nonlocal

continuum theory initiated by Eringen [5] has been widely used to mechanical behavior of

micro/nanostructures.

The size effect is very effective in the mechanical behavior of nanostructures at nanometer

scale that the classic theory has failed to consider when the size reduces from macro to nano

(Toupin [6], Mindlin [7, 8], Fleck and Hutchinson [9], Yang et al. [10], Lam et al. [11]).

Therefore, higher-order theories of modified couple stress theory (MCST) and modified

strain gradient are used in the mechanical model of the nano/microstructures (Yang et al.

[10], Lam et al. [11]).

The determination of the micro/nanostructural material length scale parameters is very diffi-

cult experimentally. So, Yang et al. [10] studied the strain energy of the MCSTwith one length

scale parameter. After this, the MCST and the strain gradient elasticity theories have been

widely applied to static and dynamic analysis of beams (Park and Gao [12], Ma et al. [13],

Kong et al. [14], Wang et. al. [15], Asghari et al. [16], Wang [17], Simsek [18], Kahrobaiyan et al.

[19], Xia et al. [20], Ke et al. [21], Li et al. [22], Akgöz and Civalek [23, 24], Ansari et al. [25], Dos

Santos and Reddy [26], Simsek et al. [27], Wang et al. [28], Kocatürk and Akbas [29], Kong [30],

Daneshmehr et al. [31], Akgöz and Civalek [32], Ziaee [33], Islam et. al. [34], Miandoab et al.

[35], Liu et al. [36], Tang et al. [37], Hosseini and Rahmani [38], Akbas [39, 40]).

The objective of this paper is to investigate static, vibration, and buckling solutions of

nanobeams based on modified couple stress theory (MCST). The finite element formulations

are derived for static, free vibration, and buckling problems of nanobeams within MCST and

the Euler-Bernoulli beam theory. The effect of the material length scale parameter and geome-

try parameters on the static, vibration, and buckling responses of the nanobeam are investi-

gated in both the classical beam theory (CBT) and MCST. Also, the difference between the

classical beam theory and modified couple stress theory is investigated.

2. Theory and formulations

A simple supported nanobeam of length L, width b, and height h, with X,Y,Z cartesian

coordinate system is shown in Figure 1.

Figure 1. A simple supported nanobeam with X,Y,Z cartesian coordinate system and cross section.
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The modified couple stress theory was proposed by Yang et al. [10]. Based on this theory, the

strain energy density for a linear elastic material which is a function of both strain tensor and

curvature tensor is introduced for the modified couple stress theory;

U ¼

ð

V

ðσ : εþm : χÞ dV ð1Þ

where σ is the stress tensor, ε is the strain tensor, m is the deviatoric part of the couple stress

tensor, χ is the symmetric curvature tensor, defined by

σ ¼ λ trðεÞI þ 2με ð2Þ

ε ¼
1

2
½∇uþ ð∇uÞT � ð3Þ

m ¼ 2l2μ χ ð4Þ

χ ¼
1

2
½∇θþ ð∇θÞT � ð5Þ

where λ and μ are Lame’s constants, l is a material length scale parameter which is regarded as

a material property characterizing the effect of couple stress, u is the displacement vector and θ

is the rotation vector, given by

θ ¼
1

2
curl u ð6Þ

The parameters λ and μ in the constitutive equation are given by

λ ¼
E ν

ð1þ νÞð1� 2νÞ
, μ ¼

E

2ð1þ νÞ
ð7Þ

where E is the modulus of elasticity and ν is the Poisson’s ratio. According to the coordinate

system (X,Y,Z) shown in Figure 1, based on Euler-Bernoulli beam theory, the axial and the

transverse displacement field are expressed as

uðX,Y, tÞ ¼ u0ðX, tÞ � Y
∂v0ðX, tÞ

∂X
ð8Þ

vðX,Y, tÞ ¼ v0ðX, tÞ ð9Þ

wðX,Y, tÞ ¼ 0 ð10Þ

where u, v, w are the x, y, and z components of the displacements, respectively; u0 and v0 are the

axial and the transverse displacements in the mid-plane; and t indicates time. Because the

transversal surfaces of the beam are free of stress,

σzz ¼ σyy ¼ 0 ð11Þ

By using Eqs. (3) and (8)–(10), the strain-displacement relation can be obtained:
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εxx ¼
∂u

∂X
¼

∂u0ðX, tÞ

∂X
� Y

∂2v0ðX, tÞ

∂X2
ð12aÞ

εyy ¼ εzz ¼ Y
ν ∂2 v0ðX, tÞ

∂X2
ð12bÞ

εxz ¼ εyz ¼ εxy ¼ 0 ð12cÞ

By using Eqs. (6) and (8)–(10),

θz ¼
∂v0ðX, tÞ

∂X
θx ¼ θy ¼ 0 ð13Þ

Substituting Eq. (13) into Eq. (5), the curvature tensor χ can be obtained as follows:

χxz ¼
1

2

∂
2v0ðX, tÞ

∂X2
χxx ¼ χxy ¼ χyy ¼ χyz ¼ χzz ¼ 0 ð14Þ

According to Hooke’s law, the constitutive equations of the nanobeam are as follows:

σxx ¼ Eεxx ¼ E
∂u0ðX, tÞ

∂X
� Y

∂2v0ðX, tÞ

∂X2

� �

ð15Þ

where σxx and εxx are the normal stresses and normal strains in the X direction, respectively.

Substituting Eq. (14) into Eq. (4), the couple stress tensor can be obtained as follows:

mxz ¼ l2μ
1

2

∂2v0ðX, tÞ

∂X2
ð16aÞ

mxx ¼ mxy ¼ myy ¼ myz ¼ mzz ¼ 0 ð16bÞ

where μ is the shear modulus defined by Eq. (7). The elastic strain energy (Ui) of the nanobeam

is expressed as

Ui ¼
1

2

ð

L

0

ð

A

ðσij εij þmij χijÞdA dX ð17Þ

By substituting Eqs. (12) and (14)–(16) into Eq. (17), elastic strain energy (Ui) can be rewritten

as follows:

Ui ¼
1

2

ð

L

0

EA
∂u0ðX, tÞ

∂X

� �2

þ EI
∂2vðX, tÞ

∂X2

� �2

þ
1

4
l2μA

∂2vðX, tÞ

∂X2

� �2
" #

dX ð18Þ

where A is the area of the cross section, and I is the moment of inertia.
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T ¼
1

2

ð

L

0

ρA
∂u0
∂t

� �2

þ ρA
∂v0
∂t

� �2

þ ρI
∂
2v0

∂X ∂t

� �2
" #

dX ð19Þ

The potential energy of the external load can be written as

Ue ¼

ð

L

0

f vðxÞ þ P
∂v

∂x

� �� �

dXþQivi ð20Þ

where f is load function, Qi is point loads which contains point forces and moments, P is axial

compressive load for buckling case. The nodal displacements q for a two-node beam element

contain three degrees of freedom at each node, as shown in Figure 2, namely,

fqðtÞge ¼ ½u
ðeÞ
i ðtÞ, v

ðeÞ
i ðtÞ, θ

ðeÞ
i ðtÞ, u

ðeÞ
j ðtÞ, v

ðeÞ
j ðtÞ, θ

ðeÞ
j ðtÞ �T ð21Þ

The displacement field of the finite element is expressed in terms of the nodal displacements as

follows:

uðeÞðX, tÞ ¼ ϕ
ðUÞ
1 ðXÞ uiðtÞ þ ϕ

ðUÞ
2 ðXÞ ujðtÞ ¼ ½ϕðUÞ�

n ui
uj

o

¼ ½ϕðUÞ�fqgU ð22Þ

vðeÞðX, tÞ ¼ ϕ
ðVÞ
1 ðXÞ viðtÞ þ ϕ

ðVÞ
2 ðXÞ θiðtÞ þ ϕ

ðVÞ
3 ðXÞ vjðtÞ þ ϕ

ðVÞ
4 ðXÞ θjðtÞ ð23aÞ

ϕ
ðVÞ

h i

vi
θi

vj

θj

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼ ϕ
ðVÞ

h i

fqgV ð23bÞ

where ui, vi, and θi are the axial displacements, transverse displacements, and slopes at the two

end nodes of the beam element, respectively, and ϕ
ðUÞ
i and ϕ

ðVÞ
i are the Hermite shape func-

tions for the axial and transverse displacements, respectively. The interpolation functions for

the axial displacement are,

Figure 2. Two-node beam element.
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ϕ
ðUÞðXÞ ¼ ϕ

ðUÞ
1 ðXÞ ϕ

ðUÞ
2 ðXÞ

h iT
ð24Þ

where

ϕ
ðUÞ
1 ðXÞ ¼ �

X

Le
þ 1

� �

ð25aÞ

ϕ
ðUÞ
2 ðXÞ ¼

X

Le

� �

ð25bÞ

The interpolation functions for the transverse displacement are

ϕ
ðVÞðXÞ ¼ ϕ

ðVÞ
1 ðXÞ ϕ

ðVÞ
2 ðXÞ ϕ

ðVÞ
3 ðXÞ ϕ

ðVÞ
4 ðXÞ

h iT
ð26Þ

where

ϕ
ðVÞ
1 ðXÞ ¼ 1�

3X2

L2e
þ
2X3

L3e

 !

ð27aÞ

ϕ
ðVÞ
2 ðXÞ ¼ �Xþ

2X2

Le
�
X3

L2e

 !

ð27bÞ

ϕ
ðVÞ
3 ðXÞ ¼

3X2

L2e
�
2X3

L3e

 !

ð27cÞ

ϕ
ðVÞ
4 ðXÞ ¼

X2

Le
�
X3

L2e

 !

ð27dÞ

with Le indicating the length of the beam element. The Lagrangian functional of the problem is

given as follows:

I ¼ T � ðUi þUeÞ ð28Þ

After substituting Eqs. (22) and (23) into Eq. (28) and then using the Lagrange’s equations, one

obtains the following equation:

∂I

∂q
ðeÞ
k

�
∂

∂t

∂I

∂ _q
ðeÞ
k

¼ 0, k ¼ 1, 2, 3, 4, 5, 6, ð29Þ

where _q
ðeÞ
k indicates the time derivative of the nodal displacements q.

The Lagrange’s equations can be employed to yield the system of equations of motion for the

finite element. By the usual assemblage procedure, the equations of motion can be obtained for

the entire structure. For the free vibration problem, the finite element equation is as follows:
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ð½K� � ω
2½M�Þfq̂g ¼ 0 ð30Þ

For the static problem, the finite element equation is as follows:

½K�fqg ¼ fFg ð31Þ

For the buckling problem, the finite element equation is as follows:

ð½K� � Pcr½KG�Þfq̂g ¼ 0 ð32Þ

where ω is the natural frequency, fq̂g is a vector of displacement amplitudes of the vibration,

fFg is the global load vector, [K] is the stiffness matrix, [M] is the mass matrix, and [KG] is the

stability matrix. The stiffness matrix [K] can be given as:

½K� ¼
½KA� ½0�

½0� ½KD�

" #

ð33Þ

where

½KA� ¼

ð

Le

0

EA
∂ϕðUÞ

∂X

� �T
∂ϕðUÞ

∂X

� �

dX ð34aÞ

½KD� ¼

ð

Le

0

EIþ
1

4
l2μA

� �

∂
2ϕðVÞ

∂X2

� �T
∂
2ϕðVÞ

∂X2

� �

dX ð34bÞ

The mass matrix [M] can be expressed as the sum of four submatrices as follows:

½M� ¼ ½MU� þ ½MV � þ ½M∅� ð35Þ

where

½MU� ¼

ð

Le

0

ρA½ϕðUÞ�T ½ϕðUÞ�dX ð36aÞ

½MV � ¼

ð

Le

0

ρA½ϕðVÞ�T ½ϕðVÞ�dX ð36bÞ

½M∅� ¼

ð

Le

0

ρI½ϕð∅Þ�T ½ϕð∅Þ�dX ð36cÞ

The stability matrix [KG] can be given as:
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½KG� ¼
½0� ½0�

½0� ½KD
G �

� �

ð37Þ

where

½KD
G � ¼

ð

Le

0

∂ϕðVÞ

∂X

� �T
∂ϕðVÞ

∂X

� �

dX ð38Þ

The load vector {F} is expressed as

fFg ¼

ð

Le

x¼0

fϕðXÞgT f dXþQi ð39Þ

In the solution of the free vibration and buckling problems, the eigenvalue procedure is

performed in Eqs. (30) and (32). When the material length scale parameter (l) is equal to zero,

the finite element formulations reduce to classical beam theory.

After integration processing, the finite element matrixes can be expressed as follows:

K½ � ¼

EA

Le
0 0 �

EA

Le
0 0

0
12ðEIþ 0:25l2μAÞ

Le3
�6ðEIþ 0:25l2μAÞ

Le2
0

�12ðEIþ 0:25l2μAÞ

Le3
�6ðEIþ 0:25l2μAÞ

Le2

0
�6ðEIþ 0:25l2μAÞ

Le2
4ðEIþ 0:25l2μAÞ

Le
0

6ðEIþ 0:25l2μAÞ

Le2
2ðEIþ 0:25l2μAÞ

Le

�
EA

Le
0 0

EA

Le
0 0

0
�12ðEIþ 0:25l2μAÞ

Le3
6ðEIþ 0:25l2μAÞ

Le2
0

12ðEIþ 0:25l2μAÞ

Le3
6ðEIþ 0:25l2μAÞ

Le2

0
�6ðEIþ 0:25l2μAÞ

Le2
2ðEIþ 0:25l2μAÞ

Le
0

6ðEIþ 0:25l2μAÞ

Le2
4ðEIþ 0:25l2μAÞ

Le

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð40aÞ

½M� ¼

ρALe

3
0 0

ρALe

6
0 0

0 ð
13ρALe

35
þ
6ρI

5Le
Þ ð

�11ρALe
2

210
�

ρI

10
Þ 0 ð

9ρALe

70
�
6ρI

5Le
Þ ð

13ρALe
2

420
�

ρI

10
Þ

0 ð
�11ρALe

2

210
�

ρI

10
Þ ð

ρALe
3

105
þ
2ρILe
15

Þ 0 ð
�13ρALe

2

420
þ

ρI

10
Þ

�ρALe
3

140
�
ρILe
30

ρALe

6
0 0

ρALe

3
0 0

0 ð
9ρALe

70
�
6ρI

5Le
Þ ð

�13ρALe
2

420
þ

ρI

10
Þ 0 ð

13ρALe

35
þ
6ρI

5Le
Þ ð

11ρALe
2

210
þ

ρI

10
Þ

0 ð
13ρALe

2

420
�

ρI

10
Þ ð

�ρALe
3

140
�
ρILe
30

Þ 0 ð
11ρALe

2

210
þ

ρI

10
Þ ð

ρALe
3

105
þ
2ρILe
15

Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð40bÞ
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½KG� ¼

0 0 0 0 0 0

0
6

5Le

�1

10
0

�6

5Le

�1

10

0
�1

10

2Le
15

0
1

10

�Le

30
0 0 0 0 0 0

0
�6

5Le

1

10
0

6

5Le

1

10

0
�1

10

�Le

30
0

1

10

2Le
15

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð40cÞ

3. Numerical results

In the numerical examples, the effects of the material length scale parameter and geometry

parameters on the static, vibration, and buckling responses of the nanobeam are presented in

both the classical beam theory (CBT) and MCST. Using the conventional assembly procedure for

the finite elements, the system stiffness, mass, stability matrices, and the load vector are obtained

from the element stiffness, mass, stability matrices, and load vectors. After that, the solution

process outlined in the preceding section is used to obtain the solution for the problem of

concern. In obtaining the numerical results, graphs and solution of the nonlinear finite element

model, MATLAB program is used. The nanobeam is taken to be made of epoxy (E ¼ 1,44 GPa,

ν ¼ 0:38, l ¼ 17:6 μm, ρ ¼ 1600 kg
m3). In the numerical calculations, the number of finite ele-

ments is taken as 100. In the numerical integrations, five-point Gauss integration rule is used.

In order to establish the accuracy of the present formulation and the computer program devel-

oped by the author, the results obtained from the present study are compared with the available

results in the literature. For this purpose, the static deflections shapes of a simple supported

beam with rectangular cross section, which is subjected to a point load, are calculated for MCST

and compared with those of Alashti and Abolghasemi [41] by inserting the material and load

properties used in this reference. It is clearly seen that the curves of Figure 3 of the present study

are very close to those of Alashti and Abolghasemi [41].

Figure 3. Comparison study: static deflections shape of the simple supported beam based on the MCST.
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Figure 4a–c shows the effects of the thickness (h) on the static, vibration, and buckling

responses of the nanobeam, respectively, in both the CBT and MCST. In these figures, static

deflections, fundamental frequencies, and critical buckling loads are calculated and plotted for

different values of the h for b ¼ l and L ¼ 30 l. In the calculation of Figure 3a, the nanobeam is

subjected to a transversal point load (P¼ 100 μN) at the midpoint of the beam in the transverse

direction.

As seen from Figure 4, the difference between the results of the MCST and CBT decreases

significantly with the increase in the thickness of the nanobeam. Increase in the thickness of the

nanobeam leads to a decline on effects of size effect and difference between the results of

MCST and CBT.

In order to see the effect of material length scale parameter (l) on the static, vibration and

buckling of the nanobeam, static deflections, fundamental frequencies, and critical buckling

loads are displayed with different value of the dimensionless material length scale parameters

(l/h) in both the CBT and MCST in Figure 5 for b ¼ 1 μm and L ¼ 30 μm. In this figure, for

different values of the dimensionless material length scale parameters (l/h), the material length

scale parameter (l) is varied when the thickness of the nanobeam (h) is kept constant as 1 μm.

It is seen from Figure 5 that with an increase in the dimensionless material length scale

parameter l/h leads to a rise on the difference between the results of the MCST and CBT. Also,

the dimensionless material length scale parameter has no effect on the mechanical responses

for the classical theory, which is unable to capture the size effect. It is found that the deflections

Figure 4. Effect of the thickness on the static, vibration, and buckling responses of the nanobeam for CBT and MCST; (a)

static analysis, (b) free vibration analysis, and (c) buckling analysis.
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of the nanobeam by the CBTare always larger than those by the MCST. However, fundamental

frequencies and critical buckling loads by the MCSTare always larger than those by the CBT. It

can be seen from figures that the difference between the CBTand MCST is very large when the

h and l/h increase. The material parameter and dimension of the nanobeam have a very

important role on the mechanical behavior of nanobeams.

4. Conclusions

Finite element solution of nanobeams is investigated based on modified couple stress theory

within the Euler-Bernoulli beam theory. The finite element formulations are derived for static,

free vibration, and buckling problems of nanobeams. The effect of the material length scale

parameter and geometry parameters on the static, vibration, and buckling responses of the

nanobeam is presented and discussed in the numerical study. Also, the difference between the

classical beam theory and modified couple stress theory is investigated.

It is observed from the investigations that the material length scale parameter and dimension

of the nanobeam have a big influence on the static, free vibration, and buckling behaviors of

nanobeams. With the increase in the thickness of the nanobeam (h) and decrease in the

dimensionless material length scale parameter (l/h), the difference between the classical beam

theory and modified couple stress theory decrease considerably. It is observed from the results

that modified couple stress theory must be used instead of the classical beam theory for small

values of nanobeam height and high values of the material length scale parameter.

Figure 5. Effect of the dimensionless material length scale parameter (l/h) on the static, vibration, and buckling responses

of the nanobeam for CBT and MCST; (a) static analysis, (b) free vibration analysis, and (c) buckling analysis.
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