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Abstract

If we take into consideration the fact that the radar signal recognition and identification
process is an integral part of contemporary combat operations, the importance of the
fractal analysis increases significantly. For this reason, the fractal analysis is used in the
process of radar sources identification on the contemporary battlefield. Radar Signal
Recognition (RSR) with the use of classical methods, that is based on statistical analysis
of basic measurable parameters of a radar signal, such as Radio Frequency (RF), Ampli-
tude (A), Pulse Width (PW) or Pulse Repetition Interval (PRI) is not enough to carry
out the distinction process of particular copies of the same radar type. Only by this
approach, the identification process of particular copies in a set of the same type emitters
can be carried out. As a result, it is possible to maximize Correct Identification Coeffi-
cient (CIC) in the final stage of the recognition process, which is realized in Electronic
Warfare (EW) systems. One of the most important elements of the whole recognition
and identification process, which is realized in ELectronic INTelligence (ELINT) battle-
field system, is building a measurement data vector, then a radar's metrics and the same
database. This approach is called Specific Emitter Identification (SEI).

Keywords: fractal feature, pattern of radar, Specific Emitter Identification (SEI), radar
vector parameters, ELINT system, Radar Signal Recognition (RSR), Correct Identifica-
tion Coefficient (CIC)

1. Introduction

Developing an innovative method for generating distinctive features extracted from radar

signals in order to achieve explicit identification is a main goal in the process of Specific

Emitter Identification (SEI). As a result, it is possible to maximize Correct Identification Coef-

ficient (CIC) and identify particular copies of radars of the same type in ELectronic INTelli-

gence (ELINT) system on the contemporary battlefield. The presented achievements in this
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chapter concern methods and techniques adjusted to electromagnetic emitter source recogni-

tion and identification with particular reference to the systematic approach, that is, from the

acquisition process, through initial data transformation, main transformation, classification

and identification and building a model in the DataBase (DB). Only a comprehensive approach

can be coherently fitted into a harmonious whole of all the ELINT recognition systems’

processes on the contemporary battlefield. As a result, this approach may contribute to an

increase in effectiveness of activity by minimization of time, which is necessary for the decision

process realized in Electronic Warfare systems.

Generally, it is possible to distinguish the main task, which has a significant contribution to the

development of recognition and identification of radar signals, that is, developing innovative

methods for generating distinctive features of radar signals [1–5]. As mentioned above, the task

is connected with developing a method for setting the structure of basic measurable parameters

of a radar signal in the form of time-frequency-formalized Pulse Descriptive Word (PDW) [5, 6],

developing and implementing in SEI process, an advanced Hierarchical Agglomerative Cluster-

ing Algorithm (HACA) based on the 'bottom up' agglomerative formula, which makes it possi-

ble to receive dendrograms of hierarchical clustering for pulse repetition intervals and their

distinctive analysis [1], applying the inter-pulse modulation analysis to extract distinctive fea-

tures [7], developing an innovative histogram procedure to build PRI decomposition [2] and

finally developing an innovative method for defining a transformation attractor of radar signals

measurement clusters [3, 4]. This approach is called Specific Emitter Identification.

2. Classic recognition of radar signals

As a general rule, the systems aiming at acquisition, analysis and recognition of radar signals on

the contemporary battlefield are autonomous systems, which are made of electronic recognition

devices doing ELINT tasks. These systems accomplish complex procedures in the scope of

emission acquisition, analysis, transformation and radar emission recognition with the range of

wavelengths 0.5–18 GHz, long-term data archivization and full synthesis and fusion of informa-

tion. These systems, in most cases, are made of the following subsystems and modules, that is,

radar signal acquisition subsystem, radar signal processing and analysis subsystem, database

management subsystem and communication module1 between particular subsystems.

Accomplishing basic tasks in the designed systems of radar signal acquisition, analysis and

recognition on the contemporary battlefield is based on:

• automated searching for and detecting2 electromagnetic emitters (in the range of wave-

lengths 0.5–18 GHz);

1

Communication module between particular subsystems and components of acquisition system and radar signal analysis

on the contemporary battlefield is not the subject of this chapter.
2

In the aspect of tasks connected with searching for and detecting signals and measuring their parameters, the specialist

equipment of the radar signal acquisition, analysis and recognition system makes it possible to accomplish the tasks above

on the land, from the air or the sea and may be adjusted to a plane, helicopter, a ship or installed in a special container case.
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• automated parameter measurement of the detected emitters;

• analysis of measured signal parameters in a thick electromagnetic environment (a few

thousand or more pulses) and initial measurement data processing (initial parametric

selection and/or signal reduction);

• main signal processing (extraction of basic features and estimation of basic measurable

radar signal parameters i.e. signal radio frequency, amplitude, pulse width, pulse repeti-

tion interval) on the basis of statistical functions concerning estimating e.g. average values

of parameters, class models and hypothesis verification;

• radar signal archivization in files with measurement data in the DataBase and updating

procedure as well as DataBase structure modification;

• radar types recognition and classification on the basis of radar signals received from them

by comparing signal parameters with the model in BD in the shortest time possible and

using expert's knowledge in the process of emitter sources recognition, classification and

location;

• visualization of signals, measurement data clusters, results of recognition and other data

and distinctive information presented in a tabular and graphic form;

• depict results of recognition on a digital map and automatically adjusting a unit to the area;

• possibilities of import and analysis of measurement data from electronic recognition, which

is received from other sources and data measurement and recognition information fusion;

• creating a simulation software to generate warfare scenarios, test correctness of emission

sources classification, recognition and location procedures and to estimate the effective-

ness of the system and trainings for operators.

The analysis of radioelectronic situation on the contemporary battlefield and long-term radar

signal measurements makes it possible to admit that during the process of signal recognition

and classification, there is a phenomenon of penetrating ranges of radar parameters, many

ranges of particular parameters for single radars, different types of emissions (constant, pulse,

interrupting), complexity of sounding pulses and specific work properties (signal polarization

depending on the weather), decrease in frequency of repetition and top pulse as the beams go

above the horizon or the change of top power in case of e.g. weather condition changes. The

general block diagram of radar signal acquisition, analysis and recognition is presented in

Figure 1.

The radar recognition system (see Figure 1) is only able to recognize and classify particular

types of radars. A definitely more advanced one is the recognition process understood in a

‘narrow sense’. Its aim is to identify these signals, thus their emission sources as well. I deal

with the recognition understood in a ‘narrow sense’, which concerns identification of particu-

lar radar copies of the same type depending on the detail level.

The process of distinguishing the radar emission source even ‘a single copy’ is the exact identifica-

tion of radar signal source in the aspect of SEI. Thus, applying in the acquisition system, the
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analysis and recognition of radar signals, inter-pulse analysis of signal parameters (defining the

type of inter-pulse modulation and estimation of parameters’ modulation), intra-pulse analysis

(defining the type and parameters of intra-pulse modulation on the basis of a single pulse),

applying innovativemethods for generating distinctive features, using fast-decision identification

algorithm and advanced DataBases prepared as a result of modelling entity relationships and

using AI3 devices is an immanent specificity of ELINT systems and makes it possible to identify

particular copies of radar emitters with the use of the above dedicated methods for generating

distinctive features' signals in Electronic Warfare (EW) systems. As concerns contemporary used

ELINTclass systems, data classification and recognition techniques are currently developed fields

of science, it is not possible to formulate optimal model of their structure and maximize the

recognition and classification function aswell as the identification function.

In Figure 2, a block diagram of the acquisition, analysis and identification system, including

the subsystems that implement modern and advanced methods for generating distinctive

fractal features, is presented.

Figure 1. The process of information processing in the radar recognition system.

3

AI (Artificial Intelligence), a term of artificial intelligence, which in BD systems is realized on the basis of using artificial

neural networks (so-called AI bionic trend) and expert systems, based on predicate calculus (so-called AI pragmatic

trend).
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3. Innovative method for generating distinctive features based on fractal

analysis

RSRwith the use of classic techniques, which are based on the statistical analysis of basic measur-

able parameters, such as radio frequency, signal amplitude, pulse width, and pulse repetition

interval, is completely not sufficient for SEI process to carry out the process of distinguishing

particular radar copies of the same type.

For this reason, on the stage of initial data processing, a method for defining the structure of

basic measurable parameters of a radar signal in the form of formalized time-frequency Pulse

Description Word was developed. These vectors are input data into the further process of

generating distinctive features, in the main processing stage [3, 4]. As mentioned above, the

PDW vector is a formalized data structure of record type, where particular fields consist of

frequency parameters and time parameters of radar signal according to Eq. (1), where Nr(k) is

the number kth of the pulse, tp(k) is the time of appearing kth pulse in [µs], A(k) is the

amplitude of kth pulse, PW(k) is the width of kth pulse in [µs], PRI(k) is the Pulse Repetition

Interval of kth pulse in [µs], RF(k) is the Radio Frequency of kth pulse in [MHz], n is the

number of pulses in the record of these which are qualified to the analysis while k is the

number of pulses in the measured sample.

PDW ¼

Nrð1Þ tpð1Þ Að1Þ PWð1Þ PRIð1Þ RFð1Þ
Nrð2Þ tpð2Þ Að2Þ PWð2Þ PRIð2Þ RFð2Þ
… … … … … …

NrðkÞ tpðkÞ AðkÞ PWðkÞ PRIðkÞ RFðkÞ
… … … … … …

NrðnÞ tpðnÞ Að2Þ PWðnÞ PRIðnÞ RFðnÞ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð1Þ

Figure 2. The process of distinctive fractal features generation in the RSR system.
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The effect of the further transformation of PDW vector is Basic Signal Vector VB, whose fields

are of particular signal frequency and time parameters, according to Eqs. (2)–(4). The time

parameters of the vector VPRI
B are as follows: minimum pulse repetition interval value PRImin,

average pulse repetition interval value PRIEV, maximum pulse repetition interval value

PRImax, the number of values of pulse repetition interval nPRI, the number of values of average

pulse repetition interval nPRIEV, the minimum value of pulse width PWmin, the average value

of pulse width PWEV and the maximum value of pulse width PWmax.

VPRI
B ¼ ½PRImin,PRIEV,PRImax ,nPRI,nPRIEV ,PWmin,PWEV ,PWmax� ð2Þ

The frequency parameters of the signal vector VRF
B are defined according to Eq. (3) and are as

follows: the minimum value of the signal radio frequency RFmin, the average value of the radio

frequency for the periodRFEV, themaximumvalue of the radio frequency in the period of changes

RFmax, the number of values of the radio frequency nRF and the number of average radio frequen-

cies in the cycle of changes nRFEV.

VRF
B ¼ ½RFmin, RFEV, RFmax, nRF, nRFEV� ð3Þ

The vector VB of the final structure presented according to Eq. (4) consists of parameters

concerning information about the accuracymeasurements of: radio frequency sigRF, pulse repeti-

tion interval sigPRI and pulsewidth sigPW .

VB ¼ ½VPRI
B ,VRF

B , sigRF, sigPRI, sigPW� ð4Þ

These parameters are the base for defining the brackets of acceptable changes of radar signal, that

is, RF, PRI and PW are used in the estimation process of effectiveness of the Fast decision

Identification Algorithm (FdIA), described in [6]. The process of developing the signal vector VB

also undergoes the process of implementation and automation in the stage of initial data

Figure 3. PRI histogram for six copies of the same type of radars marked by colours.
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processing and the main data processing by ELINT system (see Figure 2). During the analysis, in

total hundreds of radar samples coming are carried out. The received record collections (e.g. six

copies of the same type of radars) with basic measurable parameters of PDWare presented in the

form of a graph with basic measurable parameters, that is, RF, PW and PRI in Figures 3 and 4.

Figure 3 presents the PRI histogram of six tested radar copies in an overall depiction. Figure 4

presents a 3D graph of RF, PRI andPWparameters from six copies, in an overall depiction aswell.

Figures 5 and 6 present 3D depicting of radio frequency and pulse width for three selected copies

of the same type of radars received with the use of 'mesh' function in the MatLab software.

Figure 4. 3D graphic depicting of PW, PRI and RF for six copies of the same type of radars.

Figure 5. 3D graphic depicting of PW for three selected copies of the same type of radars.
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On the basis of the recordings and initial analysis to further process of identification, only these

copies were admitted whose basic measurable parameters, that is, RF, PWand PRI were much

the same—see Figures 5–8. Figures 5–8 present the biggest similarity of the radar signal

parameters which those sources generated.

Figure 6. 3D graphic depicting of RF for three selected copies of the same type of radars.

Figure 7. 3D graphic depicting of RF, PRI and PW for three selected copies of the same type of radars marked by three

shades of gray.
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4. Defining the transformation attractor and distinctive features extraction

One of the ways to increase the number of details of definition is specific identification of

electromagnetic emitter sources SEI which extracts distinctive features in the process of signal

transformation. The distinctive features may be a result of the received transformations of

measurement data sets. New data sets will have fractal features which will make it possible

to define clearly the source of radar emission. The fractal features and the theory of fractals is

adopted by researchers, especially in the field of SAR (Synthetic Aperture Radar) image trans-

formation [8, 9], acoustic signal transformation and the analysis of radar signals. New possi-

bilities of Digital Signal Processing (DSP) in Frequency Modulated Continuous Wave (FMCW)

radar and fractal image compression is a promising brand new compression method [10, 11]. It

should be noted that the identification of emitter sources based on classical methods of the

analysis of basic parameters is currently inefficient. The methods of SEI [12, 13] should be used

in order to identify, more precisely, a radar copy of the same type.

4.1. An attractor of transformation

The easiest way to make fractals is by using a set of affine transformations, which are contrac-

tions or narrowing transformations. In this case, the set of affine transformations is Iterated

Function System (IFS). A recording of radar signal was made. Further frequency values, for

which the recording was made, correspond to particular measurement points. By transforming

the sets of measurement points in the scope of their symmetry or left-side/right-side asymme-

try, what was received was the attractor of transformation which can be a fractal in a special

case. As a result, the attractor of generalized measurement function appeared, which was the

result of the procedure of SEI described here. While doing the analytical procedure of defining

the attractor of measurement function, right-side measurement vectors pr and left-side ones pl

with the beginning in the particular point of reference f0, so that pr ¼ ½pr1,p
r
2,…,prN�

T and

pl ¼ ½pl1,p
l
2,…,plM�T were assigned. In order to define the desirable selective features, the

Figure 8. 3D graphic depicting of PW, PRI and RF for three selected copies of the same type of radars marked by three

shades of gray.
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T : pr ! t transformation was done. In this transformation, t is the image of the pr vector in the

form of a vector with coordinates corresponding to the pl vector. For the transparent record of

the transformation above with the use of vectors pr and pl, the mapping was written in the

Euclidean plane, that is, T : E1 ! E2. In the issue, which is considered here, these transforma-

tions are linear mappings, so they can be written in the matrix form as t ¼ T ðpp,AÞ, in which

A is the matrix of a given transformation. Depending on the received symmetry or asymmetry

(right/left-hand) of measurement points, they will create different dispersion graphs. An

example of right-side and left-side asymmetry dispersion graph is presented in Figures 9 and

10 and precisely described in the work of Dudczyk [13]. The number of measurement points is

chosen empirically and is a double value of the maximum filter’s width of the IF frequency

from the superheterodyne receiver, which is used in the measurement procedure, that is,

40 MHz. As a result of this assumption, the critical original number of measurement points is

as follows N = M = 80.

Depending on the received symmetry or asymmetry (right/left-side) of measurement points, it is

possible to create dispersion graphs. Measurement points presented in Figure 11, transformed

and depicted together, form the so-called measurement function Kðf nÞ. Figure 11 shows the

Figure 9. Depiction of transformation of measurement points in a 2D Euclidean space for N > M, that is, the range of

right-hand asymmetry.

Figure 10. Depiction of transformation of measurement points in a 2D Euclidean space for N < M, that is, the range of left-

hand asymmetry.
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coordinate plane, where an abscissa (the value of x) is marked as a f xn and an ordinate (the value

of y) is marked as a f yn.

On the basis of distinctive streaks that were formed, such hypothesis can be proposed: func-

tions gAðf nÞ, gBðf nÞ, gCðf nÞ and gDðf nÞbelong to the class of linear functions, in whichgAðf nÞ,

gBðf nÞ, gCðf nÞand gDðf nÞ will be the regression lines for the streaks formed through the mea-

surement points [14]. Linear equation of regression for the presented case is defined with the

following equation gðf nÞ ¼ α � f n þ β, in which α can be expressed as a vector ½αA,αB,αC,αD�
T

and β can be expressed as a vector ½βA,βB,βC ,βD�
T and gðf nÞ can be expressed as a vector

½gAðf nÞ,gBðf nÞ,gCðf nÞ,gDðf nÞ�
T . To define the value of α and β, Eq. (5) should be minimalized.

E½f Yn � α � f n � β�2 ¼ min ð5Þ

∂

∂α
E½f Yn � α � f n � β�2 ¼ �2E½ðf Yn � α � f n � βÞf n�

∂

∂β
E½f Yn � α � f n � β�2 ¼ �2E½ðf Yn � α � f n � βÞ�

8

>

>

<

>

>

:

ð6Þ

After comparing the calculated derivatives Eq. (6) to zero, appears the system of normal

equations in which after replacing the expected values with particular moments of equation

systems, the following equation can be written:

α �m20 þ β �m10 ¼ m11

α �m10 þ β ¼ m01

�

ð7Þ

in which m10 and m01 are sample 1st moments, m20 is sample 2nd moment and m11 is mixed

sample 1st moment. After further transformations, the regression equation is as follows:

Figure 11. A graph of measurement points dispersion after transformation—attractor of transformation.
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gðf nÞ ¼
μ11

μ20

� f n þ m01 �
μ11

μ20

m10

� �

¼ α21f n þ β ð8Þ

where

α21 ¼
μA
11

μA
20

,
μB
11

μB
20

,
μC
11

μC
20

,
μD
11

μD
20

" #T

¼ ½αA, αB, αC, αD�
T ð9Þ

β ¼ mA
01 �

μA
11

μA
20

mA
10, m

B
01 �

μB
11

μB
20

mB
10 , m

C
01 �

μC
11

μC
20

mC
10, m

D
01 �

μD
11

μD
20

mD
10,

" #T

¼ ½βA, βB, βC, βD � T ð10Þ

and μ11 means mixed 2nd central moment and μ20 means 2nd central moment. As a result of

further transformations, four linear regression equations were given. The particular equation

system given by the regression equation allows to calculate characteristic points of coordi-

nates. Examples of four characteristic points presented in Figure 11 in the form of black points,

such as (PAB, PBC, PCD, PAD), were formed. Then, with the use of characteristic points of

coordinates, the measurement function Kðf nÞ was formed.

4.2. Distinctive fractal features extraction

As a result of further transformations, four equations of linear regression were received. Then, it

is possible to draw a measurement function Kðf nÞ in the form of a product k degree given k + 1

characteristic points, defined by the Lagrange’s polynomial formula in accordance with Eq. (11),

where ak, ak�1, …, a0 are characteristic parameters of measurement function Kðf nÞ, as shown in

Figure 12.

Figure 12. The image of measured function according to Lagrange polynomial and fractal features extraction.
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Kðf nÞ ¼ akf
k
n þ ak�1f

k�1
n þ ak�2f

k�2
n þ⋯þ a0 ð11Þ

The formalized notation of the measurement function Kðf nÞ allows to extract distinctive fea-

tures through defining the space area under the measurement function and the arc length of

the function, which appeared for the SEI process. The feature S is the value of the space area of

a closed surface expanding from the generalized measurement function Kðf nÞ in the bracket

〈fmin
n , fmax

n 〉, respecting Eq. (12).

S ¼

ðfmax
n

fmin
n

Kðf nÞdf n ¼

ðfmax
n

fmin
n

ðakf
k
n þ ak�1f

k�1
n þ ak�2f

k�2
n þ⋯þ a0Þdf n ð12Þ

Simultaneously, the arc length of the generalized measurement function Kðf nÞ as the second

distinction feature of the radar emission source will be represented through the arc length L of

the function Kðf nÞ in the brackets 〈fmin
n , fmax

n 〉, respecting Eq. (13).

L ¼

ðfmax
n

fmin
n

1þ
∂Kðf nÞ

∂f n

� �2
" #1

2

df n ¼

ð

fmax
n

fmin
n

1þ
�

kakf
k�1
n þ ðk� 1Þak�1f

k�2 þ…þ a1

�2
� �

1
2df n ð13Þ

According to Eqs. (12) and (13), it is possible to extract two additional distinctive features, that

is, the length of measurement function and the value of area which is included under this

function. The presented method of features extraction makes it possible to estimate numerical

surface areas under the measurement functions (feature S) and the distance of arc of these

functions (feature L). Then the vector of basic measurable parameters of radar signal was

extended with two additional features.

Given in that way, two additional features expand the VB vector of the basic features of radar

signal measurable parameters, such as PW, PRI and RF. And these features are a good separa-

tion measure in the SEI process. The way of defining these two additional features and using

them in the process of identification of the radar copies of the same type was presented in

further part of this chapter.

5. Fractal of generalized measurement function

Generalization of the method of radar signal identification on the basis of the transformation

fractal is defining the generalized measurement function K̂ðf nÞ going through all particular

characteristic points Pn, in which n = 0,1,…,kgr . Figure 13 presents the fractal character of the

measurement function received as a result of the transformation of the set of measurement

points.

The generalized measurement function K̂ðf nÞ preserves the character of not decreasing func-

tion in a particular bracket 〈fmin
n , fmax

n 〉 and out of definite character, it shows prediction

Specific Emitter Identification Based on Fractal Features
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features. Simultaneously, K̂ðf nÞ is located in an area that is mapped by the lower limiting

straight FLðf nÞ and upper limiting straight FUðf nÞ and is symmetric relatively to the symmet-

rical limiting straight FSðf nÞ according to Eqs. (14)–(16), in which f x2, f
x
3, f

x
gr are the abscissae of

characteristic points and f
y
2, f

y
3, f

y
gr are the ordinates of characteristic points. Figure 13 pre-

sents a fractal character of the generalized measurement function which has the form of a

contraction mapping.

FLðf nÞ ¼
f ygr � f

y
2

f xgr � f x2

" #

� ðf n � f x2Þ þ f
y
2 ð14Þ

FUðf nÞ ¼
f ygr � f

y
3

f xgr � f x3

" #

� ðf n � f x3Þ þ f
y
3 ð15Þ

FSðf nÞ ¼
f ygr

f xgr

" #

� f n ð16Þ

It should be mentioned that the received shape of the measurement function (according to

Figures 11 and 12) is an individual model of a radar emission source. ‘An individual model’

means ‘lines on the fingers’ of the radar which make a clear identification possible.

6. Results of analysis

To compare the received results with other RSR methods based on, for example, Fast decision

Identification Algorithm of emission source pattern described in Ref. [6], or out-of-band

Figure 13. The fractal character of generalized measurement function.
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radiation of radar devices described in Ref. [13], or inter-pulse modulation described in Ref. [7]

and intra-pulse analysis of a radar signal shown in Ref. [15] or method based on data modelling

presented in Ref. [16], Correct Identification Coefficient (CIC) is set according to Eq. (17), where

nB�P is the number of correct comparisons of basic features’ vectors VB (presented according to

Eq. (4)), to extended vectors VEXT (with two additional features L and S) in a particular class,

where N is the number of all comparisons divided by the number of test collections.

CIC ¼
nB�P

N
ð17Þ

The number of nB�P correct comparisons is set according to Eq. (18), where γ
j
i function assigns

to a pair of vectors ðVi
B,V

j
EXTÞ the value which equals ‘1’ if i = j, or the value which equals ‘0’ if

i 6¼ j. The example of CIC received values are presented in the following part of this chapter.

nB�P ¼
XI

i¼1

XJ

j¼1

γ
i j ð18Þ

The process of identification was made on the basis of length measurement and the decision

about the criterion of minimal distance classification. A correctness estimation of tests with

particular class were Mahalanobis, Euclidean and Hamming distances (metrics) [17, 18]. The

criterion of classification was the criterion of ‘the nearest neighbour’, which was used as one of

the basic threshold criteria [19]. In order to assess the quality of the classification/identification

process, the Correct Identification Coefficient was defined.

According to Eqs. (8) and (9), it was possible to extract two additional distinctive features, that

is, the length of measurement function and the value of area which is included under this

function. The results were presented in Figures 14–16.

Also, the received estimation results are presented in Figures 17–19. Appropriately crossed

columns and lines of each VB vector and extended vectors VEXT present the degree of their

similarity defined by the distance value. The less value of this distance means the bigger similar-

ity ofVB vector to the extended vectors. Also, in Figures 15–17, there are minimum values of the

distance marked with a red dotted ellipse.

Figure 14. An attractor of transformation for Copy of Radar No. 1.
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A correctness estimation of tests with particular class were Mahalanobis, Euclidean and Ham-

ming distances (metrics) [21]. The SEI estimation results are presented in Figures 20–22.

According to the SEI methods listed in this chapter, the received RER results are as follows: the

use of out-of-band radiation described in the work of Dudczyk [13] and the CIC value for RSR

is about 90%. The method based on fractal features described in the work of Dudczyk and

Kawalec [3], and the CIC value is 91.6% for Mahalanobis metric and 96.7% for Euclidean and

Hamming metrics. Very similar RER results are received in the work of Dudczyk and Kawalec

Figure 15. An attractor of transformation for Copy of Radar No. 2.

Figure 16. An attractor of transformation for Copy of Radar No. 3.

Figure 17. The values of Mahal distances for Radar Copy No. 1.
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Figure 19. The values of Mahal distances for Radar Copy No. 3.

Figure 18. The values of Mahal distances for Radar Copy No. 2.

Figure 20. The values of CIC for Radar Copy No. 1.

Figure 21. The values of CIC for Radar Copy No. 2.

Specific Emitter Identification Based on Fractal Features
http://dx.doi.org/10.5772/67894

131



[4], where RSR is also based on the analysis of fractal features. The method based on inter-

pulse analysis described in the work of Dudczyk et al. [7] increases the CIC coefficient up to

70%, and the method based on intra-pulse analysis described in the work of Kawalec and

Owczarek [15] makes it possible to receive RSR results reaching 90% level. Data modelling

applied to RSR and identification is presented in the work of Kawalec and Owczarek [16]. In

this work, the value of CIC equals 98%. In the work of Dudczyk and Kawalec [6], the Fast

Identification Algorithm for RER is presented. This algorithm is parameterized in three stages

by implementation of three different ways to define the similarity degree of the signal vector to

the pattern in the database. Based on this algorithm, the CIC value is 63%. In order to depict it,

in Figure 23, there have been presented CIC values.

The presented method of features extraction makes it possible to estimate numerical surface

areas under the measurement functions (feature S) and the distance of arc of these functions

(feature L). Then, the vector of basic measurable parameters of radar signal was extended with

two additional features. Given in that way, two additional features expand the vector of the

basic features of radar signal measurable parameters, such as PW, PRI and RF, are a good

separation measure in the SEI process. The way of defining these two additional features and

using them in the process of identification of the radar copies of the same type was presented.

The features S and L are distinctive information for good separating measure in the SEI

process. Simultaneously, as a result of transformations in collections of measurement points,

Figure 22. The values of CIC for Radar Copy No. 3.

Figure 23. Graphic illustration of CIC values for other RER methods.
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the transformation attractor of the generalized measurement function is received. The received

attractor is used later on to optimize the SEI process.

It needs to be emphasized with full conviction that referring to the works above, during the SEI

procedure, the same recordings of a few hundred radar signals coming from the same type of

radars are used. Only by this approach, it is possible to compare the received results. It needs

to be emphasized that the RSRmethods listed in this chapter differ from each other as concerns

the test procedure, the compilation level, calculation time and algorithm complexity. However,

the main difference is that in the process of generating distinctive features, it is possible to

achieve different distinctive features from a radar signal. In that way, a quasi-optimum radar

signal pattern appeared.

7. Conclusion

Radar signal recognition with the use of classical methods, that is, based on statistical analysis

of basic measurable parameters of a radar signal, such as radio frequency, amplitude, pulse

width or pulse repetition interval, is not enough to carry out the distinction process of partic-

ular copies of the same radar type.

The received measurement data have a significant influence on the SEI process of radar, in

which it is aimed to receive very high level of radar signal identification. Ultimately, signal

source identification, which is 100%, should be characterized by the maximization of explicit-

ness of RER procedure. It is not a trivial matter to achieve such a result. It is also known that

stochastic context-free grammars (SCFG) appear promising for the recognition and threat

assessment of complex radar emitters in radar systems, but the computational requirements

for learning their production rule probabilities can be very onerous [20]. As shown in Ref. [21],

a self-organizing map and the maximum likelihood gamma mixture model classifier and

adopted Bayesian formalism are too complicated for direct analytical use in automatic radar

recognition. The presented SEI method based on fractal features is realized on the basis of

MatLab software package and received vectors are recorded in a dedicated database for

ELINT system. The received CIC value indicates that there has been a noticeable rise in the

radar signal correct identification. Comparing the received results of the identification process

with other methods, it may be admitted that the presented method makes it possible to

increase the value of CIC. In order to increase the CIC coefficient value, in further works on

RSR use in SEI process, a common similarity matrix should be defined. This matrix should

include the complexity of algorithms which are used in the RER method, estimation time, the

requirements of the equipment platform and other requirements, which are significant in the

process of quality estimation of a particular method. Thus, it will be possible to count auto-

matically the similarities between vectors of basic measurable parameters for different radar

copies of the same type. For ELINT systems working in real conditions, on a contemporary

battlefield, the automation of RSR process and explicit identification of every single emitter in

real time (with minimum time burden) are currently primary challenges for ELINT specialists

This chapter highlights the fact that the RSR process described here is a complex problem. It is

also generally known that a number of aspects such as defining the DataBase, the method
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which creates the pattern, classification process and identification process, the criteria which

are used and the method to calculate the correct identification coefficient, are currently a great

challenge for researchers and, for the time being, there are no optimal solutions to them. Many

solutions are still a mystery in this subject and because of the fact that they are a matter of

current EW field and specific programme-device applications, they cannot be published. All

attempts to implement such solutions to ELINT systems and electronic warfare should be

optimized to a particular device not to overload the SEI system.
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