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Abstract

Coronary computed tomographic angiography (cCTA) as a noninvasive approach under-
lies a rapid technological development with an impressive improvement of spatial and 
temporal resolution of the images. Therefore, it has become an accurate and cost- effective 
method to detect or exclude obstructive coronary artery disease (CAD) in patients with 
low to medium cardiovascular risk profile, as recommended by the ESC/AHA/ACC 
guidelines. The results show an excellent sensitivity, but still with a lack of specificity 
compared with invasive measurement. Several novel techniques like myocardial perfu-
sion, plaque characterization or CT-based measurement of the fractional flow reserve 
have been developed to improve the positive predictive value and create more accu-
rate results in detecting hemodynamically relevant stenoses. Moreover, during the last 
decade, the need to reduce radiation dose has become a central issue in clinical use, while 
the current generation of CT scanners has drastically lowered radiation dose. In conclu-
sion, cCTA has become a promising alternative to invasive cardiac catheterization with 
still existing limitations. Thus, an appropriate patient selection is mandatory to utilize the 
advantages of this technique.

Keywords: coronary artery disease, coronary computed tomography angiography, 
coronary plaque, CT perfusion, CT-fractional flow reserve

1. Introduction

In the beginning of computed tomography (CT) era, the beating heart could not be examined 

suitably by this technique due to its motion artefacts. While scan times and consecutively 
temporal resolution, enhanced rapidly it has become a more accurate noninvasive imaging 

method for cardiac morphology. The first attempts in using CT to visualize coronary arter-

ies have been made in the early 1980s and were followed by the back then newly emerging 
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electron beam computed tomography (EBCT), which already had scan times lower than 100 
ms [1]. Clinical relevance of the coronary CT angiography (cCTA) increased distinctly with 

the introduction of multi detector CT (MDCT) in the late 1990s—initially with four parallel 

detectors, the launch of the 64-slice MDCT generation enabled cCTA to become established 

in routine clinical practice [2, 3]. Nowadays, there are systems with up to 320-slices in clinical 

use, providing even lower scan times and a very high spatial resolution. Another landmark 

development was the introduction of the dual-source CT (DSCT) technology. DSCT contains 
of two tubes and detectors arranged in a 90° angle, also resulting in a higher temporal resolu-

tion due to the halved rotation time. The dual-energy CT (DECT) scans allow two different 
tube voltages, resulting in a significant lower radiation exposure for the patient [4]. As spatial 

and temporal resolution achieved remarkable dimensions, recent technologic improvement 

emphasized particularly the reduction of radiation dose on the one hand (see Section 3.1) 
[5], and the expansion of cCTA on additionally functional and morphological aspects, e.g., 

plaque characterization, myocardial perfusion imaging, or even CT-based fractional flow 
reserve (CT-FFR).

2. Coronary CT-angiography

2.1. Indication

Despite its many advantages, cCTA is only one out of many clinically approved methods to 

examine coronary arteries. Although there are notable technical developments in evaluating 

functional parameters as well [6–8], the current indication is predominantly the investiga-

tion of anatomical and morphological vessel characteristics. Especially in the exclusion of 
coronary artery disease (CAD), cCTA plays a decisive role [9–11]. Patients presenting with 

symptoms of CAD and low-to-intermediate risk patients undergo rapid evaluation of their 

coronary arteries. To estimate the suitable method for the individual patient, pre-test risk-

stratification calculation plays a key role. For this purpose, Diamond-Forrester (Table 1) [12] 

and Genders (Table 2) [13] are well-established charts to obtain a pre-test probability of CAD 

based on age, sex, and chest pain constellation. However, further established cardiovascular 

Non-anginal chest pain Atypical angina Typical angina

Age Men Women Men Women Men Women

30–39 5.2 ± 0.8 0.8 ± 0.3 21.8 ± 2.4 4.2 ± 1.3 69.7 ± 3.2 25.8 ± 6.6

40–49 14.1 ± 1.3 2.8 ± 0.7 46.1 ± 1.8 13.3 ± 2.9 87.3 ± 1.0 55.2 ± 6.5

50–59 21.5 ± 1.7 8.4 ± 1.2 58.9 ± 1.5 32.4 ± 3.0 92.0 ± 0.6 79.4 ± 2.4

60–69 28.1 ± 1.9 18.6 ± 1.9 67.1 ± 1.3 54.4 ± 2.4 94.3 ± 0.4 90.6 ± 1.0

Each value represents the percentage ± 1 standard deviation. Adapted from Diamond et al. [12].

Table 1. Pre-test likelihood of CAD in symptomatic patients according to age and sex.
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risk factors such as smoking, dyslipidemia, hypertension, diabetes, and family history of car-

diac diseases should be considered in the risk stratification as well. Depending on the individ-

ual risk constellation, cCTA may be the suitable modality in low-to-intermediate risk patients, 

as for high-risk patients, invasive coronary angiography remains still the gold standard, as 

recommended by the ESC/AHA/ACC guidelines [9, 10]. Due to the three-dimensional visual-

ization that can be constructed by cCTA, it can also be even used in planning and evaluating 
coronary artery bypass grafts (CABG) and detecting in-stent restenosis (ISR).

2.1.1. Suspected coronary artery disease

cCTA is excellent in visualizing coronary morphology and has emerged to an appropriate 
method of ruling out obstructive CAD. But by cCTA alone, the pathophysiological relevance 
of a detected CAD remains often unclear. Despite the remarkable advancements regarding 

functional parameters as for example perfusion imaging achieved by new DECT approaches, 
many conventional cCTAs show a rather moderate specificity regarding the functional assess-

ment of cCTA measured stenosis. The methodical approach, as proposed by the SCCT guide-

lines for the interpretation and reporting of cCTA, consists of a systematic inspection of each 

coronary segment in multiple planes, the contemplation of image quality and artifacts and 
finally the evaluation of the respective lesions in regard of morphology, composition, and 
stenosis severity. A modified version of the well-established 1975 American Heart Association 
(AHA) model is used to refer to the certain segments [14]. Coronary abnormalities, plaque 
description or insufficient interpretability due to artifacts should be mentioned. Following 
this, a qualitative assessment for each segment is obtained and should be reported according 
to Table 3. Subsequently, a quantitative assessment of the stenosis severity is performed; the 
findings should be reported according to Table 4.

It has to be mentioned that these classifications are founded on morphological features only 
and, based on these findings, conclusions about functional or ischemic insufficiencies are not 
to be inferred.

Non-anginal chest pain Atypical angina Typical angina

Age Men Women Men Women Men Women

30–39 17.7 5.3 28.9 9.6 59.1 27.5

40–49 24.8 8.0 38.4 14.0 68.9 36.7

50–59 33.6 11.7 48.9 20.0 77.3 47.1

60–69 43.7 16.9 59.4 27.7 83.9 57.7

70–79 54.4 23.8 69.2 37.0 88.9 67.7

>80 64.6 32.3 77.5 47.4 92.5 76.3

Adapted from Genders et al. [13].

Table 2. Updated pre-test likelihood of CAD in symptomatic patients according to age and sex.
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2.1.2. Coronary artery stent

Due to the limited spatial resolution of the first electronic beam CT, it was initially not pos-

sible to visualize of the stented lumen and an indirect approach was applied to assess the stent 
patency. For this reason, contrast density was measured distally to the stent and compared 

with the density pattern proximal to the stented segment, in the aorta or the left ventricle, 
while stent patency was assumed when the contrast enhancement matched [15].

With the introduction of 64-slice scanners, a high negative predictive value could be reached 
for the evaluation of in-stent restenosis, while the positive predictive value is still rather worse 

as demonstrated by meta-analysis [16, 17]. However, there are specific technical limitations 
such as blooming caused by metal artifacts resulting in an underestimation of the stent lumen.

2.1.3. Coronary artery bypass graft

The value of cCTA in the assessment of coronary artery bypass graft (CABG) and native coro-

nary arteries after bypass graft surgery continues to grow with advances in CT technology 

[18, 19]. The improvement of spatial resolution allows the cardiovascular radiologist and car-

diac surgeon to evaluate the patency of CAGB in a rapid and noninvasive manner [20]. The 

major advantage of cCTA over invasive angiography is the ability to simultaneously evaluate 

for alternate postoperative complications like malposition, kinking, or pericardial effusion.

0 Normal Absence of plaque and no luminal stenosis

1 Minimal Plaque with negligible impact on lumen

2 Mild Plaque with mild narrowing of the lumen

3 Moderate Plaque with moderate stenosis that may be of hemodynamic significance

4 Severe Plaque with probable flow limiting disease

5 Occluded

According to SCCT guidelines.

Table 3. Descriptors of qualitative stenosis severity.

0 Normal Absence of plaque and no luminal stenosis

1 Minimal Plaque with <25% stenosis

2 Mild 25–49% stenosis

3 Moderate 50–69% stenosis

4 Severe 70–99% stenosis

5 Occluded 100% stenosis

According to SCCT guidelines.

Table 4. Descriptors of quantitative stenosis severity.
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2.2. Benefits and limitation

The main benefit of cCTA is its noninvasive character. Although invasive coronary angiography 
(ICA) is an approved and secure procedure, it still involves the possibility of serious complica-

tions such as bleeding, stroke, or coronary dissection [6]. In comparison, the risks of cCTA, such 

as extravasation or allergic reaction to the contrast agent are less severe and common. As previ-

ously mentioned, cCTA is able to rule out CAD with excellent sensitivity and negative predic-

tive value, both up to 99% in several studies [9, 21, 22]. Therefore, a preceding cCTA can reduce 

the share of unnecessarily performed ICA [11]. On the other hand, currently, the moderate spec-

ificity of cCTA causes a following ICA to validate the findings [9]. Recent developments seek to 

solve this issue. Further limitations result from technical conditions of computed tomography:

Although the temporal resolution has achieved levels below 80 ms, it is still necessary for the 

patient to maintain a heart frequency under 70 beats per minute to obtain a sufficient image 
quality. This might be accomplished using beta-blockers, but not all patients are suitable for 
auxiliary agents. Regarding patients who are unable to follow breathing orders, but especially 

patients with cardiac arrhythmias, prospectively electrocardiogram (ECG)-triggered images 
are prone to artifacts. New approaches in ECG triggering seek to react flexibly to arrhythmia 
but have to be implemented in the clinical routine. Retrospectively ECG-gated image acquisi-
tion is less interference-prone, but is along going with higher radiation doses. ECG-dependent 
dose reduction is required. Furthermore, a high coronary calcification or iatrogenic metallic 
material may lead to so-called blooming or streak artifacts, which tend to over-estimate the 

severity of stenoses [23, 24]. A better temporal resolution, acquired e.g., by using DSCT allows 
reduction of blooming artifacts. Radiation dose represents another important disbenefit of 
cCTA, which is explained later in detail.

3. Technical development

3.1. Radiation dose

Since its introduction into clinical use, a constantly mentioned point of criticism of cCTA is the 
radiation the patient is exposed to. While referring to this topic, one should distinguish the 
terms “radiation exposure,” which describes the radiation emitted by the X-ray source, and 
“radiation dose,” which indicates the amount of radiation absorbed by the patient [25]. The 

early concerns were not unjustified, as the novel scanners with 16 or 64 slices showed radia-

tion doses above 10 mSv, even up to 21 mSv [26, 27], and radiation resulting of CT examina-

tions make up a large share of the populations radiation exposure [28]. But subsequently, a 
substantial reduction of the applied radiation doses was achieved by different approaches: 
cCTA images are usually acquired using retrospective ECG gating, which requires a lower 
pitch and a longer duration, resulting in higher doses than prospective ECG triggering. Dose 
reduction is acceived using ECG gating or implementation of suitable ECG-triggering proto-

cols. The first option is realized through ECG-dependent tube current modulation. The best 
image quality is obtained in the late-diastolic phase of the heart cycle; therefore, the tube 
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current can be decreased in the remaining phase, resulting in a radiation dose lowered up 

to 50% [29, 30]. Under certain circumstances, it is possible to perform cCTA by prospective 

ECG triggering and sequential scanning. Patients with a low and stable heart rhythm and 
without an indication for functional testing are qualified for this technique in line with SCCT 
guidelines [31]. This attempt could reduce the radiation dose to 70–80% [29, 32]. Both options 
are optimal if either a scanner with 256 or more slices or a DSCT is used. Furthermore, use of 
DSCT enables further decrease due to its higher pitch rates at higher heart rates, since mul-
tisegment reconstruction is not necessary [33, 34]. Additional reduction is accomplished by 

a tube voltage of 100 kV or even 80 kV instead of the usual 120 kV, which can be performed 

depending on the patient’s body mass [30, 31]. The image postprocessing technique of itera-

tive reconstruction (chapter 3.2) also contributes to reduction of radiation dose. With all these 
measures taken into consideration, cCTA reached radiation doses lower than 4 mSv, therefore 
being in the range of the average yearly background radiation dose, in certain conditions even 

in submillisievert range [35, 36].

3.2. Image reconstruction

Nowadays, two methods of image reconstruction are in use, analytical filtered back projection 
(FBP) and iterative reconstruction (IR). The initially used technique was indeed the more com-

plex IR [37], but soon its use was limited by the computational power of erstwhile processors. 

The method was displaced by FBP, which still is the most widely used technique nowadays.

In FBP, the measured intensity is described as an integral function, and the reconstruction 
data is obtained through solution of the resulting equations, which is called back projection. 
Additionally, a filter component compensates low-pass signals. If a higher spatial resolution 
is required, the filter can be adjusted accordingly. However, this adaptation of the filter causes 
a higher image noise, since image sharpness and image noise are proportional [38].

IR seeks to solve this problem, and since nowadays, not only CT hardware but also software 

underwent enormous advances, complex computational operations are more and more avail-

able. Iterative reconstruction accomplishes the back projection through the comparison of two 

components; a simulated first image estimation on the one hand and the actual measured pro-

jection on the other hand. Both images are automatically compared and, in case of discrepancy, 
the estimation is altered and another comparison is made until a default condition is achieved 

[38]. The underlying complex mathematical algorithms are propriety of the respective compa-

nies. Not only was IR able to break the correlation between image noise and spatial resolution, 

but it does so while simultaneously reducing the applied radiation dose up to 40–70%, while 
maintaining or even increasing subjective image quality and diagnostic accuracy [39–42].

4. Plaque characterization

The first attempts in evaluating atherosclerotic plaques via CT have already been made 1985 
[43], but this approach did not gain acceptance due to insufficient resolution and image quality. 
Nowadays, with a spatial resolution up to 400 μm, noninvasive detection and characterization 
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of atherosclerotic lesion and plaque characteristics can be performed by current CT scanners. 
Although intravascular ultrasound (IVUS) and optical coherence tomography (OCT) provide 
even higher spatial resolutions up to 80 and 20 μm, respectively [44], and therefore are the 

reference standard, cCTA yields the advantage of its noninvasive character. This technique 
enables an evaluation and characterization of the individual plaque extent and composition 
in patients without the clear indication for invasive measures. Recent studies have shown the 

ability of cCTA to perform on a high level in comparison with earlier mentioned reference 

standards, thus making cCTA a promising noninvasive method in identifying high-risk ath-

erosclerotic coronary plaques [45–47]. Plaque characterization is essential in risk stratification 
in patients with suspected or diagnosed CAD or ACS, hereby it is important to distinguish 
the terms “stable” and “vulnerable” plaque (Figure 2). The hazard in stable plaques, consist-
ing mainly of calcifications, lies in their subsequent obstruction of vessel lumen, associated 
with hemodynamic insufficiency, whereas vulnerable plaques tend to rupture and can lead to 
occlusion of the affected vessel through the thrombogenic lesion [48]. The finding that major 
adverse cardiac events (MACEs) are a consequence of the hemodynamically insignificant vul-
nerable plaques in more of two-thirds has been already made in the end of the last century 
[49, 50], but only now it is possible to detect morphological correlates in vivo via noninvasive 

methods [51]. Certain morphological plaque features correlate with the presence of rupture-
prone plaques, and it is yet to be examined, which of these are reliable markers of plaque vul-
nerability [47, 52]. Although cCTA can distinguish distinctly between calcified, noncalcified 
(lipid rich/fibrotic) and mixed plaques, direct visualization of thin-cap fibroatheroma (TCFA) 
is currently only possible via OCT. To make plaque characterization via cCTA less dependent 
on the examiner’s experience, scoring systems [53] and semiautomated software are ready to 

be implemented in clinical use, increasing operator convenience of this promising method.

5. CT myocardial perfusion

Due to high sensitivity and negative predictive value [54, 55], cCTA is at present an accepted 

diagnostic tool in detecting CAD in patients with low pretest probability [9]. However, the 
major limitation of cCTA remains in its low specificity and positive predictive value and the 
missing correlation of detected lesions and their physiological significance [56–58].

Challenge for novel diagnostic methods is to provide data about the anatomical and functional 

assessment of coronary stenosis. Myocardial perfusion derived from computed tomography 

(CTMP) is a recent instrument in diagnosis of ischemia. Compared to other functional tests, 

CTMP offers the substantial advantage that it is performed during ordinary cCTA. CTMP is 
a “one-stop shop” approach to close the gap between anatomical and functional assessment 

within a single imaging and could additionally limit false-positive results of cCTA [6].

Underlying principles of CTMP is the distribution and enhancement of iodinated con-

trast agent within the myocardium. The iodinated contrast agent is used as an indica-

tor for myocardial blood flow and myocardial blood volume, based on the principles of 
the indicator-dilution theory. Myocardial areas with reduced amounts of contrast agent are 

indicating perfusion defects [59].
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5.1. Image acquisition and protocols

Like other functional imaging methods, ordinary acquisition of CTMP consists of three 
sequences: a rest acquisition, an acquisition under pharmacological stress, and an acquisition 
of late enhancement. This approach is used to evaluate the reversibility of the ischemia [6].

Adenosine is used during the pharmacological stress acquisition for dilation of the coronary 
arteries with a dose ratio of 140 μg kg−1 min−1. This leads to a decrease of the perfusion pres-

sure. However, compensatory dilatation of obstructed arteries is limited. Reversible ischemia 
is the result of decreased perfusion reserves within these vessels. This pathophysiological 

phenomenon is called the “steal-effect.” After 2–3 min of continuous administration of ade-

nosine with monitoring of ECG, pulse oximetry, and blood pressure, iodinated contrast agent 
is injected and image acquisition starts [6]. Beyond the application of iodinated contrast agent 
during rest and stress acquisition and adenosine during stress acquisition, beta blockers, and 
nitrates were administered immediately before the examination to avoid motion artifacts and 

to improve image quality [59]. Contraindication (e.g., contrast agent allergy, severe COPD, 

severe aortic valve stenosis) should be taken into consideration regarding suitability of the 

patient. After 5–10 min of administration of contrast agent, a delayed acquisition can provide 
information about nonviable myocardium [6]. Myocardial areas of ischemia or infarction are 

described based on the American Heart Association segmental model [14].

Regarding comparability of studies and deeper understanding, it should be noted that there is 

a static myocardial blood pool imaging method during first pass and apart from it a dynamic 
myocardial perfusion method over several time points of myocardial iodine distribution. 

Development in computed tomography offers with dual-energy CT a further static perfusion 
method. For example, differences between these techniques apply on the direct assessment of 
quantitative perfusion parameters or radiation exposure [6, 60].

5.2. Radiation exposure

Radiation dose of a comprehensive protocol containing rest, stress, delayed enhancement, 

and calcium scoring have generally been reported in the range of 12–14 mSv. This is compa-

rable to the radiation dose during SPECT examination [6]. Modified protocols in research con-

tain considerably lower radiation. Feuchtner et al. achieved high accuracy (sensitivity 96%, 
specificity 88%, PPV 93%, and NPV 94%) in a stress approach and reported radiation dose of 
2.5 mSv for cCTA and perfusion imaging with pharmacological stress [61]. Radiation doses 

for CTMP can be expected to decrease further, as radiation doses <1 mSv on cCTA studies are 
still state of the art [61].

5.3. Clinical setting

As mentioned in the introduction of this chapter, CT myocardial perfusion offers additional 
functional data of the myocardial blood supply. In contrast, ordinary cCTA only provides 

anatomical evaluation of the heart. Combined cCTA plus CTMP provides incremental diag-

nostic value compared with cCTA alone to assess the status of the myocardial blood supply 

and for the detection of significant coronary stenosis [6, 57, 58].
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Compared with other functional noninvasive methods such as single photon emission com-

puted tomography (SPECT) or cardiac magnetic resonance perfusion imaging (cMRI), CTMP 
is a recent technology.

SPECT is a nuclear imaging technique with tracer substances, such as thallium-201 or tech-

netium-99. Myocardial enhancement of this tracer differs in damaged myocardium. A rotat-
ing gamma camera enables three-dimensional tomographic reconstruction [6]. According to 

current guidelines of the American Heart Association and American College of Cardiology, 
SPECT is used for the diagnosis of CAD, risk stratification, myocardial viability, and left 
ventricular function [62]. Rest and stress SPECT acquisitions allow evaluation of ischemic 
reversibility.

Cardiac magnetic resonance imaging (cMRI) offers anatomical information and a variety of 
functional aspects, such as assessment of myocardial perfusion during rest and stress acquisi-
tion and myocardial viability. SPECT has lower temporal and spatial resolution than cMRI 
[6]. The large CE-MARC trial led to higher sensitivity with cMRI than with SPECT and pos-

tulated cost-effectiveness and more use of this method [63, 64]. Patients with devices such 

as cardiac pacemakers or internal cardiac defibrillator (ICD) are often associated with great 
effort, regarding cMRI requirements. For patients with a tendency to claustrophobia, cMRI is 
potentially not the adequate examination due to long acquisition time [65]. On the other hand, 

cMRI is advantageous because of no ionizing radiation.

CT myocardial perfusion or other functional techniques are not reasonable in each clinical 
question compared to ordinary cCTA for ruling out CAD. In a situation of acute chest pain in 
a patient with low pretest probability of CAD, an extensive stress examination (irrespective of 

the imaging technique) is potentially not indicated due to prolonged examination. The avail-
ability in case of short-term request of such a comprehensive examination represents a further 
doubtful aspect in the clinical setting. However, CT myocardial perfusion has the potential to 
overcome these obstacles.

6. Conclusion and further perspective

Myocardial perfusion derived from computed tomography is a growing diagnostic method 

that provides a comprehensive evaluation of coronary artery disease along with functional 

assessment of the myocardium with promising findings in current clinical studies. Combining 
cCTA with CTMP significantly improves specificity and positive predictive value [57, 58].

The multicentre DECIDE-Gold trial [66] might contribute in establishment myocardial perfu-

sion within the clinical setting. Focus of current research is, e.g., the order and general need of 
all three sequences in times of modern dual energy computed tomography scanners. Meinel 
et al. postulates a dual energy rest-stress approach as protocol of choice. Furthermore, he 

achieves excellent sensitivity and specificity in a rest-only approach [67]. This would repre-

sent substantial advantage for the patient. Functional situation of myocardial blood supply 

could be derived simultaneously from ordinary coronary computed tomography angiography 

within the same examination, without additional radiation, drugs or prolonged examination.
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CT myocardial perfusion imaging offers great potential to reclassify findings in cCTA and to 
evaluate the myocardial blood supply [68]. Regarding risk of invasive coronary angiography 

[69], an initial noninvasive diagnostic selection would be desirable to reduce invasive angio-

grams, showing no obstructive CAD. Addition of CTMP to cCTA holds highly promising poten-

tial to adopt this role and to establish CT as a single imaging examination for comprehensive 

evaluation of CAD and direct assessment of myocardial ischemia in one examination (Figure 1).

7. CT-FFR

The invasive measurement of the fractional flow reserve is currently the accepted reference 
standard to determine, whether a coronary stenosis is hemodynamically relevant and is 

Figure 1. 59-year-old female with known hypertension presenting with chest pain. (I) cCTA show several moderate 

stenoses of the LAD (arrows). (II) DECT show minor iodine distribution within basal LAD and RCA territory as a sign of 
hemodynamic significance (arrows). (III) Invasive catheter angiography show severe artery disease of all three vessels. 

Subtotal stenosis of RCA, significant stenosis of the left main trunk (arrow) and 75% stenosis of mid RCX and Ramus 
marginalis. cCTA, coronary computed tomography; DECT, dual-energy computed tomography; LAD, left anterior 
descending; RCA, right coronary artery; RCX, ramus circumflexus.

Figure 2.(A) cCTA shows stenotic noncalcified plaque of the LAD. (B + C) Color-coded automated plaque quantification 
by the analysis software showed the plaque composition as predominantly noncalcified. cCTA, coronary computed 
tomography angiography; LAD, left anterior descending.
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therefore implemented in the guidelines [70]. The FAME study has proved that FFR guided 
coronary revascularization is associated with reduced rates of death, myocardial infarction or 
target vessel revascularization [71]. In clinical routine, the use of invasive FFR is associated 

with risks and complications such a severe bleeding, arrhythmia, stroke, and coronary dissec-

tions depending on the experience of the interventional cardiologist [72].

Novel technologies have been developed to calculate noninvasive FFR from routine cCTA 

datasets using computational fluid dynamics. The main advantage of this technology is the 
markly improvement of specificity and positive predictive value compared to standard cCTA, 
without additional stress medication, image protocols, and radiation exposure (Table 5). 

While the first studies concentrated on the general feasibility and diagnostic performance, 
further clinical studies validated the cost-effectiveness. The PLATFORM-study showed that 
the numbers of patients without anatomically obstructive CAD (p < 0.0001) could be signif-
icantly improved with the CT-FFR arm, while the secondary endpoint radiation exposure 

showed no difference (9.9 vs. 9.4 mSv, p = 0.20) [73].

There are the first head-to-head comparisons of CT-FFR compared stress CT myocardial per-

fusion (CTP) in patients with CAD with a per-vessel specificity of was 66% for cCTA, 77% 
for CT-FFR, and 91% for CTP, respectively, while the diagnostic performance of cCTA alone 

Koo et al. 

(DISCOVER-

FLOW) [77]

Min et al. 

(DeFACTO) [78]

Nørgaard et al. 

(NXT-Trial) [79]

Renker et al. [80] Coenen et al. [81]

Vessels 159 407 484 67 189

Vessels with 

intermediate 

stenosis 

(30–70%)

66/159 [25] (41.5%) 150/407 [26] 

(36.9%)
235/484 (48.6%) 39/67 (58.2%) 144/189 (76.2%)

Sensitivity (%) 87.9 (76.7–95.0) 

[91.4 (81.0–97.1)]

80 (73–86) [N.A.] 84 (75–89) [83 

(74–89)]

85 (62–97) [90 

(68–98)]

87.5 (78.2–93.8) 

[81.3 (71.0–89.1)]

Specificity (%) 82.2 (73.3–89.1) 

[39.6 (30.0–49.8)]

61 (54–67) [N.A.] 86 (82–89) [60 

(56–65)]

85 (72–94) [34 

(21–49)]

65.1 (55.4–74.0] 

[37.6 (28.5–47.4)]

PPV (%) 73.9 (61.9–83.7) 

[46.5 (37.1–56.1)]

56 (49–62) [N.A.] 61 (53–69) [33 

(27–39)]

71 (49–87) [37 

(23–52)]

64.8 (55.0–73.8)] 

[48.9 (40.1–57.7)]

NPV (%) 92.2 (84.6–96.8] 

[88.9 (75.9–96.3)]

84 (78–89) [N.A.] 95 (93–97) [92 

(88–95)]

93 (81–98) [89 

(65–98)]

87.7 (78.5–93.9) 

[73.2 (59.7–84.2)]

Accuracy (%) 84.3 (77.7–90.0) 

[58.5 (50.4–66.2)]

N.A. [N.A.] 86 (83–89) [65 

(61–69)]

N.A. [N.A.] 74.6 (68.4–80.8) 

[56.1 (49.0–63.2)]

AUC 0.90 (N.A.) [0.75 

(N.A.)] (p = 0.001)

N.A. [N.A.] 0.93 (0.91–0.95) 

[0.79 (0.74–0.84)] 

(p <0.001)

0.92 (N.A.) 

[0.72(N.A.)] (p 

<0.005)

0.83 (N.A.) [0.64 

(N.A.)] (p <0.001)

CT-FFR <0.80 (95% CI) und cCTA stenosis ≥50% (95% CI) [in brackets] were defined as cut-off values. AUC, area under 
the curve; cCTA, coronary CT-angiography; CT-FFR, CT-based FFR; FFR, Fractional flow reserve; N.A., not available; 
NPV, negative predictive value; PPV, positive predictive value.

Table 5. Diagnostic accuracy of CT-FFR and cCTA compared to invasive FFR as the reference standard on a per vessel 

(n = 1306) basis.
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was significantly improved by combination with CT-FFR or CTP [74]. Meta-analysis shows 

that CT-FFR can act in the context of other myocardial perfusion modalities as a potential 

gatekeeper for invasive revascularization (Table 6) in patients with suspected or known CAD 

using invasive FFR as the reference standard [75]. Due to time-consuming off-site calculation 
and transfer of the datasets to external core laboratory the clinical impact is limited. Thus, 

a novel solution for physician-driven CT-FFR derivation using regular on-site workstations 

was developed. This CT-FFR algorithm applies reduced-order models for more expeditious 

calculation, but is currently not commercially available [76].

Currently, CT-FFR is an interesting and sophisticated approach to identify functionally signif-

icant CAD in a noninvasive way. However, this promising technique is still in development 
and searching for its clinical application, and further evidence studies are necessary before 

CT-FFR is implemented for clinical use.
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