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Abstract

A Lagrangian formalism is used to model a PVTOL in order to obtain an aircraft model.
The Euler-Lagrange model of the PVTOL is used to develop an algorithm for fault diag-
nosis. Diagnosis implies the detection, isolation and identification of a fault. The consid-
ered approach is based on the knowledge of a system model as well as the model of the
possible faults. The idea is to use non-linear decoupling approach to derivate a set of
subsystems, each related to a specific fault or a set of faults. An observer-based residual
generation is designed for each subsystem, this structure allows the fault detection and
isolation stage, for fault identification a kind of approximated inversion algorithm to meet
the different diagnostic levels. The results are obtained taking advantage of the structure
given by the Euler-Lagrangemodelling of the PVTOL as well as from recent results related
to observer design and fault identification.

Keywords: fault diagnosis, Lagrangian systems, non-linear systems, observers, fault
isolation

1. Introduction

Nowadays, the unmanned aerial vehicles (UAVs) represent a big boom in the electronic industry,

thanks to their versatility and largely due to the falling cost of the electronic parts and the UAV by

itself. UAV is a kind of an aerial vehicle that is able to take off vertically, such as helicopters and

some special airplanes, and it is represented by the planar vertical take-off landing (PVTOL)

aircraftmodel. Note that PVTOL aircraftmodels representmore than onlyUAV systems. Reliabil-

ity requirements in aerial vehicles bring the necessity of a fault detection and isolation schema. In

general, they are non-linear systems, and so a non-linear inspired strategy for the detection and

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



isolation of faults could also be used. An idea consists in taking advantage of the structure given

by the Lagrangianmodel of a PVTOL in order to develop an algorithm for the detection, isolation

and identification of faults.

Many research studies dealing with the fault detection and isolation (FDI) problem have been

already published, most of them deals with linear systems, see for instance Refs. [1–3]. On the other

hand, for non-linear systems, some solutions exist, based on the inherited characteristics, see Refs.

[4, 5] for more details. The most common approach used for FDI is the hardware redundancy;

however, this approach normally represents an increment in weight and economical cost of the

aircraft. In order to avoid thisproblem, somemathematical relations couldbeused, the simplestway

is to compare two or more internal signals, having as goal to create a residue, which, in fact will be

zero if the system isworkingnormallyanddifferent fromzero if not. In order to create such relations

it is common to exploit some intrinsic characteristics of the systems. See for instance Ref. [6].

Diagnosis for thePVTOLsystemhasbeenconsideredpreviouslyusingaHamiltonian formalism [7].

A Lagrangian formalism is used to model a PVTOL in order to obtain an aircraft model. The

Euler-Lagrange model of the PVTOL is used to develop an algorithm for fault diagnosis. Diag-

nosis implies the detection, isolation and identification of a fault. The considered approach is

based on the knowledge of a systemmodel as well as the model of the possible faults. The idea is

to use non-linear decoupling approach to derivate a set of subsystems, each related to a specific

fault or a set of faults. An observer-based residual generation is designed for each subsystem.

Detection and isolation of faults can be reached at this stage, for fault identification a kind of

approximated inversion algorithm to meet the different diagnostic levels. The results are

obtained taking advantage of the structure given by the Euler-Lagrangemodelling of the PVTOL

as well as from recent results related to observer design and fault identification.

Fault diagnosis algorithms can be developed for a more or less general Euler-Lagrange model

of a system, which, in fact, also include a PVTOL system. Fault diagnosis includes detection,

isolation and identification of faults. In order to meet a diagnosis task, an observer-based

residual generator is designed in order to determine whether a fault is present. A decoupling

approach is used in order to guarantee also a fault isolation task. As discussed, both steps

could be systematically developed for the considered system model. Further, fault isolation is

approached using a kind of approximated system inversion to develop approximated fault

estimation through dynamic inversion of the corresponding residual equation. The schema is

shown using a specific example of a PVTOL. As presented in the results, the proposed

approach can be used effectively for the diagnosis of a PVTOL system.

2. Lagrangian modelling

There is a huge amount of literature about Lagrange's equations of movement, however, see

for example Ref. [8]. The structure of a Planar-Vertical-Take-Off and Landing (PVTOL) is

represented in Figure 1.

The absolute linear position to the PVTOL is defined in the inertial frame x� y� z axes with two

generalized coordinates ξT ¼
Δ
½ y z �. One additional generalized coordinate, the angular position,
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is defined in the inertial frame. Note that the pitch angle θ, i.e. the rotation angle around the y-

axis, and yaw angleΨ , i.e. the rotation of the PVTOL around the z-axis, are zero. The only angular

movement is the roll angle φ, i.e. the rotation around the x-axis.

ξ ¼
y
z

; η ¼ φ; q ¼
y
z
φ

2

4

3

5

3

5

2

4 (1)

The origin of the body frame (also the origin of the inertial frame) is the centre of mass of the

PVTOL system. The PVTOL is assumed to have a symmetric structure with the two arms

aligned with the body x-axis. The inertia is represented by Jx.

The Lagrangian is defined as the sum of kinetic energy minus the potential energy ðEpotÞ. In the

case of the PVTOL, the kinetic energy consist of two parts, one related to the translational

energy ðEtranÞ and the second related to the rotational energy ðErotÞ:

Lðq; _qÞ ¼ Etran þ Erot � Epot (2)

The movement equations of Lagrange are given by

d

dt

∂Lðq; _qÞ

∂ _q

� �

�
∂Lðq; _qÞ

∂q
¼

f y
f z
ℓ

2

4

3

5 (3)

where f y represent the generalized forces on the y-axis, f z represent the generalized forces on

the z-axis and ℓ is the torque.

Figure 1. Schema of the PVTOL system.
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For the PVTOL results:

Etran ¼
1

2
m½ _y _z �

_y
_z

� �

(4)

Erot ¼
1

2
Jxω

2 ¼
1

2
Jx _φ

2 (5)

Epot ¼ mgz (6)

So that the Lagrangian results

Lðq; _qÞ ¼
1

2
m _y2 þ

1

2
m _z2 þ

1

2
Jx _φ

2 �mgz (7)

and the terms

∂L

∂ _q
¼

m _y
m _z
Jx _φ

2

4

3

5 (8)

d

dt

∂L

∂ _q

� �

¼
m€y
m€z
Jx _ω

2

4

3

5 ¼
m€y
m€z
Jx
€φ

2

4

3

5 (9)

∂L

∂q
¼

0
mg
0

2

4

3

5 (10)

The generalised forces (in the inertial frame) are given by

f y ¼ cos ðφÞUy � sin ðφÞUz (11)

f z ¼ sin ðφÞUy þ cos ðφÞUz (12)

where Uz represents the total thrust force (the sum of the forces of each rotor), acting on the

z-axis of the body frame. Uy corresponds to the side forces on the y-axis of the body frame. The

moment acting on the rolling angle is given by ℓ.

The movement equations are given by

m 0 0
0 m 0
0 0 Jx

2

4

3

5

€y
€z
€φ

2

4

3

5þ
0
mg
0

2

4

3

5 ¼
cos ðφÞ � sin ðφÞ 0
sin ðφÞ cos ðφÞ 0

0 0 1

2

4

3

5

Uy

Uz

ℓ

2

4

3

5 (13)

3. Diagnosis approach

Fault diagnosis aim to detect the fault occurrence in the functional units of the system, as well

as to classify the different faults and to determine the type, magnitude and cause of faults,

which leads to undesired behaviour of the whole system. The fault diagnosis can be achieved by
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hardware redundancy or software redundancy also called analytical redundancy. One technique

of fault diagnosis is the model-based fault diagnosis, which employs software redundancy.

In the model-based fault diagnosis technique, the system behaviour is online reconstructed by

a mathematical model, which is implemented in the software form. In this scheme, the system

model run in parallel to the system and both of them are driven by the same control inputs.

Thus, in the fault-free case, reconstructed system variables by the system model follow the

corresponding real system variables and show a derivation in the faulty case.

A comparison of the measured system variables with their estimates by the system model is

called residual. Thus, a residual signal includes the fault effect, and ideally if the residual signal is

different from zero, then a fault has occurred otherwise the system is fault free. The residual

generation process is carried out in two stages, first, the system outputs have to be estimated,

then, the difference between those signals and the signal coming from sensors is computed [9].

Figure 2 shows the general scheme for residual generation using a model-based fault diagnosis

technique.

In this contribution, a fault diagnosis for systems with model Euler-Lagrange is presented. A

model-based fault diagnosis technique with analytical redundancy is used to obtain a residual

generation.

Consider a dynamic system without faults described by the following Euler-Lagrange equations

d

dt

∂Lðq, _qÞ

∂ _q

� �

�
∂Lðq, _qÞ

∂q
¼ τ,

yo ¼ q,
(14)

where τ∈Rn is the vector of generalized forces, q∈Rn is the vector of generalized coordinates,

L is the Lagrangian and y is the vector output.

In this work, additive faults in control input and sensor are considered. The Euler-Lagrange

model of the faulty system is defined as

Residual

Generation

Σ

residuals

faults

systemcontrolre yf

−

Figure 2. General scheme for residual generation.
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d

dt

∂Lðq; _qÞ

∂ _q

� �

�
∂Lðq; _qÞ

∂q
¼ ðτþQFaÞ;

yf ¼ ðqþNFsÞ;

(15)

where Fa ∈Rn is the vector of control input faults, Q∈Rn�n is a constant matrix, Fs ∈Rn is the

vector of sensor faults and N∈Rn�n is a constant matrix.

Assumption 1. Consider an Euler-Lagrange system with faults described by Eq. (15) and the system

behaviour is on line reconstructed by the Euler-Lagrange system without faults Eq. (14), then the faults

presented in the system Eq. (15) can be detected by the residual generator

rðtÞ ¼ yf ðtÞ � yoðtÞ (16)

4. Application results

The method presented in the previous section is applied in a PVTOL. Only additive faults are

taken into account, the faults could affect sensors (y, z and φ) and the control inputs (uz, uy and ℓ),

the faulty case is restricted to one fault at a time, meaning that it is assured that if a fault appears,

it is impossible that another fault occurs. Once the fault has occurred, it still presents until the end

of the simulation.

The faulty PVTOL system is defined as

m cos ðφÞ m sin ðφÞ 0

�m sin ðφÞ m cos ðφÞ 0

0 0 Jx

2

6

4

3

7

5

€y
€z
€φ

2

4

3

5þ

mg sin ðφÞ

mg cos ðφÞ

0

2

6

4

3

7

5
¼

Uy

Uz

ℓ

2

4

3

5þ
1 0 0
0 1 0
0 0 1

2

4

3

5

f uy
f uz
f
ℓ

2

4

3

5, (17)

yo ¼

y

z

φ

2

6

4

3

7

5
þ

1 0 0

0 1 0

0 0 1

2

6

4

3

7

5

f sy

f sz

f sφ

2

6

6

4

3

7

7

5

; (18)

where f uy is the fault in the control input Uy, f uz is the fault in the control input Uz, f ℓ is the

fault in the control input ℓ, f sz is the fault in the sensor of position in the vertical movement, f sy

is the fault in the sensor of position in the horizontal movement and f sφ is the fault in the sensor

of angle φ.

Among the different detection methods available in the literature [2], the threshold-based

approach is one of the most common thanks to its simplicity and accuracy. The principle of

this approach is based on the idea that the parameters of the system (e.g. mass and dimen-

sions) could vary because of the measurement or estimation errors. Those data are used to

determine a threshold, which is computed by varying the internal parameters of the system in

a certain � percentage. This is carried out in order to avoid false alarms caused by the

difference between the mathematical model and the real system.
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The internal parameters of the PVTOL that may vary are the mass (m) and the inertia (Jx), in

order to cover the worst case scenario, both parameters vary at the same time þ10 and �10%.

As a result, the thresholds are fixed as depicted in Figure 3.

As explained in the beginning of this section only additive faults are taken into account, since

the controller is designed to stabilize the system in hover flight, the fault amplitude is defined

as a percentage of the initial value for sensors and a percentage of the maximum amplitude of

the input control. This percentage is fixed �10% for sensors and �5% for control inputs. The

faults are triggered 7 seconds after the beginning of the simulation and it is persistent until the

end.

In order to detect the fault, six different residues are computed, for this, it is assumed that the

entire state is available, according to the previous section as follows:

R1 ¼ yf � y (19)

R2 ¼ zf � z (20)

R3 ¼ φf � φ (21)

R4 ¼ _yf � _y (22)

R5 ¼ _zf � _z (23)

R6 ¼
_φ f �

_φ (24)

where the suffix f denotes the signal coming from the sensor.
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Figure 3. Amplitudes of the detection thresholds. - -, detection threshold; —, residues.
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4.1. Sensor faults

The sensor faults considered in this work affect the vertical measurement (z), the horizontal (y)

and the inclination angle (φ), as explained before the amplitudes of the faults are 0.2 m, 0.1 m

and 0.2�, respectively. The controller is designed to decouple the sensor faults, as a result each

fault is independent of the others and by consequence all of them are detectable and isolable,

thanks to their different fault signatures. Figures 4–6 depict the sensor faults.
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Figure 4. Fault affecting y sensor. - -, detection threshold; —, residues.

Time

0 5 10

R
1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 1

Time

0 5 10

R
2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 2

Time

0 5 10

R
3

-0.2

-0.15

-0.1

-0.05

0

0.05

Residue 3

Time

0 5 10

R
4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 4

Time

0 5 10

R
5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 5

Time

0 5 10

R
6

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 6

Figure 5. Fault affecting z sensor. - -, detection threshold; —, residues.
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Once the residue exceeds the detection threshold, the fault is considered detected and it will be

isolable if and only if the fault signature is different among the others. As expected, and thanks

to the controller design every fault affecting the sensors is isolable. The fault signatures are

presented in Table 1. X means that the residue exceeds the threshold; O means that even if the

residue is affected, it does not surpass the threshold and by consequence this residue is not

triggered.

4.2. Control inputs faults

The fault amplitudes of the control inputs are fixed by obtaining the 5% of the maximum size

of them during an unfaulty simulation, after this processes the amplitudes are fixed to 0.5,

0.425 and 0.008 for uy, uz and ℓ, respectively. Thanks to the controller design, the faults

affecting the control inputs are detectable and isolable. Figures 7–9 shows that the detection

threshold is exceeded once a fault occurs, by consequence, fault detection is accomplished.

Table 2 depicts the fault signatures, it is straightforward to see that they are all different, this

behavior confirms that every single fault is detected and isolated.
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Figure 6. Fault affecting φ sensor. - -, detection threshold; —, residues.

Fault R1 R2 R3 R4 R5 R6

Sensor y X O O O O O

Sensor z O X O O O O

Sensor φ O O X O O O

Table 1. Fault signatures of sensors.
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Figure 7. Fault affecting uz . - -, detection threshold; —, residues.
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Figure 8. Fault affecting uy. - -, detection threshold; —, residues.
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5. Conclusion

This work presents a fault detection and isolation approach applied to Lagrangian systems.

Every fault is detectable and isolable as it can be seen in Tables 1 and 2, this result is obtained

thanks to the special design of the state feedback controller, by consequence the faults affecting the

sensors are easily isolable, and the residues affectedduring a control input fault are those related to

themeasures affecting the states, for instance a fault affecting uy triggers the residues related to the

y and _y measures; on the other hand, the faults affecting the control input ℓ trigger all the residues,

this is because the direct relation between this control input and theφmeasure, as could be seen in

Eq. (13) besides the φ measure appears in the other states, as a result every residue is triggered;

however, this signature is unique, by consequence this fault is considered detected and isolated.

Time

0 5 10

R
1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 1

Time

0 5 10

R
2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 2

Time

0 5 10

R
3

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 3

Time

0 5 10

R
4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 4

Time

0 5 10

R
5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 5

Time

0 5 10

R
6

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 6

Figure 9. Fault affecting ℓ. - -, detection threshold; —, residues.

Fault R1 R2 R3 R4 R5 R6

Control input uz O X O O X O

Control input uy X O O X O O

Control input ℓ X X X X X X

Table 2. Fault signatures of control inputs.
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