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Abstract

The purpose of this chapter is the brief review of the fundamental study of porphyrin 
“theranostics” by DNA. Porphyrins have been studied as photosensitizer for photody‐
namic cancer therapy. The activity control of fluorescence emission and photosensitized 
singlet oxygen generation by porphyrins using the interaction with DNA is the initial 
step in achieving theranostics. To control these photochemical activities, several types of 
electron donor‒connecting porphyrins were designed and synthesized. The theoretical 
calculations speculated that the photoexcited state of these porphyrins can be deactivated 
via intramolecular electron transfer, forming a charge‒transfer state. The electrostatic 
interaction between the cationic porphyrin and DNA predicts a rise in the energy of the 
charge‒transfer state, leading to the inhibition of electron transfer quenching. Pyrene‒ 
and anthracene‒connecting porphyrins showed almost no fluorescence in an aqueous 
solution. Furthermore, these porphyrins could not photosensitize singlet oxygen gen‐
eration. These porphyrins bind to a DNA groove through an electrostatic interaction, 
resulting in the increase of fluorescence intensity. The photosensitized singlet oxygen‒
generation activity of DNA‒binding porphyrins could also be confirmed. On the other 
hand, several other porphyrins could not demonstrate the activity control properties. To 
realize effective activity control, a driving force of more than 0.3 eV is required for the 
porphyrins.

Keywords: cationic porphyrin, DNA, singlet oxygen, electron transfer, fluorescence
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1. Introduction

“Theranostics” [1–3] is a relatively new technical term that includes the meanings of ther‐

apeutics and diagnostics [4–9]. The purpose of this review is an introduction of examples 

of theranostics using porphyrins. Porphyrins can emit relatively strong fluorescence in the 
wavelength range of visible light and generate singlet oxygen (1O

2
), an important reactive 

oxygen species [10]. Singlet oxygen is generated through energy transfer from the triplet 

excited (T
1
) state of the photosensitizer to the ground state of oxygen molecules (3O

2
) [11–13]. 

Fluorescence imaging is the fundamental mechanism of photodynamic diagnosis (PDD) [14], 

and 1O
2
 is the important reactive species for photodynamic therapy (PDT) [15]. PDT is a less‐

invasive and promising treatment for cancer and other nonmalignant conditions [4–9, 15]. 

In general, a mechanism of PDT is the oxidation of biomacromolecules, including DNA and 

proteins, by 1O
2
, which is generated through energy transfer from the excited photosensitizer 

to oxygen molecules. Porphyrins have been extensively studied as photosensitizers of PDT. 

Porfimer sodium [16] and talaporfin sodium [17] are especially important clinical drugs used 

in PDT (Figure 1). The control of the photoexcited state of porphyrins by targeting molecules 

or surrounding environments is the fundamental mechanism of theranostics. In this chapter, 

the fundamental studies about DNA‐targeting porphyrin theranostics are introduced. DNA 

is a potentially important target molecule of PDT. Indeed, many DNA‐targeting drugs have 

been studied and reported [18–20].

Figure 1. Structures of examples of PDT photosensitizers, porfimer sodium and talaporfin sodium.
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1.1. Photodynamic therapy

Photodynamic therapy is a promising and less‐invasive treatment for cancer [4‐9, 15]. Por‐

phyrins are used as photosensitizers of PDT (Figure 2). The abovementioned porphyrins, 

porfimer sodium [16] and talaporfin sodium [17], are especially important photosensitizers. 

Under visible light irradiation, especially long wavelength visible light (wavelength > 650 nm), 
an administered porphyrin photosensitizer generates 1O

2
 through energy transfer to an oxy‐

gen molecule (the type II mechanism) [21]. Since human tissue has a relatively high transpar‐

ency for visible light, especially red light, visible light rarely demonstrates side effects. Critical 
targets of 1O

2
 include mitochondria and enzyme proteins; DNA is also an important target for 

PDT [22–26]. In general, the 1∑
g

+ state of 1O
2
 (1O

2
(1∑

g
+)) is mainly formed through the energy 

transfer from the T
1
 state of photosensitizers. This state of 1O

2
 has relatively high energy, about 

1.6 eV, corresponding to the ground state; however, the lifetime is very short (several picosec‐

onds). The 1O
2
(1∑

g
+) is rapidly converted to the 1Δ

g
 state (1O

2
(1Δ

g
)), which has a relatively long 

lifetime (several microseconds). Therefore, 1O
2
(1Δ

g
) is a more important reactive oxygen spe‐

cies of PDT. In this chapter, 1O
2
 indicates 1O

2
(1Δ

g
) without explanation. This biomacromolecule 

damage induces apoptosis and/or necrosis. Apoptosis, a programed death of cancer cells, is 

considered the main mechanism of PDT [15, 27]. Necrosis also contributes to the mechanism 

of cell death in the case of severe damage of biomacromolecules by a high dose of photosen‐

sitizers and intense photoirradiation [15]. In the case of DNA‐targeting PDT, 1O
2
 selectively 

oxidizes guanines. The main oxidized product of guanine is 8‐oxo‐7,8‐dihydrodeoxyguanine 

[28–30].

1.2. Aminolevulinic acid

One of the most important practical applications of theranostics is the method using the 
administration of 5‐aminolevulinic acid (5‐ALA, see Figure 3) [31–33]. Although the strategy 

of 5‐ALA theranostics is different from the activity control of the photosensitizer by target 
molecules mentioned in this chapter, this method is important for cancer theranostics. 5‐

ALA is the source of protoporphyin IX (PPIX) in human cells. In the normal cell, PPIX is 

converted into iron porphyrin, which cannot emit fluorescence. However, in cancer cells, 

Figure 2. A general procedure of PDT.
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PPIX is selectively concentrated. Several mechanisms for this cancer‐selective concentration 

of PPIX have been speculated [34, 35]. Because PPIX demonstrates relatively strong red fluo‐

rescence around 650 nm and under blue light irradiation around 450 nm, this phenomenon 
can be applied to cancer diagnosis. Indeed, the diagnosis of 5‐ALA is clinically applied to 

the treatment of cancer, for example, malignant brain tumors [36, 37] and bladder cancer 

[38]. Furthermore, PPIX can photosensitize 1O
2
 generation. Although the efficiency of 1O

2
 

generation by free PPIX is relatively low, the 1O
2
‐generating activity of PPIX can be increased 

depending on the environment [39]. These properties of 5‐ALA and PPIX can be used in 

cancer theranostics.

1.3. Strategy of porphyrin theranostics with target biomolecules

Figure 4 shows the energy diagram of the relaxation process of photoexcited porphyrins 

and theranostics. The singlet excited (S
1
) state of the photosensitizer (Sens*(S

1
)) is formed by 

photoirradiation. In the OFF state, without the target biomacromolecules, the S
1
 state is rap‐

idly quenched, and the excitation energy is dispersed as heat. For example, intramolecular 

Figure 3. PPIX formation from 5‐ALA.

Figure 4. An energy diagram of the relaxation process of photoexcited porphyrin.
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electron transfer is a convenient pathway for the quenching to control photochemical  activity. 
In the presence of target molecules, the interaction between the photosensitizer (Sens) and 

the target molecule inhibits the intramolecular electron transfer. The S
1
 state with target mol‐

ecules can emit fluorescence (ON state). In the case of porphyrin, the quantum yield of fluo‐

rescence (Φ
f
) is almost 10% for a relatively intense case. In addition, the intersystem crossing 

proceeds with a relatively large quantum yield (Φ
T
); more than 50% is a sufficient value for 

the Φ
T
. These processes are expressed by the following equations:

  Sens + hν  → Sens*  (   S  
1
   )     (1)

  Sens*  (   S  
1
   )     → Sens + heat   (  Activity: OFF )     (2)

  Sens*  (   S  
1
   )    → Sens + hν   (  Activity: ON )     (3)

  Sens*  (   S  
1
   )    → Sens*  (   T  

1
   )      (  Activity: ON )     (4)

  Sens*  (   T  
1
   )     +    3   O  

2
    →    1   O  

2
    (  Activity: ON )     (5)

where Sens*(T
1
) is the T

1
 state of the photosensitizer. Figure 5 shows the scheme of the activity 

control of photosensitizer by DNA. In the case of DNA, several forms of the binding interac‐

tion can be speculated [40–43]. For example, an electrostatic interaction can switch the activity 

of photosensitizers.

2. Control of fluorescence and 1O
2
‐generating activity of alkaloids by DNA

Photosensitized DNA damage is an important process in medical applications of photochemi‐

cal reactions [44, 45]. In this section, the activity control of naturally occurring  photosensitizers 

Figure 5. Scheme of the binding interaction between photosensitizers and DNA and the activity switching of 

photosensitizers through the interaction with DNA.
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is introduced. Berberine and palmatine are alkaloids (Figure 6). These molecules barely emit 

fluorescence. The S
1
 state of these alkaloids deactivates within 40~50 ps through intramolecu‐

lar electron transfer in aqueous solution [46–48]. Since these alkaloids are cationic compounds, 

in the presence of DNA, an anionic polymer, berberine and palmatine spontaneously bind to 

the DNA strand through electrostatic interaction. Indeed, it was reported that berberine pref‐

erentially binds to adenine‐thymine–rich minor grooves [49]. The minor groove bindings of 

berberine and palmatine could be speculated from molecular mechanics calculation [48]. The 

interaction between these alkaloids and DNA was investigated using oligonucleotides of the 

adenine‐thymine sequence (AATT: d(AAAATTTTAAAATTTT)
2
) and the guanine‐containing 

sequence (AGTC: d(AAGCTTTGCAAAGCTT)
2
) [48]. The apparent binding constant can be 

easily estimated from the absorption spectral change of these alkaloids, and the reported val‐

ues are relatively high [48]. The fluorescence intensity of berberine and palmatine was mark‐

edly increased in the presence of DNA. The Ф
f
 and the fluorescence lifetimes (τ

f
) of berberine 

and palmatine were markedly increased through interaction with DNA (Table 1).

Furthermore, the 1O
2
‐generation activity of berberine and palmatine was markedly enhanced 

by DNA. In aqueous solution, berberine and palmatine hardly photosensitize 1O
2
 generation. 

Figure 6. Structures of berberine (left) and palmatine (right).

Alkaloid DNA Ф
f

τ
f
/ns (ratio) ФΔ

Berberine Without <0.001 0.05 nd

AATT 0.093 0.30 (0.30) 3.7 (0.42) 11.9 (0.28) 0.066

AGTC 0.043 0.12 (0.60) 1.6 (0.32) 8.0 (0.08) 0.036

Palmatine Without <0.001 0.04 nd

AATT 0.054 0.16 (0.39) 2.3 (0.45) 6.9 (0.16) 0.044

AGTC 0.031 0.14 (0.54) 1.4 (0.37) 5.9 (0.09) 0.030

The fluorescence properties were examined in a 10‐mM sodium phosphate buffer (pH = 7.6). The ФΔ values were 

determined in deuterium oxide. These values were reported in the literature [48].

Table 1. Fluorescence and photosensitized 1O
2
‐generating activities of berberine and palmatine in the absence or 

presence of DNA.
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However, in the presence of DNA, the near‐infrared emission at around 1270 nm, assigned 
to the radiative deactivation of 1O

2
 into its ground state, was clearly observed under pho‐

toirradiation of these alkaloids. The estimated quantum yield of 1O
2
 generation (ФΔ) using 

the reference compound, methylene blue (ФΔ = 0.52) [50], depended on the sequence and 
decreased for the guanine‐containing sequence (Table 1). These characteristics are the funda‐

mental mechanisms of theranostics. The theranostics mechanism of berberine and palmatine 

can be explained as follows:

1. The photoexcited states of these compounds are rapidly quenched through intramolecular 
electron transfer. These alkaloids consist of the iso‐quinoline moiety and dialkoxybenzene 
moiety (Figure 7). The iso‐quinoline moiety can fluoresce and photosensitize 1O

2
 genera‐

tion, and the dialkoxybenzene moiety can act as an electron‐donating site.

2. The electrostatic interaction with DNA increases the Gibbs free energy (ΔG) of the intra‐

molecular electron transfer. In addition, the hydrophobic environment of the DNA strand 

[51, 52] is unfavorable for the intramolecular electron transfer. Consequently, the lifetime 
of the S

1
 state becomes markedly long compared with that without DNA.

3. Fluorescence intensity and the intersystem crossing yield are increased, resulting in the 

enhancement of energy transfer to the oxygen molecule to generate 1O
2
.

Figure 7. Intramolecular electron transfer in the S
1
 state of berberine and palmatine and the activity switching by DNA.
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3. DNA‐targeting porphyrin theranostics

The abovementioned mechanisms of berberine and palmatine can be applied to porphyrin 

theranostics. For this purpose, cationic porphyrins are useful because they can be incorpo‐

rated into the cell nucleus and can photosensitize cellular DNA damage [53]. Furthermore, 

cationic porphyrins can bind to a DNA strand through electrostatic interaction, similar to ber‐

berine and palmatine. For example, anionic water‐soluble porphyrin PPIX hardly induces cel‐

lular and isolated DNA damage, whereas tetrakis(N‐methyl‐4‐pyridinio) porphyrin (TMPyP, 
see Figure 8) effectively photosensitizes the guanine‐specific oxidation of cellular and isolated 
DNA through 1O

2
 generation. Thus, electron donor‐connecting cationic porphyrins were 

designed and synthesized to realize porphyrin theranostics.

3.1. Binding interaction with DNA and cellular and isolated DNA‐damaging activity of 

water‐soluble porphyrins

The effect of a DNA microenvironment on the photosensitized reaction of water‐soluble por‐

phyrin derivatives, TMPyP and its zinc complex (ZnTMPyP, see Figure 8), was reported [42]. 

The main driving force of DNA binding is electrostatic interaction. The binding form between 

these porphyrins and DNA depends on the concentration ratio of porphyrins and DNA bases. 

In the presence of a sufficient concentration of DNA, TMPyP mainly intercalates to the DNA 
strand, whereas ZnTMPyP binds to the DNA groove. An electrostatic interaction with DNA 
raises the redox potential of the binding porphyrins, resulting in suppression of the photoin‐

duced electron transfer from an electron donor to the DNA‐binding porphyrins, whereas the 

electron transfer from the porphyrins to the electron acceptor was enhanced.

Cellular DNA damage by photoirradiated water‐soluble porphyrins, TMPyP and PPIX 
was examined [53]. TMPyP and PPIX induced apoptosis in the human leukemia HL‐60 cell 

Figure 8. Structures of TMPyP (left) and ZnTMPyP (right).
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under photoirradiation [53]. TMPyP is incorporated in the cell nucleus and photosensi‐
tizes cellular DNA oxidation, whereas PPIX hardly demonstrates cellular DNA‐damaging 

ability. In the case of an isolated DNA fragment, photoexcited TMPyP effectively oxidized 
most guanine residues, whereas little or no DNA damage was observed in the PPIX case 
[53]. Consequently, a TMPyP cationic porphyrin should be useful as a DNA‐targeting 
photosensitizer.

3.2. Design and synthesis of electron donor‐connecting porphyrin

Molecular orbital (MO) calculation suggests that pyrene‐connecting TMPyP (PyTPP, 
see Figure 9) can be used for porphyrin theranostics in a DNA microenvironment [54]. 

Figure 9 shows the optimized structures of PyTPP and AnTPP and their highest‐occu‐

pied MOs (HOMO). The binding action of PyTPP into the DNA major groove was sug‐

gested, and the apparent association constants, estimated from the relationship between 

the absorbance change and the DNA concentration, are relatively large (1.0 × 106 M−1 and 

8.3 × 105 M−1 for AATT and AGTC, respectively). The fluorescence spectrum and its life‐

time measurements showed that this porphyrin demonstrates almost no fluorescence in 

Figure 9. Structures of PyTPP (left) and AnTPP (right). The side‐view structures and the HOMO of these porphyrins 
were obtained by the MO calculation at the Hartree‐Fock 6‐31G* level.
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aqueous solution (Ф
f
 < 0.001, see Table 2) because of the rapid intramolecular electron 

transfer. The electron‐accepting ability of the porphyrin moiety is decreased by the elec‐

trostatic interaction with DNA. In the presence of DNA, the fluorescence intensity was 
markedly increased (Ф

f
 is 0.12 and 0.10 in the presence of 50‐μM base pairs AATT and 

AGTC, respectively). In addition, the typical near‐infrared emission spectrum of 1O
2
 was 

clearly observed during the photoexcitation of PyTPP with DNA, whereas the emission 

was not observed without DNA. The estimated ФΔ by PyTPP‐DNA was 0.051 and 0.038 in 
the presence of 50‐μM base pairs AATT and AGTC, respectively. In conclusion, the S

1
 state 

of PyTPP is effectively quenched by the pyrenyl moiety. The interaction with DNA sup‐

presses this electron transfer, leading to the enhancement of fluorescence emission. The 
intersystem crossing is also enhanced and makes 1O

2
 generation possible.

3.3. Improvement of the activity control using anthracene

In the abovementioned case of PyTPP, Ф
f
 can be recovered to a value comparable to that 

of TMPyP. However, ФΔ is significantly smaller than that of TMPyP. A relatively small ФΔ 

value might be due to the self‐oxidation of PyTPP through the photosensitized 1O
2
 genera‐

tion. Since an electron donor is easily oxidized by 1O
2
, the connection of the electron donor 

tends to decrease the apparent yield of 1O
2
 generation. 1O

2
 may oxidize the pyrene moiety 

through the Diels‐Alder reaction. To avoid this self‐oxidation, anthracene‐connecting TMPyP 
(AnTPP, see Figure 9) was designed and synthesized [55]. The optimized structure of AnTPP 

according to MO calculation suggested that oxidation of the anthracene moiety directly con‐

necting at the mesoposition of the porphyrin is difficult because of steric hindrance, resulting 
in recovery of the 1O

2
 yield. In addition, the MO calculation indicated the steric rotational 

hindrance of the anthracene moiety around the mesoposition of the porphyrin, which keeps 

the two π‐electronic systems nearly orthogonal to each other. This calculation also showed 
that the activity control of fluorescence and 1O

2
 generation of this porphyrin through an inter‐

action with DNA is possible.

Porphyrin DNA Ф
f

τ
f
/ns (ratio) ФΔ

PyTPP [54] Without <0.001 0.04 nd

AATT 0.12 12.0 0.051

AGTC 0.10 10.6 (0.62) 2.8 (0.38) 0.038

AnTPP [55] Without <0.001 0.04 nd

AATT 0.098 10.4 (0.88) 3.6 (0.12) 0.22

AGTC 0.077 10.6 (0.79) 2.8 (0.21) 0.17

The fluorescence properties and the ФΔ values were examined in a 10‐mM sodium phosphate buffer (pH = 7.6). These 
values were reported in the literature [54, 55].

Table 2. Fluorescence and photosensitized 1O
2
‐generating activities of PyTPP and AnTPP in the absence or presence 

of DNA.
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In aqueous solution, AnTPP barely demonstrates fluorescence emission (Ф
f
 < 0.001) and 

1O
2
 generation (Table 2). The observed fluorescence lifetime (<40 ps) indicates the rapid 

intramolecular electron transfer in the S
1
 state of the porphyrin moiety of AnTPP. AnTPP 

also binds to the DNA strand, mainly the minor groove, and the reported association con‐

stant is relatively large (~106 M−1). DNA‐binding AnTPP demonstrates a relatively strong 

fluorescence and long fluorescence lifetime comparable to those of the reference porphyrin 
without an electron donor. Furthermore, the 1O

2
‐generating activity of AnTPP is recovered 

by DNA. The estimated values of ФΔ relative to that of methylene blue are 0.22 and 0.17 
for the AATT‐ and AGTC‐binding forms of AnTPP, respectively (Table 2). The observed 

values of ФΔ are significantly larger than those of PyTPP. These results suggest that the 
1O

2
‐generating activity of AnTPP has improved due to the inhibition of self‐oxidation by 

the generated 1O
2
.

3.4. Phenanthrene‐connecting cationic porphyrin

Phenanthrene was also used as the electron donor of the cationic porphyrin [56]. However, 
the activity control of the phenanthrene‐connecting porphyrin (PhenTPP, see Figure 10) was 

not successful. The MO calculation showed the HOMO location on the phenanthryl moiety 
of PhenTPP and predicted the similarity of this porphyrin property to the abovementioned 

PyTPP and AnTPP. However, the observed values of Φ
f
 and τ

f
 without DNA are 0.028 and 

5.8 ns (89%) and 2.7 ns (11%), respectively, indicating insufficient quenching of the S
1
 state 

by phenanthrene. Furthermore, the estimated value of ФΔ by PhenTPP without DNA is large 

(0.38). Consequently, the activity control of this type of porphyrin by phenanthrene is not 
appropriate. This result can be explained by the relatively small driving force of the intra‐

molecular electron transfer (−ΔG = 0.18 eV). The driving force dependence of this electron 
transfer is discussed in the next section in detail.

Figure 10. A structure of PhenTPP. The side‐view structure and the HOMO of PhenTPP (right) were obtained by the MO 
calculation at the Hartree‐Fock 6‐31G* level.
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4. Factors governing the activity control of the photochemical property of 

the electron donor‐connecting porphyrin

As mentioned above, the controls of fluorescence intensity and 1O
2
‐generating activities of 

the cationic porphyrin connecting to the pyrenyl and anthryl groups by DNA could be suc‐

cessfully established. On the other hand, in the case of phenanthrylporphyrin, the S
1
 state of 

this porphyrin could not be deactivated through intramolecular electron transfer because the 

electron‐donating property of the phenanthryl moiety was insufficient [56]. To investigate the 

factors governing the activity control of the electron donor‐connecting porphyrins, two types 

of electron donor‐connecting porphyrins, meso‐(1‐naphthyl)‐tris(N‐methyl‐p‐pyridinio)por‐

phyrin (1‐NapTPP) and meso‐(2‐naphthyl)‐tris(N‐methyl‐p‐pyridinio)porphyrin (2‐NapTPP) 

(Figure 11), were designed and synthesized [57].

These naphthylporphyrins, 1‐NapTPP and 2‐NapTPP, spontaneously bind to double‐

stranded DNA [57]. The electrostatic force between cationic porphyrins and the anionic DNA 

strand, as well as the hydrophobic interaction, can be speculated as the driving force of the 

binding interaction. In the presence of relatively small concentrations of DNA, these naph‐

thylporphyrins aggregate around the DNA strand because their water solubility is relatively 

low. In the presence of a sufficient concentration of DNA, these naphthylporphyrins can form 

Figure 11. Structures of 1‐NapTPP (left) and 2‐NapTPP (right). The side‐view structures and the HOMO of these 
porphyrins were obtained by the DFT calculation at the B3LYP/6‐31G* level.
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a stable complex with the DNA strand. The estimated binding constants were relatively large 

(more than 106 M−1). The binding constants for those of the adenine‐thymine sequence only 
were larger than those of the guanine‐cytosine‐containing sequences.

Similar to the other electron donor‐connecting cationic porphyrin cases, the calculations by 

the density functional treatment (DFT) demonstrated that the photoexcited states of these 

naphthylporphyrins are deactivated through intramolecular electron transfer from their 

naphthalene moieties to the S
1
 states of the porphyrin moieties [57]. However, the S

1
 state 

of these porphyrins was hardly quenched by their naphthalene moieties. The ΦΔ values of 

these naphthylporphyrins are also relatively large without DNA (Table 3). The orthogonal 

position of these naphthalene moieties and the porphyrin rings and the relatively small val‐

ues of −ΔG of the intramolecular electron transfer (0.11 and 0.07 eV for 1‐ and 2‐NapTPP, 
respectively) are not appropriate for electron‐transfer quenching. The relationship between 
the estimated intramolecular electron transfer rate constants (k

ET
), which are reported in the 

literature [57], and the driving force (−ΔG values) is plotted using the reported values and 
shown in Figure 12. The plots were analyzed by Marcus theory [58, 59] using the following 

equation:

   k  
ET

   =  √ 

______

   4  π   3  ______ 
 h   2  λ  K  

B
   T      V   2  exp   

−  (Δ  G   *  + λ )   2 
 ________ 

4λ  K  
B
   T    (6)

where h is Planck’s constant, λ is the reorganization energy, K
B
 is the Boltzmann constant, V is 

the electronic coupling matrix element, and T is the absolute temperature. Observed several 
components of the τ

f
 for 1‐ and 2‐NapTPP suggest the different conformations. Therefore, the 

different V values were considered to explain slow electron transfer and relatively fast elec‐

tron transfer. The analyzed values of V were significantly smaller than those of other directly 
connecting electron donor‐acceptor molecular systems [60–62], suggesting that the interaction 

between the electron donor and the porphyrin ring is small, possibly due to the orthogonal 

structure. This plot suggests that a −ΔG of more than 0.3 eV is required for effective quenching 
through electron transfer in these types of porphyrin systems.

Porphyrin DNA Ф
f

τ
f
/ns (ratio) ФΔ

1‐NapTPP Without 0.030 6.1 (0.76) 3.7 (0.22) 0.2 (0.02) 0.26

AATT 0.062 12.3 (0.95) 2.2 (0.03) 0.1 (0.02) 0.20

AGTC 0.048 11.3 (0.89) 4.1 (0.09) 0.1 (0.02) 0.19

2‐NapTPP Without 0.030 3.5 (0.94) 1.3 (0.06) 0.43

AATT 0.092 11.7 (0.89) 5.8 (0.10) 0.9 (0.01) 0.46

AGTC 0.072 10.5 (0.76) 4.9 (0.23) 0.8 (0.01) 0.37

The fluorescence properties and the ФΔ values were examined in a 10‐mM sodium phosphate buffer (pH 7.6). These 
values were reported in the literature [57].

Table 3. Fluorescence and photosensitized 1O
2
‐generating activities of 1‐NapTPP and 2‐NapTPP in the absence or 

presence of DNA.
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5. Conclusions

Naturally occurring photosensitizers, berberine and palmatine, demonstrate important pho‐

tochemical properties. In aqueous solution, the S
1
 state of these compounds was rapidly 

quenched through an intramolecular electron transfer. These compounds bind to a DNA 
strand through electrostatic interaction, resulting in inhibition of electron transfer‐mediated 

quenching. This interaction makes the fluorescence emission and 1O
2
 generation by these 

compounds possible. A similar mechanism can be applied to the cationic porphyrin. TMPyP 
cationic porphyrins can be incorporated into the cell nucleus and can photosensitize guanine‐

specific oxidation by 1O
2
 generation, leading to apoptosis. Therefore, the electron donor‐con‐

necting TMPyP porphyrins can be considered as model photosensitizers for theranostics. For 
example, PyTPP and AnTPP were designed and synthesized. The activity control of fluo‐

rescence and 1O
2
 generation by these cationic porphyrins could be successfully established. 

However, the activity control of phenanthrene‐ and naphthalene‐connecting porphyrins is 
insufficient because of their slow intramolecular electron transfer rate. These results suggest 
that a driving force of more than 0.3 eV is required for sufficiently fast electron transfer in 
similar porphyrin types. These studies demonstrate the possibility of porphyrin theranostics 

through control of the S
1
 state of the porphyrin ring by the electron‐donating moiety and inter‐

action with DNA, one of the most important target biomacromolecules for cancer therapy.

Figure 12. Relationship between the electron transfer rate and the driving force. The plots of 1‐NapTPP (slow) 

and 2‐NapTPP (slow) were calculated by using the components of their long fluorescence lifetime. These curves 

were calculated by the Marcus equation using two appropriate values of V. This relationship is reported in the 

literature [57].
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