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1. Introduction  

Recently, a new modality of the human-computer interface has been more and more 
emerging; The Brain-Computer Interface (BCI). The BCI is a communication channel, which 
enables us to send commands to external devices by using human brain activities (Wolpaw 
et al., 2002). As one of the remarkable achievements, we can see the report on invasive 
Brain-Machine Interface (BMI) (Hochberg et al., 2006).  
Besides the technique of the invasive BMI, there are several types of non-invasive 
approaches for the brain signal acquisitions; for example, functional magnetic resonance 
imaging (fMRI), near infrared spectroscopy (NIRS), etc. Non-invasive methods have been 
noteworthy owing to the recent development of the signal processing method as well as 
acquisition apparatus. The performance of the BCI system is going to be improved and the 
applications has been seen; for example, the communication tool for people with disability, 
virtual reality games, and so on. Among them, the electroencephalography (EEG) has been 
investigated as one of the candidates for the low-cost and portable BCI system. It is well 
known that the EEG activities can be detected by the scalp recording, which are typically the 
order of 5-10 micro volts of potentials. The BCI system can extract the specific temporal and 
spatial patterns from the brain potentials, and translates them into the commands to control 
the machine according to the users’ intent.  
A variety of brain activities has been reported so far in the context of the BCI systems based 
on EEG signals; for instance, motor related potential (Pfurtscheller & Neuper, 1997), event 
related P300 evoked potential (Farwell & Donchin, 1988), visual evoked potential (VEP) 
(Kuroiwa & Celesia, 1981), etc. With such brain activities, many applications have been 
developed in laboratories such as a virtual keyboard or joystick. However, most of them 
were studied on the system with the simple visual feedback involving a normal computer 
monitor.   
The purpose of this book chapter is to show the technique to realize a BCI system in virtual 
reality environment and to suggest the possibility of the online control of computer-
generated objects. Note that the most advantage of testing the BCI system in virtual reality is 
that we can easily test and simulate procedures for the BCI applications in reality 
(Pfurtscheller et al., 2006). Our works are based on the VEP, which is expected to yield high 
performance BCI systems. In spite of the expected use of the VEP, the BCI system based on 
such EEG oscillations has never reported in immersive virtual environments.  
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In the next section, we briefly review the virtual reality technology including the immersive 
projection technology. In section 3, the previous works on a variety of BCI systems are 
presented. In section 4, we explain the visual stimuli in our experiments and report the 
performance in inferring the users’ eye-gaze directions from the brain signals. We state 
about the results of the online controls of a stereoscopic virtual panorama. Finally, 
discussions and future works are followed. 

2. Virtual Reality  

Virtual reality is a technology with which the user can interact with a computer-generated 
environment; The virtual environment. There are seven concepts which are required for the 
virtual reality: simulation, interaction, artificiality, immersion, telepresence, full-body 
immersion, and network communication (Heim, 1993). In the context of the virtual reality, a 
variety of special devices have been newly developed; the data glove or data suit etc. The 
essence of these concepts may be familiar even with people who don’t work with the 
technology.  
The virtual environments are mainly provided by the visual stimuli displayed on a computer 
monitor, a head mounted display, or other special devices realizing stereoscopic images. 
However, the modality is not restricted to the visual one, owing to the recent understanding of 
the human perception and the development of the special ‘displays’. There are several types of 
sensory information to obtain such virtual experiences; auditory, haptic, olfactory, and other 
possible sensations. For example, the force sensation is well experienced by a force display.  
There are a lot of applications using the virtual reality technology: For example, the modelling 
and visualization of the invisible phenomena and the experiences of them in the simulations, 
the surgical applications sometimes involving telepresence or telexistance, the remote 
operations of the industrial machine, prototyping or mock up of the developing products, the 
educational use, the entertainments such as games, the applications for mental therapy, and so 
on.  
There are remarkable advantages in the use of the virtual reality technology. The technology 
can easily provide the user with the safety and reproducibility owing to the artificially 
simulated environment. Furthermore, we can reduce the cost and other possible resources.  
Among the technologies of the virtual reality, there is a system which provides the users with 
high degree of immersion: The CAVE (Computer Augmented Virtual Environment). The 
original CAVE was developed by the group of the University of Illinois and demonstrated at 
the SIGGRAPH (Cruz-Neira et al., 1993). This type of display system has been designed to 
perform the activities in a variety of use as mentioned above. The descendant systems have 
been developed all over the world based on the novel concept and technology of the CAVE. 
The fundamental technologies of CAVE-like display system will be briefly explained later.   
The users can interact with virtual objects by using the standard input devices like a joystick, 
game controller or newly developed devices such as a data glove. The interaction can be in real 
time to reflect the input information appropriately to the system. It is sometimes realized by 
sensing the physical states of the user; for example, using the motion capturing system with 
which the position or movement of the users’ head or entire body can be detected.  
Recently, the BCI system has been studied with virtual reality (Bayliss, 2003; Bayliss & 
Ballard, 2000; Friedman et al., 2004; Friedman et al., 2007; Lalor et al., 2003; Leeb et al., 2005; 
Ron-Angevin et al., 2005; Scherer et al., 2007; Fujisawa et al., 2008a), which enables people to 
interact with the virtual environment using the human brain activities: with no standard 
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input devices. For example, by using a head mounted display, Bayliss et al. investigated 
P300 evoked potential (Bayliss, 2003; Bayliss & Ballard, 2000). The group of Graz University 
of Technology and the UCL has been studying the ‘walking from thought’ in CAVE-like 
system using motor imagery tasks (Friedman et al., 2004; Friedman et al., 2007; Leeb et al., 
2005). Most advantage of testing the BCI system in virtual reality environments is that we 
can easily test and simulate procedures for the BCI applications in reality (Pfurtscheller et 
al., 2006). However, except for the BCI system based on motor imagery tasks, such 
applications have never been implemented into immersive virtual reality environment. This 
book chapter will focus on the Brain-CAVE Interface based on the VEP.  

3. Previous Works on BCI  

There are two types of signal aquisition in the context of the interface based on the brain 
activities; The invasive and non-invasive. The invasive BCI, which is often called as BMI, has 
been developed for people with disability. Neurosurgery enabled a person to control an 
artificial hand using the Cyberkinetics Neurotechnology’s BrainGate as well as the operation 
of a computer cursor, a variety of swithing operations of lights etc (Cyberkinetics, Inc.). In 
the BMI system, the electrodes are directly implanted into the brain. Therefore, high quality 
of the brain signals can be obtained.  
The most advantage of the non-invasive approaches is that we can be blessed with the 
system in our ordinary life. For able-bodied people, the demand on the non-invasive BCI 
system will be more and more enlarged. In fact, the low-cost products of the non-invasive 
BCI systems have been developed today. Of course, there is no risk of neurosurgery in such 
systems and thus it is comparably easy to prepare for the use, while the non-invasive 
approaches produce poor signal resolution.  
There are several types of non-invasive BCI systems; for example, functional magnetic 
resonance imaging (fMRI) (Buxton, 2002; Huettel et al., 2004), near infrared spectroscopy 
(NIRS) (Watanabe et al., 1996), etc. Remarkable achievements have been reported on these 
approaches in laboratories. Based on the decoding technology (Kamitani & Tong, 2005) in 
the fMRI study, the system could infer the shape of the users’ hand (among three states of 
scissors, paper, and rock) with 85% of the correct rate and a seven second delay, and then 
could control the robot hand in online (Tech-on, 2006). The NIRS study showed the 
possibility to control a model train by mental arithmetic task resulting in the haemodynamic 
response; The optical-BCI system (Utsugi et al., 2007). However, in the present stage these 
measurement apparatus give high cost and no portability.  
The Electroencephalography (EEG) was reported by Hans Berger in 1929. Since then, it has 
been the most studied method among the non-invasive measurements. The advantage of the 
EEG in the context of the BCI is; its high temporal resolution, ease for practical use, low-cost, 
and portability. The low spatial resolution may be the disadvantage. And the artefact or 
environmental noise tend to reduce the performance of the BCI system. However, the BCI 
system based on EEG is prosperous owing to the recent extensive studies on the signal 
processing which may cover the disadvantage.  
The P300 response is the event related potential which can measure the degree of 
concentration of the subject on the specific stimulus. Farwell et al. investigated a P300 
speller, which enabled the user to type strings only by brain activities of P300 responses 
(Farwell & Donchin, 1988; Krusienski et al., 2008). The 6 x 6 matrix of letters flashing 
randomly were presented on the computer display. The user selected ‘A’ by counting the 
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number of times that the letter ’A’ flashed. A variety of applications has been studied using 
this type of evoked potentials. Note that Bayliss showed the P300 responses could control 
the virtual objects (Bayliss, 2003; Bayliss & Ballard, 2000) . 
The mu rhythm of somatosensory cortices was found owing to the recent development of 
computer-based analyses on EEG activities. Movement and even phantom movement are 
accompanied by a suppression of mu and beta rhythms. This suppression has been known 
as event-related de-synchronization (ERD). After the movements or when inactive, the 
idling rhythm increase call as event-related synchronization (ERS) occurs, as in the case of 
visual alpha rhythm during eye close in relax. It is a strong motivation for EEG-based brain 
computer interfacing (Pfurtscheller & Neuper, 1997).  
A lot of laboratory has developed the BCI system based on the ERD/ERS modulation 
(Wolpaw & McFarland, 2004; Blankertz et al., 2006; Pfurtscheller et al., 2006). The group of 
Wolpaw demonstrated the operation of one and two dimensional cursor on a computer 
screen (The Wadsworth BCI) (Wolpaw & McFarland, 2004). However, prior to the 
experiments, the participants had to learn to control their own mu and beta rhythms. The 
BCI system of the group of Graz University of Technology and UCL (Pfurtscheller et al., 
2006) is also based on the motor imagery. The BCI system has been implemented in 
immersing virtual environment (ReaCTor, which is a CAVE-like system). The walking from 
thought was demonstrated. The subjects participated with many runs of the BCI control in a 
variety of experimental environments using PC, head-mounted display, and CAVE. Note 
that the novel works on motor imagery and the BCI system based on it are reviewed in the 
report of (Wolpaw et al., 2002).  
Most of the previous studies on BCI systems has been pefromed in the ideal environments. 
In the present stage the performance of the BCI system has been more and more improved. 
However, it is important to study the systems in the simulated environments in order to 
extract the problems in future practical use in reality. Our concern is in the simulated 
environment to examine the performances of the BCI system.  

4. The BCI Based on SSVEP  

4.1 Visual Evoked Potential  
Let us see the mechanism of the BCI system based on the VEP. The VEP is an event driven 
response to an external visual stimulus that is observed on visual cortex (Kuroiwa & Celesia, 
1981). In general, if a subject undergoes a flickering visual stimulus with the flickering 
frequency more than 4 or 5 Hz, the steady-state responses can be obtained; The steady-state 
VEP (SSVEP), which is the synchronized signals with the flickering frequency often 
accompanied by the harmonic ones. This type of EEG oscillations has been proven as a 
reliable signal for the control of a BCI system.  
Vidal introduced a BCI system based on the VEP (Vidal, 1973). The system could infer the 
users’ eye-gaze directions in order to determine the direction in which the users wished to 
move a cursor. Furthermore, Middendorf et al. (Middendorf et al., 2000), Cheng et al. (Cheng 
et al., 2002), and Trejo et al. (Trejo et al., 2006) also reported a feasibility of such systems to 
determine the eye-gaze directions. In these works, several checkerboard patterns or virtual 
buttons (more than 10 buttons in the report of (Cheng et al., 2002)) appear on a computer 
monitor or a LED-based display and flash at different rates. When the user gazes at an 
interested flickering button, the system determines the frequency of the steady-state response.  

www.intechopen.com



Brain-CAVE Interface Based on Steady-State Visual Evoked Potential 

 

441 

The performance of the BCI system depends both on the speed and the accuracy. In general, the 
VEP yields high information transfer rate (Wolpaw et al., 2002). In fact, the group of Tsinghua 
University reported the advantage of EEG oscillations of SSVEP (Hong, 2007). The user could 
input the sequence of interested phone numbers on the virtual telephone using LED-based 
visual stimuli. The information transfer rate reached to 55 bits/min (Cheng et al., 2002).  

4.2 Immersive Virtual Environment  
The design of the visual stimuli is one of the key for the reliable BCI system based on the 
VEP. In this study, we adopted the visual stimuli in immersive virtual environment.  
One of the features of CAVE display system (Cruz-Neira et al., 1993) is its multi-screen 
configuration. The viewing angle of the user is remarkably enlarged, compared to normal 
computer monitors. The image displayed in CAVE is interactive. For instance, the user can 
change the views of the images in real time according to the users’ viewpoint measured by 
the position tracker and also via input devices such as game controllers. These input data 
are transmitted to the graphics workstations from the input devices. Since the LCD shutter 
glasses are used to generate stereoscopic images, shutter timing of the glasses must be 
synchronized with the scanning of the screens.  
We have experimented with our BCI system in an immersive virtual environment in the 
University of Tokyo. Figure 1 shows the external appearance of the projection system that is 
a cubic shape with five screens positioned at the front, the left, the right, the ceiling, and the 
floor. The area of each screen is 2.5m x 2.5m. By using this type of projection system, the 
user can feel high degree of immersion. Therefore, the immersive virtual environment is 
expected to be a reasonable method to evaluate a BCI system in advance before the 
implementation into the real world, extracting a variety of problems in practical use. 
Nevertheless, there has been no extensive study on the Brain-CAVE Interface but only the 
works on motor related potentials. 

 

Figure 1. The external appearance of a projection system to generate an immersive virtual 
environment. The system has a viewpoint tracking apparatus and LCD shutter glasses for 
appropriate stereoscopic images to make the users feel high degree of immersion 

Two flickering virtual buttons were prepared being superposed on a 3D virtual panorama in 
immersive virtual environment. The configuration is illustrated in Figure 2. Each button had 
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the visual angle more than 10 degrees of both in horizontal and vertical at a view distance of 
2 m. The subjects were instructed to gaze at a fixation point on either buttons. The flickering 
frequencies were selected between 4 and 8 Hz so as to synchronize with the refresh rate of 
vertical scans of the CAVE-projector. Note that this range of flickering frequency had been 
found to yield clear SSVEP, while the frequency more than 20 Hz resulted in unclear brain 
responses. The viewpoint tracking system was activated during experiments.  
Note that in previous studies on the SSVEP, the visual angle for the visual stimulus was at 
most a few degrees, being restricted on the size of the usual computer displays. On the other 
hand, the CAVE system would have an advantage of large visual angles and a variety of 
visual stimuli would be arranged in the virtual space.  
When the user gazed at one of the two flickering objects, the other stimulus was still in the 
visual field. This is an interesting problem related with the selective attention for the specific 
visual stimulus, which will be mentioned later. 

 
Figure 2. The left and right flickering (white/black) visual stimuli with square shape 
superposed on a front screen and a subject sitting in immersive virtual environment. These 
two flickering frequencies have different rates 

4.3 EEG Recordings    
The healthy volunteers (s1-s4) with normal or corrected to normal vision participated in the 
experiments as subjects (range 22-36 years old). They were not trained for the EEG 
measurements with the flickering visual stimuli. During the experiments, each subject 
relaxed on an arm-chair facing the front screen of the immersive virtual environment, 
wearing LCD shutter glasses.  
A modular EEG cap system was applied for scalp EEG recordings. Three-channel EEG 
signals were recorded from parieto-occipital and occipital; that is, PO7, PO8 and Oz 
according to the extended international 10/20 system (Jasper, 1958) as shown in Figure 3. A 
body-earth and a reference electrode were on a forehead and on a left ear lobe, respectively. 
The analogue EEG signals were amplified at a multi-channel bio-signal amplifier (MEG-
6116, NIHON KOHDEN, Inc. Japan). A notch filter was applied to reduce the 50 Hz power 
line interference. The amplified signals were band-pass filtered between 1.5 and 30 Hz, and 
sampled at 100 Hz by using an A/D converter with a resolution of 16 bits. The digitized 
EEG data was stored in a standard personal computer.  
There were two types of offline experimental tasks (task 1 and 2) were imposed to collect 
data sets for the later EEG-classification. The users were asked to gaze at and pay attention 
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to a left visual stimulus in the task 1 and a right one in the task 2. For all subjects, one 
experiment consisted of 5-10 sessions for each task. Each session lasted for 30 seconds. The 
session of the task 1 and 2 were performed by turns. After one session, one-minute rest was 
imposed. For several subjects, the experiments were repeatedly performed several times 
over several days. During these offline measurements the virtual panorama was not 
controlled (with no visual feedback). 

 

Figure 3. Location of electrodes to collect the SSVEP. Three-channel EEG signals were 
recorded from parieto-occipital sites (PO7 and PO8) and occipital (Oz) according to the 
extended international 10/20 system 

4.4 Classification of EEG Oscillations 
After the data acquisitions, the recorded EEG signals were at first analyzed in offline. 
Frequency analysis was applied to extract the expected EEG oscillations. The analyzing time 
period and the window function were fixed to 2 seconds and Hanning, respectively. The 
EEG features were extracted from the linear combination of voltage value between three 
electrodes [V(Oz)-{V(PO7)+V(PO8)}/2], expecting the reduction of the environmental noise 
or possible artefacts, where V(E) means the voltage value detected at the scalp-electrode E. 
The typical power spectral densities in average are shown in Figure 4. The harmonic signals 
of the SSVEP were observed. As for one subject s4, the SSVEP was not clear. 
The SSVEP was observed at 16 and 18 Hz, which was expected to be harmonic signals 
induced by 8 and 6 Hz of flickering frequency, respectively. Therefore, wide range of the 
power spectral densities including these frequencies (range 3-25 Hz) were considered in 
single trial (non-average) EEG data to evaluate the classification performance discussed 
below. The spontaneous EEG signals of alpha rhythms (typically 8-13 Hz) were not 
excluded in these analyses. Note that in our previous study the alpha band contributed to 
three-class classification aiming the online navigations in the virtual world (Touyama & 
Hirose, 2007a).  
The algorithm of support vector machines (SVM) (Vapnik, 2000) with linear kernel was 
applied to classify two states of brain activities (during gazing at left stimulus and right one, 
respectively). To estimate the performance, a leave-one-out method was applied, where only 
one data is used for testing and the others are for training.  
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Figure 4. Typical result of the average power spectral densities (PSD). The flickering 
frequencies are 8 and 6 Hz for left and right visual stimulus, respectively 

The results of the classification are shown in Table 1. The performances were found to be 
86.6, 71.4 (80.0, 78.0), and 81.0 (82.0) % for the subjects s1, s2, and s3, respectively. The grand 
average of three subjects was 79.9%. The numbers in the parentheses denote the results of 
different experimental days.  
Now the maximum information transfer rates can be estimated for three subjects with 
offline results above, while the rate is strongly dependent upon the application design. The 
rates are dependent on both speed and accuracy, and defined by the following equation (1) 
(Wolpaw et al., 2002). If a trial has N possible selections and each selection has the same 
probability of being the one that the user desires, if the probability P that the desired 
selection will actually be selected is always the same, and if each of the other selections has 
the same probability of being selected, the bit rate B can be expressed as 

 B = log2 N + P log2 P+ (1-P) log2 [(1-P) / (N-1)].    (1)  

This equation yielded the maximum information transfer rate between 4.1 and 13.0 bits/min 
from our offline measurements, which amounts to the standard performances (5-25 
bits/min) of BCI today. 

Subjects’ 
Name (day)

Flickering Frequency (Hz)
(left, right) 

Classification Performances 
 (%) 

s1(1) (8.0, 6.0) 86.6 

s2(1) (8.0, 6.0) 71.4 

s2(2) (8.0, 6.0) 80.0 

s2(3) (6.9, 4.8) 78.0 

s3(1) (8.0, 6.0) 81.0 

s3(2) (6.9, 4.8) 82.0 

Avr. - 79.9 

Table 1. Classification performances (percent corrects) for two conditions of flickering 
frequencies. The number with subjects’ name denotes the experimental day. For example, 
s3(2) denotes the subject s3 on the 2nd experimental day 
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4.5 Binary Controls   
We will show here the experimental results on the online control of a virtual panorama in 
the immersive virtual environment. After the data acquisition at an amplifier, the digitized 
EEG data was transmitted to a signal processing server through the network. At the server, 
the two-class classification mentioned before was performed by using latest 2 seconds of 
data. The results of the classification (binary control commands) from the brain activities on 
visual cortex (l or r corresponding to the left or right flickering stimulus, respectively) were 
transmitted to the workstation of the immersive virtual environment also through the 
network. At this workstation, both the images of panorama (a virtual city including roads, 
buildings, trees, sky, etc.) and the flickering stimuli for each eye were independently 
generated by using the library of OpenGL Performer (SILICON GRAPHICS, Inc.) to reflect 
on the screen. The user observed the visual feedback of stereoscopic images through the 
LCD shutter glasses (with visual feedback).  
It is well known that there is a speed-accuracy trade off in the BCI system. There were two 
types of online experiments in this study to demonstrate the trade off. One is the online 
system with a consecutive counter (Cheng et al., 2002), and the other is without it. With this 
counter, the control command was set to r only if the result of the classification was more 
frequently recognized than l for certain time period, and the same in the case of setting l 
command. In this study, the time period was set to 1 second. 
With the flickering frequency of 6.9 (left) and 4.8 Hz (right), the subjects participated in the 
online experiments. The frequency combinations were same with our previous online 
studies. Before the experiments, the participants had no specific training and were only 
instructed to gaze at and focus attention on a red-coloured fixation point on the flickering 
stimulus. The eye-fixation point changed its position every 10 seconds between the left and 
right (as shown in Figure 2). One session lasted for 90 seconds. In the online experiments, 
the left and right visual stimuli play a key role in controlling a virtual panorama. 
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Figure 5. The typical result of the time dependence on the viewing angle of the subject in the 
virtual city. The flickering frequencies were 6.9 and 4.8 Hz for left and right flickering 
stimulus, respectively. The results with and without consecutive counter are illustrated 

In Figure 5, the graphs show typical experimental results of the binary control of a virtual 
panorama. The plot shows the relation between the time and the viewing angle of the 
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subject in the virtual city, which varies one after the other by the classification result from 
the signal processing server. Even without consecutive counter, the user could control the 
panorama well according to the subjects’ intent. With the counter, the accuracy seems to be 
slightly improved, but the speed was modest, which demonstrated the trade off in the 
online system. In the online analyses, the average classification performance was 85%.  

4.6 Discussions and Future Works  
This study presented a non-invasive BCI system based on the SSVEP in immersive virtual 
environment. The EEG oscillations, induced by two flickering virtual buttons superposed on 
the computer-generated panorama, were recorded and analyzed. The flickering frequencies 
were selected between 4 and 8 Hz. Applying support vector machines, the single trial EEG 
data with 2 seconds of analyzing time yielded 85% of average classification performance in 
controlling the virtual panorama inferring the eye-gaze directions. The online 
demonstrations in immersive virtual environment showed a possibility to control the virtual 
objects according to the brain signals.  
The previous study on BCI based on EEG in CAVE-like system investigated the walking in 
virtual environment using motor related potentials. The work in the report of (Pfurtscheller 
et al., 2006) required eight seconds of hand/foot imagery tasks to achieve two-class 
classification (estimated 1.5 bits/min of average information transfer rate), while non-cue 
based BCI system has been discussed elsewhere (Pfurtsheller et al.). On the other hand, the 
future advantage of our SSVEP-based BCI is in shortening of analyzing time period and 
sliding of the window which requires no cue for the user. It was reported that the 
information transfer rate reached to 55 bits/min (Cheng et al., 2002). Furthermore, the 
SSVEP-based BCI system requires no training for users, which is one more advantage. 
However, in our experiments, clear SSVEP could not be observed for one subject, which will 
be investigated again.  
In this study, the binary classification rate was about 80% and 85% in offline and online, 
respectively. In our previous study, the rate was about 92% even with 1 second of analyzing 
time and occipital recordings, involving two virtual buttons floating in the dark virtual 
space (Touyama & Hirose, 2007b). Thus, the condition of the visual stimulus is thought to 
influence the performance to a large extent. This is an important point in developing the BCI 
system based on SSVEP using the flickering stimuli superposed on the real scene, because 
the conditions of the images is in general varied rapidly. Therefore, the conditions of the 
visual stimulus would be systematically investigated in our future works in order to have 
clear and robust brain responses. As well as the flickering frequency, spacing, and size are 
required to be considered.  
The improvement of the classification algorithm will be in our research scopes. In the report 
of (Trejo et al., 2006), kernel partial least squares (KPLS) algorithm was investigated to have 
high recognition rate of 80-100% in multi-class classification with 1-5 seconds of latencies. 
With this algorithm, the moving map display based on flickering checkerboard patterns was 
successfully controlled in a computer monitor. In the analyses in our study, we just adopted 
simple FFT analyses combined with SVM for the binary classification. It would be required 
to use only the power spectral densities corresponding to the flickering frequencies and 
their harmonic signals instead of all the power spectral densities between 3 and 25 Hz. Such 
kind of feature selection would help the SVM to increase the classification accuracy.  
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It is necessary to show a useful online application using our BCI system with multi-class 
classification in immersive virtual environment. One of the examples is to realize the free 
navigation (walk-through or fly-through) by the SSVEP as well as a manipulation of virtual 
objects or operation of menu windows. In our preliminary studies, three-class classification 
has been studied in the context of the navigation. The results for a subject are shown in the 
Table 2. The experimental settings were similar to that in this study. There, the Fishers’ 
linear discriminant analyses showed about 74% of an average classification performance in 
inferring three eye-gaze directions, that is, left, right visual stimuli, and a centre eye-fixation 
point (Touyama & Hirose, 2007a). The ultimate goal in such multi-class applications is that 
by using tiny visual stimuli arranged in the virtual space with the flickering frequencies 
near or more than critical one to realize more natural interaction. 

 Classified into left Classified into right Classified into centre 

Task left 68.7 [71.4] 4.0 [  7.6] 27.3 [21.0] 

Task right 5.3 [14.3] 69.4 [65.2] 25.3 [20.5] 

Task centre 6.7 [13.8] 5.3 [  6.7] 88.0 [79.5] 

Table 2. The performance (percent correct) of three-class classification of EEG activities 
during gazing at left, right, and centre fixation point. The visual stimuli were similar to 
those of this study (involving two flickering stimuli superposed on the virtual panorama). 
Note that there was no flickering stimulus at the centre fixation point. The number out of [ ] 
(in [ ]) denotes the result on the 1st (2nd) experimental day 

During the EEG measurements, the subjects were sitting on the luxury sofa and were 
instructed not to move. This gives the subjects both physical and mental fatigue. Aiming to 
realize free postures during EEG acquisitions, we started to analyse the SSVEP 
measurements during standing in the immersive projection system. The results for a subject 
are shown in Table 3. It was found that the SSVEP were clearly obtained and the rather high 
classification performance was achieved in three-class classification.  

 Classified into left Classified into right Classified into centre 

Task left 81.4 [81.4] 9.3 [  1.3] 9.3 [17.3] 

Task right 5.3 [  1.3] 64.0 [86.7] 30.7 [12.0] 

Task centre 5.3 [  5.3] 16.0 [  2.7] 78.7 [92.0] 

Table 3. An example of the performance of three-class classification of EEG activities during 
standing. The subject gazed at left, right, and centre fixation point. There were two flickering 
stimuli floating in the dark virtual space. Note that there was no flickering stimulus at the 
centre fixation point. The number out of [ ] (in [ ]) denotes the result on the 1st (2nd) 
experimental day 

There is a noteworthy topic in the context of independent BCI systems. The report of (Kelly 
et al., 2005) presented the data suggesting that the SSVEP can be used as a measure of visual 
spatial attention. This type of the independent BCI (see (Walpow et al., 2002)), which 
requires no eye-movement, would be one of the challenges of the EEG-based interfacing 
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systems. We are performing the experiment on the EEG measurements with visual-spatial 
attention (Fujisawa et al., 2008b).  
The study of the BCI system in immersive display has not been performed extensively so 
far. We hope that the Brain-CAVE Interface would be one of the research paradigms in the 
field of virtual reality and contributes to the advances in human-computer interaction.  
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