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Abstract

Mammalian spermatogenesis is a high regulated biological process occurring in the 
seminiferous tubules in the testis. The processing of this program requires delicate bal-
ance between cell proliferation, differentiation, apoptosis, and expedite cell interaction. 
Autophagy, an evolutionarily conserved cell reprograming machinery, had been shown 
to function as an important regulatory mechanism in spermatogenesis and steroid pro-
duction in testis. Herein, we mainly focused on our understanding of autophagy in mam-
malian testis. By showing autophagy in physiological and pathophysiological conditions, 
we try to elicit the regulatory role of autophagy in spermatogenic cells and somatic cells 
of testis. Moreover, this review is intended to point out factors and mechanisms, which 
contribute to the initiation of autophagy in testicular cells.

Keywords: autophagy, physiological functions, pathophysiological functions, 
spermatogenesis, testis

1. Introduction

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved mecha-

nism of sequestering part of cell component into cyclic processes to reverse adverse micro-

environmental conditions, including limited nutrient supplies, hypoxia and some other 
stresses. By autophagy, misfolded proteins and impaired organelles are packaged by double 

membrane structure and delivered into lysosomes for cargo degrading. The basic structure 

of autophagosome was first revealed by Ashford and Porter [1], who described membrane-

bound vacuoles in rat liver cells. As research continues, researchers observed autophago-

somes in many other cell types, suggesting that autophagy is a ubiquitous mechanism in 
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eukaryotes. Of note, autophagy is known as the only mechanism to degrade large structures, 

including organelles and misfolded proteins. Phylogenetically conserved role of autophagy 
is considered to balance the metabolic homeostasis of cell under dwindling nutrient supplies 

and other external perturbations. Cellular autophagic machinery induces rapid mobilization 
of endogenous dispensable reserves, which ensures the speedy generation of retrieving fuel 

for ATP synthesis [2]. Therefore, the initiation of autophagy reduces the sensitivity of cell to 

nutrient deprivation. In tumor cell lines, autophagy, as a mean to anti adverse microenviron-

ment, is more prevalent than normal cells. Also, autophagy is indispensable to the survival 

of normal cells, and the maintenance of basal autophagy is crucial to the survival and func-

tion of many cell types in physiological settings, especially in nerve cells [3]. The abnormity 

of autophagy is related to many diseases such as aging, cancer, cardiac disease, and obesity.

In addition, various internal disorders and external stresses might function as initiators of 
autophagy such as DNA injury, toxicant exposure, heat stress, hypoxia and nutrient depri-
vation. Autophagy can protect the survival of cell or accelerate the process of cell apoptosis 

depending on the situation of cellular microenvironment. The relationship between autoph-

agy and apoptosis has been detailedly documented in many papers [4]. However, the partici-

pation of autophagy in testicular function has received little attention in the literature. Here, 
we will address the consequences for testicular endocrine homeostasis and spermatogenesis 

in physiological and pathophysiological conditions, thereby eliciting the regulatory roles of 

autophagy on spermatogenic cells and somatic cells in testis.

2. The involvement of autophagy in spermatogenesis

The main testicular functions are related to endocrine secretion and the output of functional 

sperm. The secretion of endocrine is mainly accomplished by Leydig cells, whereas the pro-

duction of mature functional sperm is initiated from so-called seminiferous tubules. During 

spermatogenesis, the germ cells undergo several structural reorganizations including the 
generation of the acrosome, the condensation of the nuclear chromatin, the rearrangement 

of the mitochondria, the assembly of the sperm flagella, and the removal of unnecessary 
cytoplasm to product functional sperm [5]. The development and differentiation of germ 
cells require drastic cytoskeleton remodeling, enhanced energy consuming and components 

degrading. For this, autophagy can “kill two birds with one stone” by eliminates needless cel-

lular materials and providing supports for the subsequent creation of new components [6]. It 

had been established that autophagy is basically induced in diploid germ cells, while deeply 

involved in the restructure of spermatid shaping during spermiogenesis. The functional role 

of autophagy had demonstrated to be an indispensable mechanism for sperm production, 

and the deficiency of autophagy finally results in male infertility.

2.1. Autophagy in diploid germ cells

Spermatogenesis is the process that transforms spermatogonia into sperm over an extended 
period of time takes place in seminiferous tubule boundaries of the testis. Mammalian testicular 

diploid germ cells, including spermatogonia and spermatocyte, proliferate first by repeated 
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mitotic divisions and then by meiosis to form haploid spermatids. During this period, chromo-

somes duplication, genetic recombination, and many other cellular meiotic accessary processes 

occurred ensuring that high differentiated sperm could be successfully released into the tubule 
lumen [7]. The activation of autophagy is crucial for the maintenance of cellular energetic bal-

ance in spermatogenic cells. In testis, spermatogonial stem cells (SSCs) are suggested as the 
foundation of mammalian spermatogenesis and fertility. Histologically, SSCs are rare, contrib-

uting only 0.03% of all germ cells in rodent testis [8]. Similar with the property of hematopoi-

etic stem cells (HSCs), SSCs sustain life-long spermatogenic property. Studies had suggested 
that the occurrence of autophagy is essential for HSCs maintenance, and loss of autophagy 
lead to accumulation of mitochondria, reactive oxygen species (ROS), and DNA damage [9]. 

However, there are no investigations about the regulatory role of autophagy in spermatogonia. 

It is possible that the maintenance of cellular basal autophagy in SSCs is also a self-protective 
mechanism during its differentiation and self-renewing similar with that of HSCs. Noteworthy, 
the autophagy level of SSCs is relatively lower than other types of germ cells in testis, such as 
round and elongating spermatids under physiological conditions. Furthermore, the autophagy 

is not involved in the postnatal development of spermatogonium and spermatocyte because the 

absence of autophagy at spermatogonium (d7) and spermatocyte (d15) stages [10].

Under physiological conditions, high rate of cell division during spermatogenesis implies 

correspondingly elevated levels of mitochondrial oxygen consumption and ROS generation 
in spermatogonia. Mechanistically, the production of ROS is a required physiological event 
for the renewal of spermatogonia, the functional maturation and capacitation of spermatozoa 
[11]. On the other hand, ROS also participates in the induction of cellular autophagy via ini-
tiating diverse downstream signaling pathways [12, 13]. Glutathione (GSH) plays a key role 

in the antioxidant defense of spermatogonial cells, and high concentration of GSH has been 
reported in mouse testicular germ cells [14]. It had been established that GSH is involved in 

the regulation of autophagy in many types of cells [15, 16]. In spermatogonia, the depletion 

of GSH leads to the induction of autophagy. Interestingly, the depletion of GSH does not 

influence the level of ROS, while contributing to the downregulation of S-glutathionylated 
proteins, protein S-glutathionylation is initially described as a protein oxidation process, 
thereby leading to the induction of autophagy in spermatogonia [17]. These evidences sug-

gest that the oxidative stress might be one of the main factors that physiologically turn on 
autophagy in SSCs by controlling the level of S-glutathionylated proteins in spermatogonia. 
Mechanistic studies suggest that GSH depletion initiates autophagy by an AMPK indepen-

dent signaling pathway. The activation of autophagy induced by GSH depletion does not 

contribute to the alteration of energetic status in spermatogonia. It is possible that physi-

ological fluctuation of autophagy level around the basal autophagic thresholds is accepted 
by germ cells.

During the initiation of autophagy, Beclin1 and p62 are two important proteins that ubiq-

uitously implicated in the formation of autophagosomes and the recognition of autophagic 

cargos in many cell types. The expression of Beclin1 frequently shows similar tendency with 
that of LC3-II, while p62 shows opposite tendency. And, it is accepted that the expression 
of Beclin1 and p62 is not always consistent with expected tendency during the initiation of 
autophagy. However, there is a controversy about the expression of Beclin1 in spermatogo-

nia under nutrient deprivation. As Mancilla et al. suggest that the expression of Beclin1 is 
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not altered in nutrient starvation induced autophagy, while Wang et al. draw an opposite 

conclusion [18]. It is possible that inconsistent results are caused by their different starvation 
conditions. The activation of NF-κB pathway is recognized as the mechanism of autophagy 
induction in spermatogonia under nutrient deprivation. In addition, ankyrin repeat domain 

49 (ANKRD49), an evolutionarily conserved protein highly expressed in testes, can signifi-

cantly enhance the transcriptional activation of NF-κB, therefore upregulating autophagy 
level of spermatogonia under starvation [18].

Apoptosis, necrosis, and autophagy have been described as typical cell death programs. 

In the testis, the death of spermatocyte is crucial for controlling sperm output [19]. With 

this regard, apoptosis, necrosis, and autophagy are mechanistically related machineries in 

spermatocyte for the control of testicular homeostasis. Under physiological conditions, the 

death of spermatocyte is associated with available energy supply. It has been documented 

that spermatocytes use lactate rather than glucose as their primary substrate for the pro-

duction of ATP [20]. In vitro studies revealed that after 6 h of culture a significant increase 
of cell death is detected for spermatocytes cultured in glucose, while there is no signifi-

cant increase in cells cultured with lactate. However, autophagy levels are significantly 
increased in spermatocytes cultured with glucose or lactate after 12 and 24 h, suggesting 

that autophagy might function as a pro-death role in rat spermatocytes under certain meta-

bolic conditions [21]. In spermatocyte, the molecular mechanism is not yet clear about what 

factors determine whether autophagy acts as a cytoprotective defender or a cytotoxic trig-

ger and whether cytotoxicity occurs as the result of self-cannibalism, the specific degrada-

tion of cytoprotective factors, or other as of yet undefined mechanisms [22]. It is certain that 

autophagy is not involved in the regulation of spermatocyte in newly born infant, because 

the expression of autophagic marker proteins is absent from spermatocytes at postnatal day 
15 [23]. However, the physiological roles of autophagy in spermatocyte of adult mice still 

remain unknown.

Relatively, the autophagy levels of both spermatogonia and spermatocyte are maintained at 
a low level compared with other types of germ cell in mammalian testis under physiological 

conditions. It is established that the autophagy level is high related to inner cell status and 

outer microenvironments. In testis, the nutrition status of germ cells is directly associated 

with their mother cells, Sertoli cells. And, except for the early phase of spermatogenesis from 
type B spermatogonia up to preleptotene and leptotene spermatocytes, the entire process of 

germ cell development is isolated from the systemic circulation because of the blood-testis 

barrier (BTB) created by tight junctions (TJ) between Sertoli cells near the basal lamina [24, 25]. 

Thus, it is clear that spermatogonia and spermatocytes are suffered to different physiological 
environments. The difference of physiological hormonal subjection might be one of the main 
factors that led to the inhibition of autophagy in diploid germ cells. In testis, follicle-stimulat-

ing hormone (FSH) in all cycles is to increase spermatogonia and subsequent spermatocyte 

numbers, which is similar to the physiological role of FSH on granulosal cells. Previous stud-

ies had demonstrated that FSH functions as an autophagy inhibitor in ovarian granulosal cells 

[26]. We hypothesis that FSH might also contribute to the inhibition of autophagy in testicular 

diploid germ cells, while detailed molecular pathways in diploid germ cells still remain to be 

documented.
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2.2. The role of autophagy and spermatid differentiation

Spermiogenesis is a sophisticated and highly ordered spermatid differentiation process that 
requires reorganization of cellular structures and readjustment of cellular physiological 
functions. The successful removal of cytoplasm is thought to be critical for the generation 

of functional and motile spermatozoa. The dysfunction of spermatozoa is mainly caused by 
the abnormal of spermatozoa head or the coil of its flagellum. Autophagy is deeply involved 
in the processes of spermatozoa formation, and the deficiency of autophagy leads to vari-
ous spermatozoa defects, which could be classified into three groups, the abnormal of sper-

matozoa head, the coil of spermatozoa tail, and the aggregate of spermatozoa [23]. For the 

spermatozoa with bent head, a large portion of cytoplasm is remained connecting the bent 
head and the tail, thus lead to the inhibition of its beating. For the spermatozoa with coiled 
tail, the sperm tail is seriously coiled with mislocalized and poorly condensed mitochondria, 
while aggregated spermatozoa is characterized by the presence of clustered sperm tails and is 
wrapped by membrane and some cytoplasm.

In spermatozoa, the acrosome is a specialized membranous organelle located over the ante-

rior part of the sperm nucleus, which is important for the dispersion of cumulus cells and the 

penetration of the zona pellucida of the oocyte during fertilization. The formation of acro-

some involves the reprogramming of cellular cytoskeleton, which requiring the induction 

of autophagy to assist the rearrangement of cellular cytoskeleton. Indeed, comparing with 

diploid germ cells, the expression of autophagy-related proteins such as LC3 and Atg7 are 
significantly higher in elongated spermatid. Furthermore, the expression of LC3 could be 
observed firstly in round spermatid (d20) of postnatal testis, which indicating the involve-

ment of autophagy in early testicular spermatid development. Ablation of autophagy by germ 

cell-specific knockout of Atg7 leads to the decrease of testicular weight, the detachment of pre-

mature germ cells, and the malformation of spermatozoa, which significantly reduce the fer-

tility of male mice [10]. Particularly, many spermatozoa from Atg7−/− mice are endowed with 
irregularly shaped round heads similar to human globozoospermia, a severe fertility disorder 
characterized by round-headed spermatozoa with malformed acrosome or without acrosome 
at all. In addition, the deficiency of Atg7 also leads to many other acrosomal defects, such as 
the mis-localization, the deformation and the fragmentation of spermatozoal acrosome; thus, 
they failed to acquire the typical crescent moon shape [10].

The formation of acrosome is grouped into four phases: Golgi, Cap, Acrosome, and 
Maturation [27]. Autophagy participates in acrosome biogenesis starting in the Golgi phase. 

In normal conditions, Golgi apparatus-derived proacrosomal vesicles are fused into a single 

acrosomal vesicle attached to one end of the nucleus in the Golgi-phase spermatids. After 
Atg7 disruption, multiple small vesicles of the Golgi-phase spermatids are failed to fuse with 

each other, thereby showing multiple acrosomal structures. In cap phase, 10% of the sper-

matids had multi acrosomal vesicles or aggregates, and the accumulation of proacrosomal 

vesicles derived from the Golgi apparatus leads to the shrinkage of acrosome [10]. These 

evidences suggest that the malformation of acrosomes most likely caused by the failure of 

proacrosomal vesicles to fuse and be transported to the preacrosome at one end of the nuclei. 

Mechanistically, the function of Atg7 in acrosome biogenesis might be similar to its role in 
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autophagy induction. Within autophagy, LC3-lipid conjugation is a reversible process, LC3 
residing on the outer face of the vesicle can be recycled by Atg4, whereas LC3 on the inner 
surface is ultimately degraded. In spermatid, LC3 is only colocalized with the trans-Golgi 
network marker TGN38 rather than the acrosome maker sp56. Therefore, membrane-asso-

ciated LC3 might participate in the fusion of Golgi apparatus-derived proacrosomal vesicles 
and their transportation to the acrosome. After fusion with the acrosome, LC3 will be either 
recycled or degraded. After Atg7 disruption, LC3 is failed to colocalize with TGN38, causing 
the accumulation of proacrosomal vesicles in the concave region near the trans-Golgi stacks 

[10]. Finally, this accumulation impairs the increase in acrosome volume in the later stages, 

whereupon resulting in defective acrosome formation.

A mammalian spermatozoon is characterized by two morphological and functional compo-

nents; the head and the flagellum, both parts are optimized for special tasks. The formation 
of spermatozoa head and flagellum requires the mobilization and specialization of cytoskel-
eton in spermatid. During this process, autophagy is extensively involved in the regulation 
and the remolding of cell shapes by altering cellular cytoskeletons [28]. In round and elon-

gating spermatids, autophagy is recognized as a potent regulator of cell structures in both 
types of germ cells. It has been established that except for the role of autophagy on acrosome 
shaping, it is also involved in the formation of sperm flagella via the rearrangement of the 
mitochondria and the elimination of unnecessary cytoplasm to facilitate spermatozoa motil-
ity. Gene knockout corroborated the role of autophagy in spermiogenesis. As mice sperma-

tids begin to elongate from step 8, the deficiency of Atg7 makes no change on spermatids 
before step 8 [10].

PDLIM1 (PDZ and LIM domain protein 1) is a member of the PDZ and LIM protein family, con-

taining an N-terminal PDZ domain and a C-terminal LIM domain. It is acknowledged that 
PDLIM1 acts as a scaffold to bring other proteins to the cytoskeleton and is also involved in 
cytoskeleton reorganization in many types of cells [29, 30]. During spermiogenesis, PDLIM1 
functions as a mediator between autophagy and cytoskeleton organization. Under normal 
conditions, the degradation of PDLIM1 by the autophagy-lysosome pathway is needed to 
maintain a proper dynamics of the cytoskeleton network whereupon assuring that sper-

matids differentiation could be processed smoothly. The disruption of autophagy results 
in failure engulf of PDLIM1 by autophagosomes, thereby leading to their accumulation 
in the cytoplasm. The accumulation of PDLIM1 disrupts the proper dynamics of the cyto-

skeleton and finally leads to the inefficient cytoplasm removal during spermiogenesis. In 
normal testis, F-actin signal is stronger than PDLIM1 in the elongating spermatids, and 
also, F-actin based acroplaxome provides a docking site for the acrosome development, 
thus anchors it to the spermatid nucleus [31]. Autophagy impairment strongly increases the 

level of PDLIM1 in spermatids and disrupts the organization of cytoskeleton, thus leading 
to the disorganization of flagellar “9+2” structure and other cytoskeletal components in 
spermatozoa [23]. The well organization of spermatozoal flagellum is crucial to the normal 
motility of spermatozoa, while the deficiency of autophagy significantly changed sperm 
motility parameters including the average path velocity (VAP), straight-line velocity (VSL), 
and curvilinear velocity (VCL).
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In round spermatids, autophagy is also involved in the degradation of other cellular components. 

Among which, the degradation of chromatoid body has been recently uncovered. In germ cells, 

the chromatoid body (CB) is an unusually large germ granule, which is initially formed in the 
cytoplasm of late pachytene spermatocytes. After meiosis, CB is condensed to its final form and 
maintain a distinct cytoplasmic feature throughout the differentiation of round spermatids [32]. 

During the elongation of spermatids, the size of CB will be shrink forming a ring around the base 
of the flagellum [33]. The accessary material from the CB is finally discarded together with the 
rest of the cytoplasm in the residual body. It is demonstrated that the clearance of these materi-

als is mainly undertook by autophagy via an FYCO1-dependent pathway, and the induction of 
autophagy enables the homeostasis of CB [34]. Mechanistically, FYCO1 functions as a docking 
site for LC3 and LAMP1-positive membranes mediating the recruitment of autophagosome and 
lysosome to the CB. In addition, an intriguing option is that some specific RNA species are also 
eliminated via FYCO1-mediated autophagy [35]. However, the disruption of FYCO1 pathway in 
round spermatid somewhat does not impair the fertility of male.

3. Autophagy and the functions of testicular somatic cells

Leydig cells and Sertoli cells are two types of somatic cells exist in mammalian testis. 
Histologically, Leydig cell and Sertoli cells share different locations in testis, which implies 
diverse hormonal exposure and different physiological functions. Both types of testicular 
somatic cells adopt autophagy as a regulatory mechanism for the maintenance of cellular 

homeostasis. During spermatogenesis, physiological orders are assigned to each seminiferous 

tubule, and seminiferous tubule substantially acts as a functional unit of testis. Leydig cells 

are histologically localized in the interval of seminiferous tubules, while it also exerted in the 
regulation of spermatogenesis by secreting testosterone. In addition to the role of testosterone 

on germ cells, some of the cellular biological programs are also selectively regulated by testos-

terone via an autophagy-dependent pathway in Sertoli cells. Comparatively, the Sertoli cells 
maintain tight contact with germ cells in seminiferous tubules. In essence, the functions of 

Sertoli cells are related to its paralleled structural basis, the malformation of cellular structure 

frequently leads to the infertility of male. Autophagy plays pivotal roles in the regulation of 

Sertoli cell functions via cytoskeleton adjustment [36].

3.1. Autophagy and Leydig cell function

Previous researchers had revealed the regulatory roles of autophagy in steroid production 
and secretion [37]. In male mammal, testis contributes about 95% of total circulating testoster-

one, and Leydig cell is the primary testosterone contributor in mammalian testis. Testosterone 

is necessary for male fetal sexual differentiation, adult secondary sex characteristics mainte-

nance, and spermatogenesis. Like many other types of steroid-producing cells, Leydig cells 

are typically own enlarged mitochondria than other cell types. The production of steroid is an 

energy-intensive engineering, which directly related to the damage of mitochondrial function. 

The involvement of autophagy in cellular organelle degradation had been reported in other 
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cell types [38]. It has demonstrated that the relative frequency of autophagy in Leydig cells 

is higher than many other cell types [39]. Consistently, abundant autophagosome engulfed 
organelles are also observed in rat Leydig cells, most of the organelles enclosed in the autoph-

agic vacuoles are SER and mitochondria, organelles that involved in the production of andro-

gens. These evidences lead to the hypothesis that the autophagic activity might relate to the 

regulation of hormonal secretion in Leydig cells. Indeed, the process of autophagy is high 

related to the production of testosterone in rat Leydig cells, and the deficiency of autophagy 
is frequently associated with the dysregulation of testicular homeostasis [40]. However, little 
is known about the relationship between autophagy and testosterone production in Leydig 

cells under physiological conditions.

It is acknowledged that autophagy is a predominant cytoprotective rather than a self-destruc-

tive process in normal cells [41]. Accordingly, autophagy is involved in mediating protective 

effects in multiple rodent models of organ damage affecting the heart, liver, nervous system, 
and kidney. Reduced autophagy level has been associated with accelerated aging process, 
while promote autophagy could partially protect cell from natural aging process [42]. The 

induction of autophagy is also involved in the maintenance of testosterone level in rat testis. In 

the old rat, the accumulation of ROS is significantly increased comparing with that of young 
rat. ROS act as one of the main factors that lead to the downregulation of StAR (steroidogenic 
acute regulatory protein) protein level and the secretion of testosterone by activating p38 mito-

gen-activated protein kinase or c-Jun [43]. In Leydig cells, autophagy regulates the accumula-

tion of ROS by promoting the clearance of damaged mitochondria, oxidized cellular substrates, 
and by activating antioxidant systems. Inhibition of autophagy by disrupting Beclin1 decreases 
the expression of StAR, while inducing autophagy in Leydig cells from aged or young rat by 
rapamycin increases the expression of StAR under the stimulation of LH [40]. Thus, it is possi-

ble that the downregulation of testosterone in aged Leydig cells might result from two aspects: 

(1) the deficiency of autophagic machinery and (2) the increase of ROS level. However, the 
increase in ROS could also be attributed to the compromise of autophagic efficiency.

Endocytosis is an active transport machinery, by which a cell transports molecules and pro-

teins into the cell by engulfing them in an energy-using process [44]. Similar with the func-

tion of autophagy, endocytic mechanism plays an important role in regulating how cells 

interact with their environments. Both endocytosis and autophagy are the major pathways 

for transporting materials to lysosomes in animal cells, the former being responsible for 

uptake of extracellular constituents while the latter for degradation of cytoplasmic com-

ponents. In the Leydig cells, the endocytosis remains close cooperation with autophagy 

whereupon leading to the degradation of respective contents. It had been shown that late 

endosomes deliver their endocytosed contents and lysosomal enzymes to the early autopha-

gosomes, implying that the endocytosis and autophagy are seamlessly connected in rat 

Leydig cells. The collaboration of both mechanisms is efficiently mobilized in Leydig cells 
under physiological conditions. Different with other cell types, rat Leydig cells morphologi-
cally show typical autophagy-related morphologies, as the early signs of autophagy, called 

preautophagosomes, can be easily observed in the ultrastructure of Leydig cells, while these 

structures are rarely shown in other normal cell types even when autophagy is induced [45].
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3.2. Autophagy is required for structural modulation in Sertoli cell

During spermiogenesis, the differentiating germ cells undergo a successive morphological 
transformation from round spermatids to sperm, which requires cellular remodeling of 

spermatids and the assistance of Sertoli cells. The Sertoli cell is involved in the degrada-

tion of many useless components within seminiferous tubule, such as spermatid residual 

bodies (RB) and the apoptotic germ cells. Sertoli cell has a prominent ability to metabo-

lize those phagocytized materials. In testis, the homeostatic phagocytosis of Sertoli cells 
varies depending on seminiferous epithelium cycle and reaching its maximum during 
spermiation [46]. In Sertoli cells, both autophagy and phagocytosis may undertake simi-

lar mission under certain circumstance, especially once a phagocytic vesicle has entered a 

cell. Numerous evidences had suggested that autophagy is associated with the process of 

phagocytosis and is atypically implicated in the degradation of external substrates enter-

ing via phagocytosis in Sertoli cells [47]. Generally, blood-separated tissues use their tis-

sue specific nonprofessional phagocytes for homeostatic phagocytosis [48]. In the testis, 

Sertoli cells manage illegitimate substrates and legitimate substrates with different path-

ways. Exposing of cultured Sertoli cells to either illegitimate (such as photoreceptor outer 
segments generated from other tissue) or legitimate substrates (such as residue body gen-

erated by differentiating germ cell), both substrate types are ingested by phagocytosis. 
Nevertheless, autophagy is selectively involved in the degradation of those illegitimate 

substrates in Sertoli cells, and the inhibition of autophagy significantly retarded the degra-

dation of illegitimate substrates [47].

Sertoli cells play pivotal roles in the regulation of spermatogenesis by providing struc-

tural support and nourishment to developing germ cells, controlling the self-renewal and 

differentiation of spermatogonial stem cells (SSCs), protecting the autoreactive immune 
response of germ cells, and releasing spermatids at spermiation [49]. In the seminifer-

ous epithelium, functional cell interconnections are maintained by Sertoli-Sertoli cell 

and Sertoli-germ cell junctions [50]. The Sertoli cell ectoplasmic specialization (ES) and 
the spermatid-containing acrosome-acroplaxome-manchette complex are two cytoskeletal 
structures that play important roles in the shaping of sperm head [51]. Among which, the 

ectoplasmic specialization (ES) is composed by two components, an actin-based atypical 
adherens junction between adjacent Sertoli cells at the blood-testis barrier (BTB) termed 

as basal ES, whereas between Sertoli cells and spermatids near the luminal surface of the 

tubule termed as apical ES [52]. The basal ES function as an important component of 

the blood-testis barrier (BTB) [53, 54] and apical ES (aES) interacts with the acrosome of 

the elongating spermatid and mechanically assists the shaping of spermatid head [50]. The 

function of apical ES is also related to the movement of spermatid cell and the release of 

the matured spermatozoa during spermiation. Successively, transportation of developing 
germ cells across the seminiferous epithelium is important for the processes of spermato-

genesis, which requires the dynamic restructuring of ES in the epithelial cycle [23, 55, 56]. 

It has been demonstrated that autophagy is involved in the regulation of ES. The deficiency 
of autophagy by Atg7 or Atg5 ablation disturbs the assembly of both apical ES and basal 
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ES in the seminiferous epithelium. Mechanistic studies revealed that similar with that of 

spermatid, autophagy disruption impairs the degradation of PDLIM1 thereby resulting in 
its accumulation in Sertoli cells. Therefore, the organization of cytoskeleton in Sertoli cells 
is perturbed. PDLIM1 might be the primary substrate of the autophagy to regulate cyto-

skeleton organization, because the proper organization of the cytoskeletal structure could 
be significantly restored by knockdown of Pdlim1 gene in autophagy-deficient Sertoli cells. 
Successful organization of cytoskeleton in Sertoli cell is highly related to the produce of 
functional spermatozoa. The accumulation of PDLIM1 disrupts the F-actin hoops of the 
apical ES and related microtubule-based structures in the seminiferous epithelium, which 

ultimately leading to the disruption of Sertoli cell-germ cell communication thereafter con-

tributing to the malformation of sperm head [36].

However, although autophagy plays pivotal roles in apical ES formation as well as basal ES 

assembling, it is not exert in the assembly of tubular and bulbous structures of TBCs (tubu-

lobulbar complexes). In Sertoli cells, TBCs are located on both Sertoli-Sertoli cells and Sertoli 
cell-spermatids interface and are implicated in the restructure of ES, excess spermatid cyto-

plasm removing and spermatid acrosome shaping [57]. The cytoskeletal remolding of TBCs 
is also important to the release of sperm and the translocation of spermatocytes. Unwanted 

distribution of TBCs directly impaired the function of Sertoli cells as well as the commu-

nication between Sertoli cells and germ cells. Liu et al. suggested that the different influ-

ences of autophagy on apical ES and TBCs assembly might come from their different F-actin 
arrangements, because F-actin is packed in hexagonal arrays in the ES, while it appears as 
an embranchment surrounding the tubular portion of TBCs [36, 58, 59]. Furthermore, the 

incorrect distribution of TBCs might also be resulted from the abnormal structure of apical 
ES or the malformation of sperm head, whereas these possibilities still remain to be uncov-

ered by further experimental data. Interestingly, the marker proteins that implicated in SSCs 
self-renewal or meiosis show no changes after the disruption of autophagy in Sertoli cells, 

implying that autophagy is dispensable in the self-renewing of SSCs and meiosis process of 
germ cells.

Androgen-binding protein (ABP) is a kind of sex hormone-binding globulin (SHBG) produced 
by testicular Sertoli cells, which specifically binds to and reduce the lipotropism of testos-

terone or dihydrotestosterone, making them more concentrated in the seminiferous tubules. 

High concentration of ABP is required for the process of spermatogenesis in the seminiferous 
tubules and the maturation of sperm maturation in the epididymis. In mammal, the produc-

tion and the secretion of ABP are regulated by FSH, oestradiol, and testosterone [60–62]. In 

Sertoli cells, testosterone participates in the synthesis and the secretion of ABP by autophagy. 
In vitro studies suggest that ABP is colocalized with LC3 in primary rat Sertoli cells, and 
inhibition, or stimulation of autophagy considerably change both the expression pattern and 
level of ABP in Sertoli cells without affecting the expression of ABP mRNA, implying that the 
regulatory role of autophagy on the degradation of ABP is only works on its protein level. 
Furthermore, the inhibitory function of testosterone on autophagy is also influenced by testos-

terone concentrations, as enhanced concentration of testosterone further inhibits autophagic 

pathway [63]. Importantly, although hypoxia exposure further enhances the autophagy level 
of Sertoli cells, but hypoxia-induced autophagy does not change the expression of ABP in 
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rat primary Sertoli cells, suggesting that the degradation of ABP is independent of hypoxia-
induced autophagy.

4. Autophagy and testicular toxicology

The process of spermatogenesis requires well-balanced germ cell proliferation, differentia-

tion, and death in the testis [64, 65]. However, this process can be disturbed by several endog-

enous or exogenous factors, including withdraw of gonadotropin or testosterone, chemical 
insults, heat stress, and radiation exposure. Cell apoptosis and autophagy are two major 
morphologically distinctive forms of programmed cell death (PCD) that play crucial roles 
in the development and the control of male reproductive functions. The crosstalk between 

autophagy and apoptosis is sophisticated in the sense that they might act synergistically or 

antagonistically with each other in the process of cell life and death. The normal operation 

of autphagic process is related to many physiological functions, whereas the dysfunction of 

autophagy leads to numerous diseases in human. In testis, evidences have demonstrated that 

autophagy plays important roles in testicular pathologies caused by oxidative stress, heat 
stress, toxicant exposure, and radiation exposure.

4.1. Autophagy and testicular homeostasis

Ample of evidences has documented the correlation between toxicant exposure and germ 
cell death. It is well known that cell may activate self-protective mechanisms in response 

to exogenous insults, such as chemical exposure. The activation of autophagy is important 
to the maintenance of cellular functions and may partially rescue the dysfunction of tissue 

homeostasis under adverse environments [66]. Chemical exposure is high related to the out 
control of tissue homeostasis. Exposure of testis to toxicants frequently leads to the activation 
of autophagy by different signaling pathways. Exposing testis to BPA (Bisphenol A) leads 
to the activation of oxidative stress, which activates autophagy mainly by inhibiting mTOR 
signaling pathway. Meanwhile, the phosphorylation of AMPKa and the expression of p53 
might act as a contributor to the upregulation of autophagy under BPA exposure. Of note, 
the expression of Beclin1 is not upregulated accompany by autophagy in testis under BPA 
exposure [67]. With NaF exposure, the autophagy is abnormally increased as evidenced by 
the synchronized increase of p62, suggesting that NaF exposure impairs autophagic machin-

ery and result in the accumulation of autophagosomes in testis [68]. In addition, autophagy 

is also involved in the regulation of testicular homeostasis under other toxicant treatments, 
for example, see Ref. [69]. As testis is composed by germ cells and somatic cells, many studies 

specifically evaluated the involvement of autophagy in germ cells or somatic cell to elucidate 
the mechanisms and functions of autophagy under specific conditions.

4.2. Autophagy and germ cell injuries

Autophagy is referred to as programmed cell death type 2, the process of which might be 

excessively induced under stresses, and the abnormal induction of autophagy is high related 
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to cellular apoptosis especially under severe adverse conditions. It has been established that 

testicular heating can disturb spermatogenesis and cause subfertility, some testis-related 

diseases including cryptorchidism are also linked to testicular heating, in which the testis is 

exposed to body temperature rather than scrotal temperature, whereupon lead to abnormal 
testis function and damaged spermatogenesis in these settings [70, 71]. Autophagy is recog-

nized as one of the regulatory factors that participate in the death of heat-treated somatic 
cells [72]. Similarly, heat treatment on mouse testis could also upregulate the induction of 

apoptosis and autophagy in the germ cells. Meanwhile, prolonged exposure time increases 
apoptosis as well as autophagy levels of germ cells in mouse testis. In vitro experiments 
corroborated the induction of autophagy in spermatocyte by heart stress. Functionally, 

autophagy functions as an apoptotic inducer rather than a self-protective mechanism in 

germ cells, because the inhibition of autophagy markedly reduces the apoptotic rate of germ 

cells in the testis [73].

In addition to triggering cellular dysfunction, autophagy also functions as a cytoprotec-

tive response in germ cells under stressful conditions. When treating GC-2 cell with dibutyl 
phthalate (DPB) significantly induces ER stress in GC-2 cells. However, the expression of cas-

pase-12 or the phosphorylation of JNK or p38 is not changed at the indicated DBP doses, and 
the inhibition of ER stress increases DBP-induced GC-2 cell apoptosis. Autophagy is partici-
pated in the regulation of ER stress, because the inhibition of autophagy significantly aggra-

vated apoptosis. In vivo study indicates that autophagy is consistently induced in rat testis 

under DBP exposure. The suppression of ER stress or autophagy aggravates DBP-induced 
injury in rat testis, as evidenced by the greater reduction in testicular index and decrease in 
germ cells in the seminiferous tubules [74]. Except for exempting germ cells from toxicant 
insults, autophagy also plays vital roles in germ cells under the exposure of some physical 
factors. Studies had demonstrated that exposure of spermatocytes to radiofrequency (RF) can 
lead to the accumulation of intracellular ROS and thereafter inducing autophagy through 
the activation of ERK signaling pathway. However, the activation of autophagy can dwindle 
the accumulation of ROS within spermatocytes. Therefore, the induction of autophagy is an 
indispensable mechanism for germ cell survival [75].

4.3. Functions of autophagy in testicular somatic cell impairment

In addition to the involvement of autophagy in germ cells, studies also evaluated the role 

of autophagy in testicular somatic cell under toxicant exposure. It had been revealed that 
exposure of rat Leydig cells to zearalenone (ZEA) leads to the induction of autophagy 
in Leydig cell. The induction of autophagy is related to the concentration of ZEA, as the 
expression of LC3-II is peaked at 5 μg/mL and then gradually decreased. In Leydig cells, the 
activation of autophagy acts as a cytoprotective role in ZEA-treated Leydig cells. Inhibition 
of autophagy markedly increases the apoptosis level of Leydig cells compared with that 

of ZEA treatment alone. By contrast, the apoptosis level decreased after the cotreatment of 
ZEA and rapamycin [76].

Sertoli cells (SCs) orchestrate the processes of spermatogenesis by nourishing and adapt-
ing environment for germ cell survival and differentiation. Toxicant-induced dysregulation 
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of SCs leads to the reduction in its supportive capacity, thus impairing spermatogenesis 
and fertility. Studies had revealed that exposure of SCs to 4-Nonylphenol (NP) leads to the 
upregulation of ROS level, which in turn activates JNK signaling pathway and mediates the 
induction of JNK-dependent autophagy [77]. Functionally, autophagy acts as a self-protec-

tive machinery in SCs under NP treatment, because the inhibition of autophagy considerably 
increases the level of cell death [78]. Obviously, the abnormal induction of autophagy in SCs 
under toxicant exposure is also related to the process of apoptosis. For example, see Ref. [79].

5. Concluding remarks

The available data suggest that autophagy is deeply involved in the regulation of testicular 

homeostasis. For example, autophagy is exerted in the regulation of germ cell survival, the 
transformation of spermatids, the rearrangement of Sertoli cells, and the testosterone produc-

tion of Leydig cells (Table 1). In mammal, the orchestrated cooperation of germ cells and 

somatic cells is required for the production of functional sperm. During spermatogenesis, the 

induction of autophagy is an indispensable mechanism for the paralleled structural transfor-

mation of spermatids and Sertoli cells, ensuring that acrosome and flagellum could be suc-

cessively established. However, it is necessary to illuminate the regulatory roles of hormones 

such as testosterone, luteinizing hormone (LH), and FSH on the function of autophagy in 
germ cells under physiological and pathological conditions. It is noteworthy that the decline 

in fertility result from environmental exposure has caught the worldwide attention recently. 
Evidences had uncovered that the exposure of testis or cultured testicular cells to adverse 
environments prompted the initiation of autophagy in both germ cells and somatic cells. 

However, there is short of relevant data about the regulatory role of autophagy in testicular-

related diseases. Most of relevant data are toxicant exposure related, which could not accu-

rately reflect the involvements of autophagy in pathological conditions. It is then the topic of 
what the optima strategy would be to utilize autophagy to remove deleterious side effects 
whereupon bring benefits to the therapy of infertility and many other testis related disease.

Cell types Roles of autophagy Related dysfunctions

Diploid germ cells Function as an adaptive response Germ cell death

Spermatid Regulation of acrosome and 
flagellum formation

Sperm head malformation; reduction 
of sperm motility

Leydig cell Maintenance of testosterone 

production

Reduction in testosterone aging

Sertoli cell Regulation of the formation of 
ectoplasmic specialization
Regulation of tubulobulbar 
complexes distribution
Regulation of androgen-binding 
protein half-life

Dysregulation of apical ES basal ES 

perturbation

Disorder of Sertoli cell cytoskeleton 

structure

Prolonged ABP half-life

Table 1. Physiological and pathological roles of autophagy in the mammalian testis.
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