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Abstract

In this chapter, we present information about the design, fabrication and characteriza-
tion of optical waveguides obtained by using a protocol of multiple energy ion implan-
tations. This protocol must provide an approach to produce optical waveguides with
adequate features, such as dimensions, evanescent field and optical confinement. In
general, optical waveguides can be improved by widening the optical barrier or wave-
guide core through multiple energy ion implantations. Design of optical waveguides
must consider effects induced by the ion implantation process, such as modification of
substrate density, polarizability and structure. Information will be presented about
optical waveguides formed mainly in laser crystals (i.e., Nd:YAG, Nd:YVO4) using light
ions such as H and He+ and heavy ions such as C2+. In general, these ions decrease the
refractive index in the implanted area, producing a barrier that permits guiding in the
region near the surface. Furthermore, information about nonlinear optical properties of
channel waveguides containing metallic nanoparticles is presented. Composite mate-
rials containing metallic nanoparticles embedded in a dielectric matrix such as silica
possess interesting properties due to surface plasmon resonance absorption features
and the enhancement of the third-order nonlinear optical response. Therefore, nonlinear
optical properties in composite waveguides can be used in all-optical switching devices.

Keywords: optical waveguides, multi-energy ion implantation

1. Introduction

Since the 1960s, waveguide optics has evolved into an emerging discipline and has a tremen-

dous impact on our information society, due to the potential applications for signal processing

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and biochemical sensing [1]. The first proton implantation in fused silica to form waveguides

was reported in 1968 [2]. Then, ion-implanted waveguide progress has been reviewed by

Townsend et al. summarizing early results before 1993 [3]. In recent years, Chen et al. and Liu

et.al. presented review papers [4–6] showing advances from 1994 to 2013. Ion implantation has

been used to produce optical waveguides in several substrates, including more than 100

materials such as single crystals, glasses, polycrystalline ceramics and organic materials. More-

over, ion implantation allows accurate control of both dopant composition and penetration

depth through the choice of the species and the energy of the ions. Waveguides can be

fabricated at low temperature, which ensures steady chemical compositions and phases in the

waveguide region. Waveguides can be fabricated by combining ion implantation with other

techniques, such as ion exchange and metal ion diffusion [7, 8].

Single ion implantation has been used as a rule to produce optical waveguides, but there is a lack

of control of optical confinement that limits its potential as optical waveguides [9]. However,

optical waveguides can be improved by widening the barrier or directly generating the wave-

guide core through multiple energy ion implantations [10, 11]. There are a few works related to

optical waveguides obtained by means of multiple ion implantations [12, 13]. In this chapter,

multi-energy ion implantation is used to fabricate optical waveguides.

2. Theory

2.1. Optical waveguides

The simplest optical waveguide structure is the planar or slab waveguide. It is composed of a

refractive index material surrounded by two lower refractive index materials, and it confines

light in one direction. Figure 1 shows the typical three-layer configuration of a planar wave-

guide, where n1 is the refractive index of the core and n2 and n3 are the refractive indices of

substrate and cladding, respectively (n1 > n2 > n3). Considering a plane wave travelling in a slab

waveguide structure, with a dielectric square shape core refractive index, an eigenvalue equa-

tion that describes light propagation can be obtained for transverse electric (TE) and transverse

Figure 1. A three-layer configuration of a slab optical waveguide.
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magnetic (TM) wave polarizations, Eqs. (1) and (2), for a three-layer dielectric waveguide

structure [14]:

kaa ¼ tan�1 kc
ka

þ tan�1 ks
ka

þmπ ð1Þ

kaa ¼
1

d
tan�1 kc

ka
þ
1

c
tan�1 ks

ka
þmπ ð2Þ

where a is the film physical thickness, ka ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2a � n2e
p

, ks ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2e � n2s
p

, and kc ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2e � n2c
p

are

the transversal wavenumbers in the core, substrate, and cladding, respectively, and k ¼ 2π=λ is

the wavenumber; c ¼ n2s=n
2
a and d ¼ n2c=n

2
a are parameters introduced in the TM eigenvalue

equation. Furthermore, an effective index ne can be obtained for every integer m number; this

solution is known as the mth mode and has its own light distribution at the waveguide

structure. The distribution of the electric field amplitude is given by:

EyðxÞ ¼
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� �
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The light confinement, Г, is defined as a ratio between the light power in the core and the total

mode power and is calculated from [15]:

Γ ¼
Pf ilm

P
¼

1þ ks
k2f þk2s

þ kc
k2f þk2c

f þ 1
ks
þ 1

kc

: ð4Þ

2.2. Ion implantation process

The ion implantation has proven to be a powerful technique to fabricate optical waveguides in

a variety of materials. In the case of light ions that are implanted, the damage caused by the

nuclear collisions during the implantation reduces the physical density of the substrate. The

low-density buried region, with refractive lower than the substrate, acts as an optical barrier.

The region between the surface and the optical barrier has a higher refractive index and can

operate as a waveguide [12]. By contrast, heavy ions can increase physical density, polarizabil-

ity or structure of the substrate, which results in an increase in the refractive index of the

implanted region surrounded by regions with lower refractive index, making a typical optical

waveguide [13].

Nuclear damage processes, which create partial lattice disorder in the material, also can

introduce a positive or negative change in the refractive index, depending on the ionization

and diffusion effects. The index profile depth can be controlled by the ions energy, and the

positive or negative change in the refractive index will allow one to have a waveguide core or

an optical barrier [3]. The changes in the refractive index nmostly depend on the defect content

(∆V), changes in the polarizability (∆∝) and structure factors (F). The Wei adaptation of the

Lorentz-Lorenz equation gives [16]:
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Δn

n
¼

ðn2 � 1Þðn2 þ 2Þ

6n2
�
ΔV

V
þ
Δ∝

∝

þ F

� �

: ð5Þ

When the dominant mechanism is a negative ∆V, an optical barrier will be produced beneath

the substrate surface. On the other hand, a positive ∆Vmay lead to an increase in the refractive

index acting as the core of the waveguide. Glass implanted with heavy ions such as Ag and Cu

follows this behaviour. Furthermore, an annealing procedure can generate metal nanoparticles

in the waveguide, which have potential as nonlinear optical devices [17].

3. Methodology and materials

The development of optical waveguides by a multi-implantation process shown in blocks in

Figure 2 requires feedback from optical design software, ion implantation simulations, optical

characterization and optimization. Once specific requirements are defined for the design of optical

waveguides, it is necessary to know basic information of the first approach of waveguide parame-

ters such as ∆n and core dimensions. Afterwards, it is necessary to try to replicate these features

through the ion implantation process. The prediction of ion range and damage distribution is

essential for the ion implantation technique and thus several computer simulation programs have

beendeveloped such as the Stopping andRange of Ions inMatter (SRIM), crystal- Transport of Ions

in Matter (crystal-TRIM), Projected Range Algorithm (PRAL), MARLOWE, University of Califor-

nia MARLOWE (UC-MARLOWE), University of Valladolid MARLOWE (UVAMARLOWE),

REED and so on [18–22]. Here, the ion trajectory was simulated by the Stopping and Range

of Ions in Matter (SRIM) software [23], while the ions were implanted by the NEC

Pelletron Accelerator Model 9SDH-2 at the Instituto de Física, UNAM. The experimental

parameters used to fabricate SiO2 planar waveguides by Ag+ multiple implantation pro-

cess are shown in Table 1.

Figure 2. A diagram for the development of optical waveguides by a multi-implantation process.
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An automatic prism-coupling system, (MetriconModel 2010) operating at awavelength of 633 nm,

was used for obtaining TE/TM effective refractive indices of the waveguides propagation modes,

and propagation losses were determined by a transmission technique; both techniques are

described later.

Also, results will be reviewed for the waveguides fabricated in laser crystals such as YAG and

YVO4 doped with Nd or Yb. These results deal mainly with refractive index changes and laser

emission properties.

4. Results and discussions

4.1. Initial parameters for optical waveguides

The single mode of behaviour of the waveguide in the Near Infrared (NIR) was considered as a

major goal. Calculations by means of the Reflectivity Calculation Method (RCM) result in a

step-index waveguide with a core width of ~3 µm and index change of ∆n~0.008, whose

intensity mode profiles are shown in Figure 3.

Implant energy Fluence [ions/cm2]

M1 M2 M3 M4

9 MeV 5 � 1014 1 � 1015 2.5 � 1015 5 � 1015

7 MeV 2.5121 � 1014 5.025 � 1014 1.256 � 1015 2.5119 � 1015

6 MeV 1.4748 � 1014 2.9505 � 1014 7.3757 � 1014 1.475 � 1015

5.2 MeV 2.0689 � 1014 4.1375 � 1014 1.034 � 1014 2.069 � 1015

4.3 MeV 1.9508 � 1014 3.9 � 1014 9.75 � 1014 1.95 � 1015

Table 1. Parameters of implantation used for the samples M1–M4 [13].

Figure 3. Intensity distribution of propagation modes confined in a step-index waveguide with refractive index change

∆n~0.008 for: (a) λ = 633 nm and (b) λ = 1064 nm.

Development of Optical Waveguides Through Multiple-Energy Ion Implantations
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4.2. Design of waveguides through multiple energy ion implantations

The methodology oriented to design optical waveguides in a dielectric matrix, by means of ion

implantation, must consider parameters as: (a) type of ion, energy, fluence and (b) composition

and structure of the substrate trying to obtain a specific waveguide. Moreover, changes in the

properties of the substrate during the ion implantation, for example, structural, density or

polarizability must be considered for a robust waveguide design.

4.2.1. Optical waveguides by heavy (Ag) ion implantation

First, the silver ion implantation profile was calculated using energies from 1 to 10 MeV and

fluences from 1014 to 1015 ions/cm2 in an SiO2 substrate; see Figure 4(a) [17]. As an example,

Figure 4(b) shows a step ion distribution obtained from multiple silver implantation energies

and fluences: 9 MeV, 5x1014 ions/cm2; 7 MeV, 2.5x1014 ions/cm2; 6 MeV, 1.47x1014 ions/cm2; 5.2

MeV, 2x1014 ions/cm2 and 4.3 MeV, 1.95x1014 ions/cm2 [13].

4.2.2. Optical waveguides by light (H, He+) ion implantation

Light ion implantation normally reduces the refractive index at the end of the ion trajectory

and thus an optical waveguide is created between this low index region (so-called optical

barrier) and the air next to the substrate’s surface, see Figure 5. The refractive index is reduced

mainly because of a volume expansion in the damage region, producing a lower material

density. Depending on the material, the refractive index in the guiding region may increase or

decrease slightly due to polarizability and structural factors, according to Eq. (5). In order to

reduce light leakage through the optical barrier into the substrate (i.e., light tunnelling),

generally, two or three energies close to each other are used, generating broader barriers than

those obtained by a single implant [24–26]. For example, helium ion energies of 1.75, 1.6 and

Figure 4. (a) Ag implantation profiles for a range of 2–9 MeVand (b) multiple implantations towards a generation of a step-

index waveguide [13].
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1.5 MeV can be implanted, instead of only 1.5 MeV, at a dose of around 1016 ions/cm2, reducing

the tunnelling losses in the waveguide.

4.3. Passive optical waveguides

In this section, the results of optical and physical properties of ion-implanted waveguides are

presented.

4.3.1. Refractive index change for an optical waveguide

One of the most important optical properties of waveguides is the refractive index change that is

produced by the ion implantation process. From the complex mechanism of effects produced by

ion implantation in optical materials, here, only the main contributors to the refractive index

change are considered. Refractive index change is induced by the modification of the substrate

density, polarizabilityor structureproducedby radiationdamageor stoichiometric changes [9–11].

Anapproach to analyse the refractive index change,Δn, of an ion-implantedwaveguide is givenby

ΔnTE,TM ¼ ΔnR þ ΔnV þ ΔnTE,TM
σ

ð6Þ

where ΔnR is mainly due to the difference in polarizability before and after ion implantation

which can be calculated using a basic model that relates refractive index as a function of

Figure 5. A refractive index profile of a Yb:YAG waveguide implanted with protons at an energy of 1 MeV and an incident

angle of 46� [27].
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chemical composition [9]. Refractive index change’s contribution from volume change of the

matrix surface caused by the induced compaction process, ΔnV, can be estimated across the

surface implanted through AFM measurements [28]. The index change Δnσ depends on

the polarization state of the light (TE or TM) is related to the optical stress produced by ion

implantation which can be determined directly using an effective index of propagation modes

for TE and TM polarizations.

An initial consideration to estimate the gradient index profile of the ion implantation distribu-

tion is to calculate the ion distribution generated by the multiple ion implantation process and

the corresponding refractive index. First, we calculated Δn of each segment of 70 nm of the

waveguide, shown in Figure 6(a). Refractive index profiles obtained for M1-M4 are shown in

Figure 6(b). The values of ΔnRmax calculated for samples M1-M4 are ~0.00017, ~0.00034,

~0.00089 and ~0.0017, considering a silver ion concentration of Agmax ~0.04%wt., ~0.08%wt.,

~0.2%wt. and ~0.4%wt., respectively.

4.3.2. Refractive index profile of optical waveguides

Away to determine the refractive index profile of an optical waveguide is by means of direct

measurements of effective refractive indices of confined and radiated propagation modes

using a prism-coupling technique. In the prism-coupling method, as shown in Figure 7, an

incident light beam enters the prism at an angle ϕ. At the prism base, the light beam forms an

angle θ to the normal. This angle, θ, determines the phase velocity in the z direction of the

incident beam in the prism and in the gap between the prism and the waveguide. Efficient

coupling of light into the waveguide occurs only when we choose the angle ϕ such that vi is

equal to the phase velocity, vm, of one of the guided modes [29].

The effective refractive index, Nm, of the mth mode is related to θm, by

Nm ¼ npsin sin�1 sin
θm

np

� �

þ A

� �

ð7Þ

Figure 6. (a) A multiple implantation profile and (b) refractive index profiles for samples M1–M4.
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where A and np are the base angle and refractive index of the prism, respectively. The effective

refractive indices of the guided modes in the SiO2 waveguides, shown in Table 2, were

obtained by the measurement of the coupling mode angles of the prism coupler. Figure 8(a)

shows typical results of TE/TM effective refractive indices for the propagation modes of

waveguides obtained through the prism-coupling technique. Table 2 lists the values of TE

and TM effective refractive indices for the propagation modes in the ion-implanted wave-

guides. Propagation modes m0 and m1 are guided modes and m2, m3 and m4 are considered

radiated modes because they do not fulfil the condition n3 < neff < n2 but are required for an

adequate refractive index profile fitting [30]. Starting from a refractive index profile calculated

from polarizability shown in Figure 6(b), a refractive index profile for the waveguides was

fitted by the RCM method for experimental and theoretical effective refractive indices of the

waveguide propagation modes. Fitted refractive index profiles of waveguides, for TE/TM

polarizations, are shown in Figure 8(b), wherein values of refractive index from core, cladding

and substrate are given, respectively.

Figure 7. A principle of operation of the prism-coupling technique [29].

Mode M1 M2 M4

neffTE neffTM neffTE neffTM neffTE neffTM

m0 1.4640 1.4644 1.4642 1.4646 1.4640 1.4644

m1 1.4604 1.4607 1.4607 1.4611 1.4593 1.4597

m2 1.4542 1.4548 1.4548 1.4551 1.4518 1.4521

m3 1.4428 1.4430 1.4431 1.4433 1.4384 1.4387

m4 1.4275 1.4273 1.4287 1.4291 1.4192 1.4187

Table 2. Effective refractive indices of the propagation modes in the SiO2 waveguides [13].
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4.3.3. Waveguide propagation losses

Propagation losses were determined by the method of light transmission, as shown in Figure 9.

Transmittance of the waveguides (tw) was calculated considering losses along the different

components involved in the whole system. Interface-waveguide transmittance (tf�w ¼ 1� ηR),

where ηR is the Fresnel reflection fibre guide, the mode-size mismatch between the fibre and the

waveguide (η0), interface transmittance (tout) and microscope transmittance (tm) are needed to be

accounted in order to describe the overall throughput T, given by Eq. (8) [9].

T ¼ tf�wη0twtouttm ð8Þ

To determine the propagation losses (αw), we use the extinction coefficient given by Eq. (9), where

Pin and Pout are the input and output of optical power respectively and L is the waveguide length.

αw ¼ �ln
Pin

Pout

� �

=L ð9Þ

Figure 8. (a) An experimental TE/TM effective refractive index for the propagation modes of the waveguide M1 and (b)

TE/TM refractive index profiles calculated for waveguides M1, M2 and M4 [13].

Figure 9. An experimental setup for a waveguide mode profile: (a) laser, (b) optical fibre, (c) waveguide, (d) microscope,

(e) diaphragm and (f) CCD or detector.
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To estimate losses and transmittance, power measurements were done by fibre-coupling into

one waveguide facet, which introduces mainly three loss mechanisms: Fresnel reflections,

size mismatch between the fibre mode and the waveguide mode and their misalignment

[31].

The Fresnel reflection depends on the index change at both the waveguide and fibre end face.

The reflected light (returned loss) can be written as:

ηR ¼
n1�n2
n1þn2

� �2
þ n3�n2

n3þn2

� �2
þ 2 n1�n2

n1þn2

� �

n3�n2
n3þn2

� �

cosð4πn2g 1
λ
Þ

1þ n1�n2
n1þn2

� �2
n3�n2
n3þn2

� �2
þ 2 n1�n2

n1þn2

� �

n3�n2
n3þn2

� �

cosð4πn2g 1
λ
Þ
g ð10Þ

where n1 and n3 are the effective refractive indices of the fibre and the guide mode, n2 is the

refractive index in the gap g between the fibre and the guide and λ is the wavelength. The

mode-size mismatch induces loss because the transverse mode coupling cannot be complete.

The efficiency is computed using the well-known overlap integral

η0 ¼

ðð

jE1E2j2dxdy
ðð

jE1j2dxdy
ðð

jE2j2dxdy
: ð11Þ

This integral expresses the coupling between the electric fields E1 and E2 of modes, which

propagates in the fibre and in the waveguide, respectively. In the most general case, the mode

profile can be approximated by a combination of half Gaussians (see Figure 10) and the

overlap integral gives:

η0 ¼

ffiffiffiffiffiffi

ω1
p ω1

ω0
þ ω0

ω1

� ��1=2
þ ffiffiffiffiffiffi

ω2
p ω2

ω0
þ ω0

ω2

� ��1=2
� �2

ω1þω2

2
ω3

ω0
þ ω0

ω3

� � ð12Þ

where ω0 is the waist of the fibre mode and ω1, ω2, and ω3 are the half-waists of the waveguide

mode. The propagation loss values (αw) measured for the waveguides M1, M2 and M4 are

around 0.7, 3.9 and 19.5 dB/cm, respectively.

Figure 11 shows the intensity distribution of the propagation modes supported by the silver-

implanted waveguides in SiO2. These images of the spot emerging from the waveguide out-

put, excited by fibre-waveguide coupling, were obtained by a Charge-coupled device (CCD)

camera coupled to a travelling microscope. Here, it is possible to appreciate the excitation of

propagation modes m0 and m1 for each of the waveguides, which is in accordance with results

from the prism-coupling technique. The waveguide optical confinement factor measured for

propagation modes m0 and m1 was 90% and 70% for M1, 80% and 75% for M2 and 90% and

85% for M4, respectively.
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4.4. Active optical waveguides

4.4.1. Laser emission

For more than 50 years, a large variety of lasers have been developed and optimized for differ-

ent performance characteristics such as output power, efficiency, emission bands, pulse energy

and pulse width. Research in this area is sustained by the impulse of a great diversity of

scientific and technological applications in our modern society.

The main properties of laser emission are (a) coherence, which means that the photons move

synchronously along the beam, (b) directionality, that is its ability to be focused into a small

spot and (c) monochromaticity, which means that the light beam consists of essentially one

wavelength, and this property originates from the basic principle of stimulated emission

that involves well-defined atomic energy levels. Among different types of lasers, solid-state

lasers are based on crystals or glasses doped with rare earth or transition metal ions. The

principal source of energy to obtain efficient laser emission in these materials comes from laser

diodes, giving solid-state lasers some advantages such as compact configuration, prolonged

Figure 10. A typical waveguide mode profile [31].
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Figure 11. Intensity distributions of waveguide output light and intensity distribution profile for waveguides: a) funda-

mental mode in M1, b) first mode in M1, c) fundamental mode in M2, d) first mode in M2, e) fundamental mode in M4,

and f) first mode in M4.
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operational lifetime and generally very good beam quality. In particular, waveguide lasers

offer high gain and low power thresholds in a small cross-section.

The principal laser characteristics are slope efficiency (φ) and threshold pump power (Pth);

these are obtained from the plot of the laser output power as a function of the absorbed pump

power (i.e., slope efficiency curve). The slope efficiency is the slope of the curve when it is

approximated to a straight line, and the threshold pump power is the value of the pump power

at which the curve crosses the pump power axis. For a four-level system like Nd:YAG or

Nd:YVO4, these parameters can be estimated using the following equations [32]:

φ ¼ η
1� R2

δ

λp

λs
ð13Þ

Pth ¼
hc

λp

1

ησeτ

δ

2
Aef f ð14Þ

where η is the pump quantum efficiency (number of ions excited to the upper-laser level per

absorbed photon), δ ¼ 2αl� lnðR1R2Þ gives the total cavity losses (where α is the waveguide

propagation loss and l is the cavity length), R1 and R2 are the reflectivities of the input and

output mirrors, λp and λs are the pump and signal wavelengths, respectively, h is the Planck’s

constant, c is the speed of light in the vacuum, σe is the stimulated emission cross-section, τ is

the fluorescence lifetime and Aeff is the effective pump area.

4.4.2. Optical waveguides in active crystals

Waveguides in laser and nonlinear crystals have been developed for several decades achieving

a mature stage. In particular, rare earth-doped waveguides combine compactness and the

possibility of generating laser light, by combining the absorption and emission properties of

the active ion with the confinement capacity of the optical microstructure.

Numerous laser waveguides have been fabricated by ion implantation using the optical barrier

approach (i.e., reducing the refractive index at some distance beneath the surface) [3–5]. In this

case, multi-energy implantation has been used to broaden the barrier and thus reduce the light

tunnelling into the substrate. Our group has reported laser waveguides in Nd:YAG, Yb:YAG

and Nd:YVO4 by light and heavy ion implantation [12, 27]. YAG waveguides exhibit a slight

increase in the refractive index in the guiding region, besides the optical barrier, due to

polarizability effects and optical stress. As an example of laser emission in these structures,

channel waveguides fabricated by proton implantation in Nd:YAG showed a laser pump

threshold of 6.9 mW and a slope efficiency of 16% [33], see Figure 12. Other groups have

reported better laser performances (e.g., threshold pump power as low as 1.6 mWwith a slope

efficiency of 29%), indicating the improvement in the production of waveguide lasers [34].

Nd:YVO4 waveguides have been fabricated by proton, helium, carbon and silicon implanta-

tion among different ions [26, 35, 36]. Implanting light ions generates the typical optical barrier

waveguide for both the ordinary and the extraordinary index. We used double or triple

implants to reduce the tunnelling losses. For example, a comparison was made between triple
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helium-implanted and a single helium-implanted waveguide, see Figure 13; the light confine-

ment was better in the multi-implanted waveguide due to the reduced tunnelling through the

barrier. We also fabricated stacked waveguides in this crystal; in this case, we made two proton

implants at 0.8 and 0.75 MeV to generate a deep broad optical barrier and a shallow implant at

Figure 12. (a) Laser emission spectrum and (b) slope efficiency curve from a proton-implanted channel waveguide in Nd:

YAG. The inset shows a photograph of the laser output at 1064 nm [33].

Figure 13. Refractive index profiles of Nd:YVO4 waveguides implanted with a single implant and a triple helium implant

[26].
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0.4 MeV, thus producing a superficial and a buried waveguide. The buried waveguide had a

better light confinement because the index contrast at the interface is smaller than in the

shallow waveguide [26].

There are examples of materials that show a refractive index increase at certain light direction,

thanks to their birefringence (e.g., YVO4 and LiNbO3). This property has been taken advantage

in LiNbO3 in order to produce a step-index profile for the extraordinary index by implanting

carbon ions at 10 different energies [10]. However, it is possible to produce a refractive index

increase with a single implant; this is realized by implanting heavy ions such as carbon and

silicon at doses of around 1014 to 1015 ions/cm2 [35, 36]. In this case, the refractive index profile

exhibits an enhanced index well (i.e., the waveguide) and a region of reduced index at the end

of the ion trajectory (i.e., the optical barrier). For a highly birefringent material, the electronic

energy deposition causes lattice relaxation in the guiding region, increasing the lower index

and reducing the higher one. We fabricated such waveguides (channels) in a Nd:YVO4 crystal

and demonstrated laser emission for the first time to our knowledge in a waveguide configu-

ration. The threshold pump power was approximately 58 Mw, and the slope efficiency was

around 24% [37].

4.5. Metallic nanoparticle-based optical waveguide

As it was previously described, ion implantation is a useful technique for producingwaveguiding

devices, either by using light ions to create a low index ‘barrier’ region or with metallic ions to

increase the index in the implanted region and hence get guiding in this implanted region. On the

other hand, it is well known that metal ions contained within a dielectric can be made to

coalesce in order to form nanoparticles by thermal treatment in a reducing atmosphere [38].

The density and size of the nanoparticles can be controlled very well by controlling the

implantation parameters such as dose and accelerating energy and by the thermal treatment

parameters: temperature, duration and atmosphere composition. These nanocomposites

containingmetallic nanoparticles are very interesting from the point of view of their nonlinear

optical properties, which are enhanced by the presence of localized surface plasmon reso-

nance [39, 40].

The usual geometry for these samples is in the form of a thin layer, with thicknesses of the

order of 1 μm, which are large enough to produce appreciable effects with low energy femto-

second pulses. It is therefore interesting to produce waveguides based on these metallic

nanocomposite materials. The irradiance enhancement produced by the confinement of the

electromagnetic field in a channel waveguide, and the considerably longer interaction length

(from the mm to cm range), allows the observation of nonlinear effects with considerably

smaller input pulse energies. Waveguide-based nonlinear devices are of particular interest for

the implementation of ultrafast optical information processing applications [41] that exploit

the nonlinear response to perform different functions. The fact that the region containing the

metallic nanoparticles has a higher refractive index than the surrounding undoped silica

substrate means that the implanted region can constitute the actual waveguide and that the

nonlinear properties of the nanocomposite can be exploited for these applications, making

them very good candidates for the implementation of such devices.
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We have followed different approaches for the fabrication of channel waveguides containing

metallic nanoparticles. In the first one, we have used a masked ion implantation to selectively

implant Ag ions in narrow strips of the host, silica, followed by a thermal treatment to nucleate

Ag nanoparticles [42]. As before, multiple implantations at different energies were employed

to produce a cross-section that is large enough for efficient coupling by a single-mode fibre butt

coupling. The energies employed in the successive implantations were 1.5, 2.0, 2.5, 3.0, 4.0 and

4.5 MeV. Because the widths and heights of the distribution vary with ion energy for a given

dose, the doses at each energy were adjusted as to give the designed uniform profile. After the

implantation process, the samples were thermally annealed at 600�C in a 50% N2 + 50% H2

reducing atmosphere for 1 hour, in order to obtain the highest amount of near-spherical

nanoparticles by nucleation of the implanted ions. The end result is a sample containing

channel waveguides with Ag nanoparticles, in a 2μm thick layer at a 0.52μm depth inside the

silica matrix and having three different widths: 10,15 and 20 μm. Figure 14 shows a white light

microscope image of the waveguide and a front view of guided white light.

We characterized the linear optical properties of the waveguides produced using the tech-

niques illustrated in Figure 15(a). First, by looking at the light scattered perpendicular to the

propagation direction, we can determine the propagation losses, and then by imaging the

output at the guide end face, we can visualize the propagation modes of the guides. Propaga-

tion losses as low as 0.43 cm�1 were obtained for the 20 μm-wide guides using 633 nm light

[42], and Figure 15(b) and (c) shows the measured modal field distribution, fromwhere we can

see that the guide supports three modes.

We have explored another approach for producing channel waveguides, which consists of

direct writing of the waveguides by selective destruction of the nanoparticles using tightly

Figure 14. (a) A white light microscope image of an Ag nanoparticle waveguide (upper view) and (b) a front view of

coupled white light output. The colouration is probably due to the plasmonic absorption of the nanoparticles.
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focused fs pulses [43]. The advantage of this method is that by controlling the position of the

laser pulses used, we can produce waveguides with different geometries and evenmore complex

devices, such as Mach-Zehnder interferometers or directional couplers.

Based on our previous knowledge of the second harmonic generation properties of these

materials [44], we employed a scanning second harmonic generation microscope based on an

fs Titanium:sapphire laser oscillator, operated at high irradiances to produce the nanoparticle

damage and at lower irradiances to image the damage achieved [43]. In this case, we used a

sample that had elongated Ag nanoparticles that were aligned in a preferential direction,

which was chosen to be at 45�C with respect to the sample surface [38]. This sample was

chosen because of the relatively strong second harmonic signal observed [44] and the facility

to induce damage. Figure 16 shows a second harmonic image after we made two linear scans

of the laser pulses at high intensity. It can be clearly seen that in the scanned regions, the

second harmonic signal disappears almost completely, indicating the disappearance of the

nanoparticles.

We have not observed waveguiding in these structures, but we expect to achieve it soon. This

will allow us to produce different devices, such as beam splitters (Y junctions), Mach-Zehnder

interferometers or directional couplers, which, together with the relatively large nonlinearities

observed, can be used to implement all-optical switching devices, but of course, more work is

needed in this direction.

Optical waveguides have been obtained through multiple energy ion implantations as a way to

design optical waveguides with better optical confinement and lower propagation losses. The

Figure 15. (a) An experimental set up to measure propagation losses and mode field distribution, (b) a 2D modal

distribution measured for the 10 mm-wide guides and (c) an intensity plot for the measured mode.

Ion Implantation - Research and Application118



protocol of design presented can be used with heavy ion implantation to enhance waveguide

properties as core size and ∆n; moreover, if the limit of metal solubility is reached, metallic

nanoparticles can precipitate by means of annealing, bringing about a potential nonlinear

optical waveguide. On the other hand, if light ions are used, it is possible to enhance the optical

barrier or to design buried waveguides, that is, core waveguides formed between two barriers.

This is possible due to the flexibility of the implantation process to change parameters as

energy of implantation and fluence that must permit the development of active and passive

integrated optical circuits.

5. Conclusions

Multiple ion implantation processes provide a potential way to produce optical waveguides

using heavy and light ions, which improve capabilities to enhance optical confinement and

reduce propagation losses—both paramount properties for optical waveguides. The protocol

of design presented can be used with heavy ion implantation to enhance the core waveguide

properties such as core size and ∆n; moreover, if the limit of solubility of metal is reached,

metallic nanoparticles can be produced by means of annealing, triggering a potential nonlinear

optical waveguide. Ion implantation induces changes in polarizability, damage, compaction

and stress that contribute directly to the refractive index profile and needs to be considered for

advanced applications as active and passive integrated optical circuits.
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