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Abstract

Solid tumours include numerous malign or relatively less benign types of carcino-
mas and sarcomas. Acquired chromosomal abnormalities in solid tumours are hall-
marks of gene deregulation and genome instability. Chromosomal abnormalities are 
mainly classified into two groups: structural and numerical alterations. Structural 
rearrangements involve chromosomal aberrations such as deletion, translocation, 
duplication, inversion and gene amplification, whereas numerical abnormalities 
result in aneuploidy or polyploidy. Structural chromosome abnormalities can arise 
from non-allelic homologous recombination (NAHR), non-homologous end joining 
(NHEJ) and fork stalling and template switching (FoSTeS). Numerical abnormalities 
can form through various errors in the mitotic spindle checkpoint and some cellular 
processes during mitosis. This chapter reviews acquired structural and numerical 
chromosomal abnormalities in solid tumours and presents potential formation mech-
anisms. In this chapter, the relationship between long inverted repeats (LIRs) and 
MYCN amplification in neuroblastoma was also investigated. The distribution of LIRs 
was determined at chromosome 2p25.3–2p24.3, using inverted repeat finder (IRF) 
software. LIRs were also identified at boundaries of amplicons in 14 neuroblastoma 
cell lines and 42 solid tumours, involving MYCN amplification. Statistical analysis 
showed a significant association between LIRs and MYCN amplification loci. Present 
data provide important insights into MYCN amplification mechanism. Therefore, 
a new model mechanism for formation of the MYCN amplification is proposed  
at the end of the chapter.

Keywords: solid tumour, chromosomal abnormalities, model mechanisms, long inverted 
repeats (LIRs), neuroblastoma, MYCN amplification mechanism
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1. Introduction

Acquired chromosomal abnormalities during clonal evolution of tumour cells, which can influ-

ence biological or clinical behaviour in a solid neoplasm, are hallmarks of gene deregulation 

and genome instability [1, 2]. Acquired clonal cytogenetic abnormalities have been reported 

in more than 50,000 cases (current total number of the cases: 66,675, updated in 2016) in all 

main cancer types [3, 4]. Secondary chromosomal aberrations that are considered important 

unbalanced changes acquired during tumour progression usually result in large-scale genomic 

imbalances, whereas primary balanced abnormalities can cause a disease-specific gene rear-

rangement in cancer initiation [3, 5].

Chromosomal abnormalities are mainly classified into two groups: structural and numerical 
alterations [6]. Gross structural rearrangements involve the chromosomal changes includ-

ing deletion, translocation, duplication, inversion, and gene amplification, whereas numerical 
abnormalities lead to abnormal number of a whole chromosome or entire chromosome set, 

resulting in aneuploidy and polyploidy, respectively.

Solid tumours include various malign or relatively less benign cancer types observed in 

multiple solid organs, systems and tissues, involving many carcinomas and sarcomas such 

as thyroid adenocarcinoma and Ewing sarcoma or adenomas such as salivary gland ade-

noma, respectively, as summarised in Table 1 [7]. The Atlas of Genetics and Cytogenetics 

in Oncology and Haematology represents a large number of chromosomal abnormalities 

including translocation, deletion and inversion reported in solid tumours [7]. Together, the 

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer presents the 

recurrent structural and numerical chromosome abnormalities reported in at least two cases 

with the same morphology at any topography of the body in solid tumours (Table 1) [4].

Recurrent aberrations share a common size and consistently recur in different individuals, 
leading to clustering of the breakpoints, whereas the nonrecurrent rearrangements formed 

within a region are in different size in each patient, but these rearrangements may share a 
smallest region of overlap (SRO), which may cause similar clinical phenotypes [8]. Recurrent 

abnormalities mostly occur via non-allelic homologous recombination (NAHR) between low 

copy repeats (LCRs) [9]. Nonrecurrent rearrangements are usually explained by non-homol-

ogous end joining (NHEJ) and the fork stalling and template switching (FoSTeS) models [8].

The recurrent structural rearrangements and chromosomal gains that are present in at least 

two cells in a neoplasia are accepted as clonal; however, according to the International System 

for Human Cytogenetic Nomenclature (ISCN), missing chromosomes that are observed in 

at least three cells are accepted as clonal [10]. The chromosome abnormalities detected at a 

frequency of less than 5% in an examined cell population are considered non-recurrent or 

non-clonal [11].

The balanced structural chromosomal rearrangements involving mostly translocations and 

some inversions, such as t(12;16)(q13;p11) in myxoid liposarcoma and t(X;1)(p11;q21) in pap-

illary renal cell carcinoma, are decidedly more disease specific than the unbalanced changes 
[12]. However, unbalanced structural alterations are more frequently observed than the bal-

anced aberrations in solid tumours, see Table 1 in Ref. [12].
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Chromosomal abnormalitiesb

Structural Numeric.

Sitea Solid tumoura Trans. Del Dup Inv Aneup.

Bones Ewing sarc. 

malign

t(11;22)

(q24;q12)

del(22)(q12) — — +8, +2

+12, −10

Osteoblast. 

benign

— — — — +16, −13
−22

Osteosarc. 

malign

der(1)t(1;3)

(p36;p21)

del(1)(q11) — — +7, +20

−13, −10

Digestive 

organs

Hepatoblast. 

malign

der(4)t(1;4)

(q12;q34)

del(1)(p22)

del(1)(q12)

— — +20, +2

+8, −18

Female organs Ovary AC 

malign/benign

t(6;14)

(q21;q24)

del(6)(q21)

del(3)(q21)

del(1)(q21)

dup(1)

(q21q32)

inv(3)

(p13p25)

+12, +3

−15, −X

Breast AC 

malign

t(14;15)

(p11;q11)

del(1)(p13)

del(1)(p22)

dup(1)

(q21;q44)

inv(1)

(p22p36)

+1, +7

−X, −22

Head and neck Larynx SCC 

malign

t(1;2)

(p22;q21)

del(22)(q13)

del(3)(p11)

del(8)(p21)

— — +7, +20

−21, −Y

Salivary gland 

Ad. benign

t(3;8)

(p21;q12)

del(3)(p21)

del(8)(p12)

— inv(12)

(q15q24)

+7, +8

−19, −Y

Lung heart 

skin

Myxoma 

benign

— — — — +7, −X
−Y

Malignant 

Melanoma 

Malign

t(1;14)

(q21;q32)

del(9)(p21)

del(6)(q13)

— — +7, +20

−10, −21

Male organs Prostate AC 

malign

t(8;21)

(q24;q22)

del(7)(q22)

del(10)(q24)

dup(7)

(q22q32)

— +7, +Y
−8, −Y

Testis teratoma 

benign

der(1)t(1;14)

(p11;q11)

del(6)(q21)

del(1)(p35)

— — +8, +21

−13, −18

Nervous 

system

Glioblast. 

malign

der(1)t(1;12)

(p36;q13)

del(9)(p21)

del(9)(p13)

dup(1)

(p11p36)

inv(19)

(p13q13)

+7, +20

−10, −Y

Neuro-endoc./

endoc. system

Thyroid AC 

malign

t(2;3)

(q13;p25)

del(12)(p11) — inv(10)

(q11q21)

+7, +20

−22, −Y

Pituitary  

AD.

— — — — +7, +12

−21, −22

Benign 

neuroblast. 

malign

der(1)t(1;17)

(p32;q21)

del(1)(p22) — inv(2)

(p13p23)

+7, +17

−19, −X

Soft tissues Alveolar 

rhabdo-

myosarc. 

malign

t(2;13)

(q35;q14)

del(13)(q14)

del(16)(q22)

— — +2, +20

−3, −10

Synovial Sarc. 

Malign

t(X;18)

(p11;q11)

del(3)(p21)

del(11)

(q13q21)

— — +8, +12

−3, −14
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Aneuploidy (91.1%), an abnormal chromosome number deviated from euploid, is a very 

common feature in solid tumours, see Table 1 in Ref. [13]. Aneuploidy is one of the main 

resultants of chromosomal instability and probably contributes to tumourigenesis through 

genomic variation and gene/protein dosage changes [14].

Gene amplifications are predominantly observed in solid tumours, as compared with haema-

tological malignancies and lymphomas; see Table 1 in Ref. [15]. Oncogene amplification can 
play an important role in the progression of solid tumours. Genomic DNA amplifications lead 
to a selective increase in the dosage of cellular oncogenes, usually resulting in overexpression 

of those genes and thus may provide contribution to the tumourigenesis [16]. MYCN amplifica-

tion is a poor prognostic factor in neuroblastoma [17]. In addition, gene amplification, which 
involves multiple genes such as MDM2, EGFR, MYCN, CCND1 and CDK4, is associated with 

poor prognosis in anaplastic grade III oligodendrogliomas, regardless of the gene involved [18].

Cytogenetic analysis in solid tumours is performed in a limited number of mitoses due to low 

mitotic index of tumour tissues, problems in disaggregation of sample, and intense necro-

sis in the periphery. Moreover, most of metaphases obtained from tissue culture have insuf-

ficient quality for karyotype analysis [19]. The technological developments in conventional 

cytogenetic, molecular cytogenetic, and molecular biological methods increased the quality 

and number of mitoses, which enhance efficiency and accuracy of karyotype analysis in solid 
tumours [20–22], while in vivo experimental models provided important insights into the 

mechanisms of chromosomal abnormalities [23, 24]. However, the mechanisms of chromo-

some abnormalities remain to be completely clarified.

Primary model mechanisms proposed for formation of structural chromosome abnormalities 

in genomic disorders and cancer are NAHR, NHEJ, and FoSTeS [8]. NAHR events are mostly 

Chromosomal abnormalitiesb

Structural Numeric.

Sitea Solid tumoura Trans. Del Dup Inv Aneup.

Urinary 

system

Kidney AC 

malign

der(3)t(3;5)

(p13;q22)

t(X;1)

(p11;q21)

del(3)(p14)

del(3)(p13)

— inv(1)

(p36q21)

+7, +16

−14, −Y

Wilms tumour 

malign

t(2;14)

(q21;q24)

del(1)(p13)

del(11)

(p13p14)

— — +8, +12

−16, −22

aInformation regarding solid tumours and their sites was obtained from database: ‘Atlas of Genetics and Cytogenetics in 

Oncology and Haematology’ [7].
bChromosomal abnormalities were selected among the recurrent aberrations that are reported at most cases in the 

‘Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer’ [4].

Abbreviations: AC, adenocarcinoma; AD, adenoma; Aneup., aneuploidy; Endoc., endocrine; Glioblast., glioblastoma; 

Hepatoblast., hepatoblastoma; Neuroblast., neuroblastoma; Numeric., numerical; Osteoblast., osteoblastoma; Sarc., 

sarcoma; SCC, squamous cell carcinoma; Trans., translocation.

Table 1. Common chromosomal abnormalities in solid tumours.
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associated with LCRs, but any evidence for such a direct association of NHEJ and FoSTeS with 

a specific DNA element was not yet provided. However, it was proposed that FoSTeS may be 
stimulated by a palindrome or cruciform structure [8]. In addition, the location of multiple 

DNA elements showed significant associations with the breakpoint regions of in particular 
non-recurrent rearrangements. This subject was argued in non-recurrent rearrangements sec-

tion of this chapter. The numerical chromosome abnormalities can arise from various errors in 

the mitotic spindle checkpoint and cellular processes such as kinetochore assembly, chroma-

tid cohesion and centrosome replication, leading to missegregation of chromosomes during 

mitosis [25].

On the other side, multiple models involving replication and/or breakage-fusion-bridge 

(BFB) cycles for formation mechanism of gene amplification have been proposed. These 
mechanisms are clearly described in Section 3.1.7. MYCN amplicon units within amplifi-

cation locus are often arranged as clustered head-to-tail tandem repeats in direct orienta-

tion, suggesting that MYCN amplification may be formed via a mechanism different than 
those involving BFB cycles that produce inverted arrangements [26]. Some replication-based 

mechanisms for MYCN amplification were proposed, see Section 3.1.7. This chapter reviews 
acquired structural and numerical chromosomal abnormalities and their potential formation 

mechanisms in solid tumours. Furthermore, in light of present data, the chapter proposes a 

new model mechanism for formation of MYCN amplification that is a poor prognostic factor 
in neuroblastoma.

2. Cancer and chromosomal abnormalities: past to present

The earliest known malignant neoplasm was diagnosed in skeleton of a resident lived in 

Mauer (Vienna, Austria) in the Neolithic period, around 4000 BC [27]. It was reported that 

this example exhibited the signs of multiple myeloma rather than a metastatic carcinoma. The 

word cancer comes from term karkinos, which was first used to describe a non-healing swell-
ing or ulceration in a medical text, ‘Hippocratic corpus’, written in about fifth century BC [28]. 

Hippocrates also used the terms karkinoma and scirrhus to describe malignant nonhealing 

tumours and hard tumours, respectively. In addition, he recognised and described the nasal 

carcinoma, later proposed a treatment for this cancer.

Claudius Galenus, known as Galen of Pergamum, classified the tumours into three categories 
as onkoi (lumps or masses in general), karkinos (malignant ulcers), and karkinomas (nonul-

cerating cancers) in the second century AD [29]. He also distinguished the lumps and growths 

as benign and malignant types. Ibn Sina, known as Avicenna, addressed the esophagus cancer 

in Iran of the eleventh century [30]. He was the first physician to refer to this disease as cancer 
of the esophagus. A century after the cancer studies of Avicenna, the physician Ibn Zuhr or 

Avenzoar made the first clinical description of the polyploid colorectal tumour, uterine can-

cer, and basal cell carcinoma in his monumental treatise Al Taysir during the twelfth century 

[31]. In the sixteenth century, Gabriele Fallopius accurately described the clinical differences 
between benign and malignant tumours [29].
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Gregor Mendel examined the offspring of hybrids after hybridization of pea plants and 
discovered the fundamental laws of inheritance in 1865 [32]. Charles Darwin developed 

the first comprehensive theory of heredity, based on the transmission of physical entities 
that are the basis of development through inheritance in 1868 [33]. Between 1874 and 1876, 

Walther Flemming described the stages of cell division in more detail and showed the 

transformation of fibrous scaffold and network within the nucleus into ‘threads’, resulting 
in two daughter cells [34]. Fleming decided that this fibrous scaffold and arrangement of 
nuclear threads were termed chromatin (stainable material) and mitosen in 1879 and 1882, 

respectively. Heinrich Wilhelm Waldeyer coined the term chromosomen (chromosome) for 

stainable bodies in 1888, after he observed the stainability of the nuclear ‘threads’ during 

division [34].

David von Hansemann was first person to describe aneuploidy in 1890 [35]. He observed 

abnormal mitotic figures in several carcinoma samples. These findings were later developed 
by Theodor Boveri. Boveri showed the unequal distribution of chromosomes to the daughter 

cells after the fertilization of sea-urchin eggs by two sperms between 1902 and 1914 [36]. He 

revealed that the chromosome is a unit of heredity and proposed that chromosomal aberra-

tions caused the cancer. At the same time, Walter Sutton showed that chromosomes occurred 
in distinct pairs and segregated at meiosis in his study with grasshopper chromosomes [37]. 

Sutton was the first to point out that the chromosomes conformed to Mendel's heredity rules. 
In other words, Sutton and Bovery developed the first clear chromosome theory of heredity.

Nowell and Hungerford first showed that the chromosomal abnormality was associated with 
a specific cancer [38]. They discovered a minute chromosome known as Philadelphia (Ph) 

chromosome today in the neoplastic cells of cases with chronic granulocytic leukaemia in 1960.

Spriggs et al. reported that many solid tumours included the aneuploid cell clones, which are 

hiperdiploid and/or relatively less hipodiploid, harbouring chromosomes in varying num-

bers detectable even in same case in 1962 [39]. They suggested that the biological success 

of these aneuploid clones is due presumably to the natural selection of successful variants. 

Rowley detected the Philadelphia (Ph) chromosome in the bone marrow and a few blood 

samples from the patients with chronic myelogenous leukaemia (CML), using the quinacrine 

fluorescence and Giemsa staining techniques in 1973 [40]. Author also observed the second Ph 

chromosome in a case and trisomy 8 in two patients in blast crisis.

The homogeneously staining region (hsr) was first detected in drug-resistant Chinese hamster 
sublines and two neuroblastoma cell lines, SK-N-BE(2) and IMR-32, using the trypsin-Giemsa 

banding methods in 1976 [41]. The authors also showed that the hsr replicated relatively, rap-

idly and synchronously before the midpoint of the S phase. In addition, two identical giant 

marker chromosomes 1 (bearing der(1)t(1;17) translocation containing 2p24 hsr) including 1p 

deletion, in addition to intact 1, were identified in IMR-32 neuroblastoma cell line in 1977 [42].

Atkin and Baker revealed that the pericentric inversions involving the heterochromatic regions 

of the chromosomes 1 are relatively common in cancer patients including solid tumours in 

1977 [43].
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The fluorescence in situ hybridization (FISH) method was developed by Bauman et al. in 1980 

[44]. By in situ hybridization and Southern blotting methods, N-myc oncogene and its amplifi-

cation in the hsrs were discovered in numerous neuroblastoma cell lines and a neuroblastoma 

tumour tissue by Schwab et al. in 1983 [45].

Comparative genomic hybridization (CGH) method was developed for detecting and map-

ping the relative DNA sequence copy number between genomes by Kallioniemi et al. in 1992 

[46]. Multicolor spectral karyotyping (SKY), a molecular cytogenetic technique, for detecting 
and analyzing the chromosomal aberrations in clinical samples was developed by Schröck et 

al. in 1996 [47].

3. Chromosomal abnormalities

3.1. Structural chromosomal abnormalities

3.1.1. Recurrent genomic rearrangements

Recurrent structural genomic rearrangements often result from NAHR between LCRs in 

direct or inverted orientation [48]. NAHR involving nonallelic crossover is one of the homolo-

gous recombination mechanisms of two-ended double-strand break (DSB) repair and occurs 

in both meiotic and mitotic cells in human [49].

LCRs, also called segmental duplications (SDs), are region-specific DNA blocks of 10–400 kb in 
length with ≥97% identity between repeat copies [50]. SDs define hotspot of the chromosomal 
rearrangements and hence can act as mediator of normal variation or recurrent chromosomal 

aberrations associated with a genomic disease [51]. LCR-mediated NAHR mechanism occurs 

preferentially at the hotspots inside low copy repeats and yields the recurrent rearrangements 

with common size and clustered (fixed) breakpoints in unrelated individuals (Figure 1a) [8].

Ectopic interchromosomal and interchromatidal (intrachromosomal) recombination (NAHR) 

between directly oriented LCRs in trans can produce both deletion and duplication (Figure 1b), 

whereas intrachromatidal crossover in cis can result in only deletion [52]. Inversion can occur 

through ectopic crossing-over between inversely oriented LCRs in cis (Figure 1c). In addition, 

NAHR between inversely oriented LCRs on sister chromatids can cause an isochromosome 

formation [52]. NAHR between interchromosomal LCRs on nonhomologous chromosomes 

can lead to recurrent translocations [53]. Besides the segmental duplications, NAHR between 

interspersed repeats such as LINEs and Alus can result in de novo unbalanced translocation 

and interstitial deletion, respectively [54, 55].

NAHR hotspots, specific to meiosis, can cause de novo alterations in copy number of dos-

age-sensitive genes associated with some genomic disorders in germ line cells, resulting in 

structural rearrangements such as deletion and duplication [56]. NAHR also mediates the 

recurrent genomic rearrangements occurring at relatively high frequency in particular adults 

in human somatic cells, suggesting the accumulation of de novo variations after birth [57].
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In addition, segmental duplications are markedly enriched at the multi-allelic CNVs, complex 

CNVs and loci including both deletion and duplication in human genome [58]. Carcinoma-

associated breakpoint regions in human genome frequently contain SDs [59]. However, 

literature includes a limited number of the chromosomal abnormalities caused by NAHR 

mechanism in solid tumours. Of these studies, four reported that NAHR involved in large 

deletion of EXT1 and EXT2 genes in multiple osteochondromas and large deletion and dupli-

cation of NF1 gene in neurofibromatosis type 1 (NF1) [60–63].

3.1.2. Non-recurrent genomic rearrangements

Non-recurrent rearrangements are characterized by unique breakpoint junction in each indi-

vidual but share an overlapped genomic region between the scattered breakpoints [8]. This 

SRO may encompass one or more genes (Figure 2), which are associated with a genetic dis-

ease or neoplasm. Due to the SRO region, the patients are likely to display similar clinical 

phenotypes. Like LCR in the recurrent rearrangement, any specific repeat causing a nonrecur-

rent rearrangement was not reported. However, one of the breakpoint locations of a nonre-

current rearrangement in the genomic region can include relatively less scattered breakpoints 
in a smaller defined area, termed breakpoint grouping (Figure 2), suggesting that a genomic 

architecture such as palindrome or cruciform was extruded near this defined area [8].

The repetitive DNA sequence elements, such as inverted repeats, direct repeats, long inverted 

repeats (LIRs), Alu repeats, G-guadruplex-forming G-rich repeats and palindromic AT-rich 

repeats (PATRRs) were often detected in the breakpoint regions of many non-recurrent 

chromosomal abnormalities associated with genomic disorder, inherited disease or cancer in 

human [64–73].

Figure 1. LCR-mediated nonallelic homologous recombination (NAHR). (a) Recurrent rearrangement with common 

size and clustered (fixed) breakpoints (BPs) resulting from NAHR between LCRs. (b) NAHR between directly oriented 

LCRs can yield both deletion and duplication through interchromosomal and interchromatidal (intrachromosomal) 

recombination. (c) NAHR between inversely oriented LCRs can result in an inversion through intrachromatidal 

recombination.
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Double strand breaks involving genomic rearrangements, translocations and deletions in 

neoplastic cells are usually joined by NHEJ [74]. NHEJ is active throughout the cell cycle, and 

its activity increases during transition from G1 to G2/M, whereas HR is most active in the S 

phase in human cells, concluding that normal human somatic cells also mostly utilised error-

prone NHEJ at all cell cycle stages [75].

NHEJ mechanism tolerates nucleotide loss or addition at the rejoining site. This nonhomolo-

gous repair pathway requires three enzymatic activities (Figure 3), which involve the nucle-

ases removing damaged DNA, the polymerases aiding in the repair and a ligase restoring the 

phosphodiester backbone [81].

Essential components of the canonical or classical NHEJ (c-NHEJ) include Ku70/80, DNA-

PKcs and LIG4/XRCC4/XLF complex (Figure 3a), whereas the alternative forms of NHEJ, 

termed microhomology-mediated end joining (MMEJ), alt-NHEJ or A-EJ (Figure 3b, c), 

involves PARP1, MRN complex and its partner CtIP [77, 80, 82]. c-NHEJ actually plays a 

conservative role in genomic integrity but is versatile and adaptable in joining process of 

imperfect complementary DNA ends [83]. In other words, the accuracy of repair depends on 

the structure of DNA ends rather than c-NHEJ pathway [83].

A-EJ repairs the DSBs in the absence of key c-NHEJ proteins [84]. A-EJ is highly error-prone 

during end-joining process, leading to frequent DNA loss at the junctions and chromosomal 

rearrangements [79]. Other alternative end joining pathway, microhomology-mediated end 

joining (MMEJ), requires a microhomology of at least five nucleotides between DNA ends 
at the break sites and is independent of Ku70/80 and Ligase IV proteins of c-NHEJ but is 

dependent on MRN complex (Mre11, Rad50 and NBS1), Ligase III, XRCC1, FEN1 and PARP1 

(Figure 3b), as compared to c-NHEJ that uses either no microhomology or sometimes ter-

minal microhomology of 1–4 nucleotides between two ends [76, 78]. MMEJ can operate in 

where the microhomology is present, even in the presence of c-NHEJ in both cancer and 

normal cells [78].

Figure 2. Nonrecurrent rearrangements share a smallest region of overlap (SRO). Dashed lines indicate the scattered 
breakpoints (BPs). In left side, a cruciform near the region containing the grouping of 3′ BPs is demonstrated.
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In addition, replication-based mechanisms (Figure 4), FoSTeS and microhomology-medi-

ated break-induced replication (MMBIR) for the formation of nonrecurrent rearrangements 

involving complex duplication and deletion, inversion, translocation, triplication and rolling 

circle were proposed [85, 86].

Taken together, the breakpoint analysis of structural chromosomal rearrangements in solid 

tumours shows that NHEJ, A-EJ and MMEJ are predominant mechanisms underlying these 

somatic aberrations; however, FoSTeS and MMBIR are responsible for a significant number of 
structural variations, in particular somatic complex deletions [87–89].

3.1.3. Translocations

Chromosomal translocations, which are one of the most common types of genetic rearrange-

ments, generally arise from reciprocal exchange of heterologous chromosome fragments and 

can cause deregulation of gene expression through either juxtaposition of the oncogenes 

near promoter/enhancer elements or gene fusion [90]. Contrary to reciprocal translocations, 

Robertsonian translocations can be generated by joining between the long arms of two acro-

centric chromosomes around a single centromeric region [91]. Reciprocal translocations can 

Figure 3. End joining mechanisms for repair of double-strand breaks. (a) Classical NHEJ (c-NHEJ) joins the DNA ends 

with microhomology (mh) of 1–4 nucleotides (nt) [76]. DNA break is recognised by Ku70/80, which recruits the DNA-

dependent protein kinase catalytic subunit (DNA-PKcs). DNA-PKcs activates the Artemis that shows the endonuclease 

activity in both ends during end processing. DNA polymerase (pol μ or λ) performs the DNA synthesis, followed by 
ligation process (XLF:XRCC4:Lig4 complex) [77, 78]. (b) MMEJ joins the DNA ends with mh ≥5 nt. MRN complex and 
PARP1 recognise the DNA break, and CtIP starts the DNA resection. FEN1 endonuclease removes the flap, followed 
by ligation process with Ligase III (Lig III) [78, 79]. (c) A-EJ does not require the microhomology. A-EJ shares first step 
(break recognition) with MMEJ. But, A-EJ involves DNA synthesis with pol θ, followed by ligation with Lig I [79, 80].
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lead to balanced or unbalanced rearrangements. Balanced translocations do not cause the 

gain or loss of genetic material but can result in promoter swapping/substitution or loss of 

gene function, which was reported in some benign and malignant solid tumours [3], whereas 

unbalanced translocations result in a gain or loss, involving trisomy or monosomy in any 

chromosome segment, respectively [92].

Malignant solid tumours generally harbour non-recurrent balanced aberrations including 

many translocations rather than recurrent balanced ones; see Table 1 in Ref. [3]. In addition, 

solid tumours show less often gene fusions compared to haematological disorders. Most of 

them, such as EWSR1-POU5F1 (Bone sarcoma), EWSR1-ERG (Ewing sarcoma) and PAX3-

FOXO1A (Rhabdomyosarcoma), were observed in sarcomas [3].

Many recurrent unbalanced translocations, such as der(1)t(1;1)(p36;q12) (Breast adenocarci-

noma), der(3)t(3;6)(p11;p11) (Kidney adenocarcinoma), der(19)t(11;19)(q12;q13) (Lung squa-

mous cell carcinoma) and der(12)t(11;12)(q12;q23) (Testis germ cell tumour), were detected in 

solid tumours [12].

Numerous inter-chromosomal and intra-chromosomal translocations in solid tumours were 

identified, and majority of these translocations were reported to form via NHEJ and A-EJ 
mechanisms (Figure 5a), while a small number of them was generated by FoSTeS/MMBIR 

[88]. A-EJ was more abundant in most cases. In addition, A-EJ is more significantly associated 
with breast tumours compared to other tumour types. Alt-NHEJ is also primary mediator of 

Figure 4. Replication-based mechanisms proposed for generating the nonrecurrent rearrangements. (a) A DNA lesion 

or a non-B DNA structure like cruciform can cause fork stalling during replication, stimulating the fork stalling and 

template switching (FoSTeS) mechanism [8, 85]. Lagging strand may then invade other fork via microhomology, 

leading to template-switching. By this way, duplication can arise after second round of replication. Successive template 

switching can result in gene amplification (see Section 3.1.7). (b) Microhomology-mediated break-induced replication 

(MMBIR) mechanism can be triggered by a single strand break, which gives rise to replication collapse [86]. The 3′ 
single strand overhang can invade a microhomology site at the other fork, and DNA polymerase restarts DNA synthesis 

through D-loop formation, resulting in deletion, duplication, and unbalanced translocation.
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translocation formation in mammalian cells [94]. However, it was reported that c-NHEJ is the 

predominant mechanism for repair of the double-strand breaks, resulting in translocation 

formation in human cells [95].

On the other side, it was found that the breakpoint regions of recurrent translocations in solid 

tumours are flanked by segmental duplications and Alu element [93], suggesting that SD 

or Alu-mediated NAHR mechanism involves formation of recurrent translocations in solid 

tumours (Figure 5b).

In vertebrates, NHEJ is the main pathway for repair of DSBs, which is required for suppressing 

the chromosomal translocations [96]. However, the non-B DNA structures around breakpoint 

junctions can lead to chromosomal translocations (Figure 5a). Potential non-B DNA structure 

(e.g., hairpin/cruciform, triplex and quadruplex)-forming repeats such as inverted repeat, direct 

repeat, inversions of inverted repeat, (AT)n, (GAA)n, (GAAA)n, G4-DNA motifs and H-DNA 

are significantly associated with breakpoint regions of translocations in the cancers including 
solid tumours [97–99]. In addition, formation of de novo translocations between AT-rich repeats 

(PATRRs) was tested in cultured human cells. Contrary to de novo deletions, de novo transloca-

tions between PATRRs were not observed during both leading and lagging strand synthesis in 

the presence of slowed DNA replication. Kurahashi et al. thus proposed that translocation may 

be formed via a DNA replication-independent cruciform structure induced by PATRR [100].

3.1.4. Deletions

Chromosomal deletion is the most common structural aberration among recurrent unbal-

anced chromosomal abnormalities in solid tumours [12]. Chromosomal deletions are mainly 

classified into two groups as interstitial and terminal deletions. Interstitial deletion is formed 
by two breaks, whereas terminal deletion can occur due to one break near telomere [10].

Gross deletions can cause the loss of one or more genes in human-inherited diseases and can-

cers [71]. Heterozygous or homozygous deletions involving many tumour suppressor genes 

may play a major role in tumour initiation and progression. Interstitial heterozygous deletions 

within chromosome 3 common eliminated region I (C3CER I) including multiple genes such 

Figure 5. Reciprocal translocation mechanisms. (a) A balanced reciprocal translocation resulted from nonhomologous 

recombination. Random or a non-B DNA-forming sequence (Non-B DNA-FS) may induce the double-strand breaks on 

the nonhomologous chromosomes, stimulating NHEJ or A-EJ. (b) An unbalanced reciprocal translocation arose from 

nonallelic homologous recombination. Interchromosomal segmental duplications (SDs) or Alu interspersed elements 

may be mediator of NAHR [53–55, 93].
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as LIMD1, LTF and TMEM7, mapped to 3p21.3, are widespread in solid tumours, suggesting 

that C3CER I region may harbour some tumour suppressor genes, besides its LOH may be 

causative in tumour development rather than reflection of an unstable genome in tumour cells 
[101]. Another study suggests that homozygous deletion of PTEN locus may be associated 

with metastasis in prostate cancer [102].

Homozygous deletions observed in multiple different chromosomal loci, some of them 
encompass LRP1B, FHIT, PARK2, CDKN2A (p16), CDKN2B (p15), PTEN, and WWOX 

tumour suppressor genes were frequently found in many cancer cell lines, usually derived 

from a solid tumour [103].

Many model mechanisms can explain gross genomic deletions. But, formation mechanism of 

deletion remains to be clearly enlightened.

NAHR-mediated deletion (Figure 1) was reported in a limited number of solid tumours. A 

study indicated that large deletion of EXT1 and EXT2 genes in multiple osteochondromas 

families can be occurred by NAHR between Alu repeats as well as NHEJ [60].

The genomic rearrangements including deletions in solid tumours are predominantly caused 

by end-joining mechanisms, NHEJ, MMEJ or A-EJ; however, complex deletions are generally 

formed by FoSTeS/MMBIR [87–89].

In addition, gross deletions have been associated with non-B DNA structure-forming 

sequences in breakpoint regions, including direct repeats, inverted repeats, inversion of 

inverted repeats, long inverted repeats (LIRs), and Alus in the genomes of cancers including 

solid tumours [71, 72, 97–99].

Gordenin et al. [104] previously proposed that an inverted repeat can form a hairpin at the lag-

ging strand during replication, causing a deletion via slippage of DNA polymerase between 

short direct repeats adjacent to both side of stem of a LIR or between smaller repeats within 

LIR (Figure 6a). Lobachev et al. [105] proposed that homologous recombination between sister 

chromatids will repair the DNA strand without deletion at the inverted repeat site. According 

to their model, if another inverted repeat is present on the other chromosome, recombination 

then could lead to a deletion.

Later, it was shown that a hairpin formed by inverted repeat stalled the replication fork in 

both prokaryotes and eukaryotes, indicating that DNA hairpins are formed likely during lag-

ging strand synthesis [106]. Kurahashi et al. [100] demonstrated that deletions occurred within 

PATRRs due to slow replication and uncoupling of DNA polymerase and helicase complex 

respectively during the synthesis of both lagging and leading strands in human cells, suggest-

ing that replication slippage caused deletion of the hairpins induced by PATRRs in leading 

and lagging strand (Figure 6b).

Akgün et al. [107] proposed that the break generated by a nicking endonuclease in the top 

of hairpin can stimulate the cellular repair mechanisms, resulting in one-sided (in only one 

of repeat units) or two-sided (in both of the repeat units) palindrome deletions (Figure 6c). 

Cunningham et al. [108] showed that a nicking near hairpin tips by endonuclease in a perfect 

palindrome can result in deletions at the center of palindrome after rejoining of the breaks by 

NHEJ (Figure 6c).
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I previously found that LIRs are significantly associated with the breakpoint regions of gross 
deletions in human-inherited diseases and cancers [71]. Statistical analysis showed that a 

positive significant strong correlation was found between 5′ and 3′ LIR numbers. In addition, 
negative significant correlations were found between deletion size and the numbers of 5′ and 
3′ LIRs. These results suggest that LIRs could be contributed to DNA sequence evolution in 
human genome. Statistical analyses also suggested that DNA strand is potentially broken in 

locations closer to bigger LIRs. Another analysis demonstrated that loop length and stem iden-

tity of 3′ LIRs were more important in larger deletions. In light of these findings, I proposed 
two model mechanisms involving LIR-mediated gene deletion (Figure 7a, b). In first mecha-

nism, it was proposed that gross deletion can be generated by breaks formed near two LIRs at 

the 5′ and 3′ breakpoints, which are located two contiguous replication bubbles (Figure 7a). In 

second mechanism, it was proposed that back-folded stem loop structure can cause a second 

break at the 5′ breakpoint region after a break near 3′ LIR occurred during replication, resulting 
in gene deletion (Figure 7b). In this chapter, I also proposed a new modified model mechanism 
involving 5′ and 3′ LIRS within same replicon, adapted from other two ones (Figure 7c).

Hairpin structures were shown to form at an interrupted LIR with 111-bp stem and 24-bp 

spacer at the frequencies of 32–37% on both leading and lagging strand templates, respectively, 

suggesting that hairpins were extruded simultaneously by palindrome on both leading and 

lagging strand templates during replication [110]. However, another study showed that an 

Figure 6. Chromosomal deletion mechanisms. (a) Replication slippage caused by a LIR in lagging strand during DNA 

replication. Direct repeats in both side of LIR and smaller repeats within LIR lead to deletions at entire LIR and a 

segment of LIR, respectively. (b) Replication slippage induced by palindromic AT-rich repeats (PATRRs). Deletion of 

both PATRRs in lagging and leading strand templates can form via slow replication and uncoupling of DNA polymerase 

and helicase complex, respectively. (c) Hairpin nicking or center-break mechanism. Hairpin nicking can result in deletion 

at the center or both sides of a cruciform. NHEJ rejoins double-strand break after resorbtion.
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interrupted palindrome with 230-bp stem and 20-bp spacer formed a hairpin only on the lag-

ging-strand template in Escherichia coli, whereas perfect palindrome generated hairpin on both 

leading and lagging strand templates during replication [111].

53BP1 can combine free DNA ends between distant sites for repair of double-strand breaks 

by NHEJ [109]. Through a process dependent on 53BP1 and DNA ligase 4 that are the fac-

tors of c-NHEJ, double-strand breaks associated with DNA replication during S phase in 

BRCA1-deficient cells are aberrantly joined, leading to complex chromosome rearrangements 
[112]. The ablation of 53BP1 rescues genomic instability in mice expressing BRCA1 lacking 

N-terminal RING domain [113].

3.1.5. Duplication

Recurrent unbalanced duplications were considerably reported, even though deletions and 

unbalanced translocations were much more frequent among unbalanced abnormalities in 

solid tumours [12]. Identical copies of duplicated segments can be distributed as either tan-

dem or interspersed in human genome [10, 114].

Figure 7. Model mechanisms of long inverted repeat (LIR)-mediated gene deletion during replication (adapted from 

Ref. [71]). (a) LIR-induced gene deletion between adjacent replicons. (b) Back-folded stem loop-mediated gene deletion 

within same replicon. (c) 5′ and 3′ LIRs-involved gene deletion within same replicon. Synapsis of DNA double-strand 
break (DSB) ends is performed by 53BP1 [109]. C-NHEJ can join DNA DSB ends with hairpin or no hairpin via Artemis―
DNA-PKcs complex (see Figure 3) [74]. In alternative end joining mechanisms, hairpin-opening activity was not yet 

reported. According to these models proposed here, MMEJ and A-EJ can involve the joining of free DNA ends without 

hairpin.
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Most of germline duplication CNVs (83%) were found to be tandem duplications in direct 

orientation [115]. A tandem duplication of about 2 Mb at 7q34 produces a novel oncogenic 

KIAA1549:BRAF fusion gene capable of transformation in pilocytic astrocytomas [116]. 

Duplication or gain of chromosome 2p containing the MYCN locus by unbalanced transloca-

tions is often observed in neuroblastoma cell lines [117].

Segmental duplications (so called low copy repeats, LCRs) in direct or inverted orientation 

can lead to recurrent chromosomal abnormalities via NAHR mechanism in both germ line 

and somatic cells, as discussed in Section 3.1.1 (Figure 1). A total of approximately 4% of 

human genome contains segmental duplications, classified as intrachromosomal (2.64%) and 
interchromosomal (1.44%) duplications [118].

Gene duplication can be produced either by DNA-mediated mechanisms such as unequal 

crossing over, tandem segmental, chromosomal, and genome duplications or by RNA-based 

retroposition involving reverse transcription of RNAs from parental genes [119]. In addition, 

gene duplication can be formed by MMBIR mechanism (Figure 8), which is a replication-

based mechanism [48].

Figure 8. Tandem duplication via microhomology-mediated break-induced replication (MMBIR) mechanism. A single 

strand break during replication leads to fork collapse or stalling [48]. Then, free 3′ end invades a microhomology (mh) 
site on the other template, causing template switch. MMBIR results in tandem duplication.
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Tandem duplications are often observed in solid tumours [87–89]. The breakpoints of tandem 

duplications in solid tumours have mostly no or short microhomology, indicating a template-

switching mechanism that does not require microhomology or another non-homology–based 

mechanism underlying chromosomal duplications [88].

3.1.6. Other chromosomal rearrangements

Normal human genome contains recurrent DNA inversion rearrangements derived from 

NAHR in particular chromosomes 3, 15, and 19 [57]. The pericentric inv(1) has been more 

frequently observed in cancer patients (15%), as compared with normal population (4%) [43]. 

Inversions were much more common (54%) in solid tumours [89].

A small inversion within chromosome 2p generates the EML4/ALK fusion gene capable of 

transformation in non–small-cell lung cancer (NSCLC) cells [120]. Likewise, a pericentric 

inversion inv(10)(p11.22q11.21) gives rise to KIF5B/RET fusion gene that overexpresses chi-

meric RET receptor tyrosine kinase capable of cellular transformation in NSCLC cells [121].

Inversion is a balanced structural abnormality (Figure 9a) and recurs in chromosomes 2, 3, 6, 

7, 10, 12, 16, 19 and X in solid tumours [12]. In addition, inversion of chromosome 1 was found 

in ovary carcinoma, breast carcinoma, seminoma and lymphosarcoma tumours [43].

Figure 9. Model mechanisms for the formation of other chromosomal abnormalities observed in solid tumours. (a) Model 

mechanism of a pericentric inversion causing gene fusion is illustrated. NHEJ can result in inversion [49]. According to 

this model, two chromosomal breaks around centromere in mitosis lead to a pericentric inversion [121]. However, it is 

not clear how the inversion occurred in which phase of the cell cycle. DSBs occurring in mitosis are not repaired until 

cells will enter G1 phase [122]. Later, double-strand breaks can be rejoined by NHEJ in G1, see also Figure 3a [81], after 

synapsis of break ends with 53BP1 [109]. (b) A model mechanism involving centromere cleavage for isochromosome 

formation. (c) NHEJ-mediated ring chromosome formation. Mutant TRF2 leads to not protect telomeres from DSBs, 

and 53BP1 promotes NHEJ pathway, which joins the dysfunctional telomeres. (d) A chromosomal insertion occurred by 

three breaks. The fragment resulted from two breaks on the donor chromosome is inserted into integration site at the 

acceptor chromosome, resulting in an insertion.
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An inversion can result from NAHR between inversely oriented LCRs in germ line and somatic 

cells; see Section 3.1.1 in this chapter (Figure 1c). The rearrangement junctions of inversions 

in breast cancer genomes contain mean 2.5-bp (range, 0–21) microhomology, suggesting that 

non-homologous end-joining DNA repair involves in formation of inversion [123].

Isochromosomes involving chromosomes 1–17, 21, 22, and X were reported in solid tumours 

[12]. The i(5p) is a specific chromosome change in bladder cancer, while the i(12p) is seen in 
almost all tumours of germ cell origin, including seminomas, embryonal cell tumours and 

teratocarcinomas [124]. Isochromosome 5q along with dmins and hsrs bears extra copies of 

DHFR gene in the amplified RAD54 deficient cells [125]. In 8% of non-MYCN amplified pri-
mary tumours, a small number of additional MYCN gene copies was shown to be gained 

through either formation of an isochromosome 2p, or an unbalanced translocation of chromo-

some 2p including MYCN gene, suggesting that isochromosome formation might be one of 

mediators of gene amplification [126].

For the formation of isochromosomes, multiple mechanisms such as centromeric cleavage, 

transverse division of the centromere, and NAHR between paralogous LCRs on the sister 

chromatids were proposed [52, 127, 128]. The centromeric cleavage among these mechanisms 

was presented (Figure 9b).

Constitutional ring chromosomes, 10, 11, 13, 17 and 22, including tumour suppressor gene, 

were reported in thyroid follicular adenocarcinoma, Wilms tumour, retinoblastoma, neurofi-

bromatosis and meningioma, respectively [129].

Ring chromosomes can form by end-to-end reunion or fusion to other subtelomeric end of 

the breakage site(s) occurred on either both chromosome arms or one of them, respectively 

[130], as shown in Figure 9c. The ring chromosomes that are observed in atypical lipomatous 

tumours and other subtypes of mesenchymal neoplasms contain the amplified sequences, 
primarily from chromosome 12 [131]. In addition, deletion of the shelterin component TRF2 

from mouse cells leads to not protect telomeres from DSBs, resulting in activation of ATM 

kinase and accumulation of 53BP1, promoting the joining of dysfunctional telomeres by NHEJ 

repair process [132]. NHEJ can generate either a circular chromosome or an unstable dicentric 

chromosome through a single end joining event between two telomeres [133]. These studies 

suggest that 53BP1-promoted NHEJ pathway can give rise to formation of a ring chromosome 

in the absence of TRF2 (Figure 9c).

Insertion can be produced by at least three chromosomal breaks, involving a non-reciprocal 

translocation either between two nonhomologous chromosomes (interchromosomal inser-

tion) or between different regions of same chromosome (intrachromosomal insertion) [134]. 

During this abnormal process, a chromosomal segment, which is formed by two breaks in a 

donor chromosome, is inserted into an interstitial region of acceptor chromosome (Figure 9d). 

Large insertions can also be seen in solid tumours [88]. In addition, exonic insertion of L1 and 

Alu elements was identified in somatic or germline cells in epithelial ovarian cancers [135].

3.1.7. Gene amplification

A large number of oncogenes are amplified in many solid tumours [15, 136]. Amplification of var-

ious oncogenes located chromosomes 1–8, 11–14, 16–20 and X, which include AuroraA/AURKA 
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(bladder, breast and oesophageal), CCND1 (breast, lung, malignant melanoma and oral squa-

mous cell carcinoma), EGFR (colorectal, glioma, lung and oesophageal), ERBB2 (bladder, breast, 

endometrial, gastric, oesophageal and ovarian), MDM2 (breast, glioma, lung, neuroblastoma 

and sarcoma), MYC (breast, colorectal, gastric, lung, medulloblastoma and prostate), MYCL1 
(lung), MYCN (lung, neuroblastoma and rhabdomyosarcoma) and SKP2 (lung, oesophageal and 

soft tissue sarcoma) was reported in Ref. [15].

The copies of amplified genes are included on either hsrs or dmins [16]. The hsr and dmin are 

often observed in cell lines derived from solid tumours [137]. Amplicon size of hsr regions 

varies between 0.8 and 12.7 Mb [138]. The dmins are tiny spherical extrachromosomal struc-

tures lacking centromere and telomere, in size of a few Mb [139].

Gene amplification usually results in overexpression of amplified gene, but gene expression 
level and DNA amplification do not always show an exact match, suggesting that some driver 
genes can be overexpressed by different mechanisms in the absence of DNA amplification 
[15, 16]. Up to 44% of highly amplified genes were reported to be overexpressed in breast can-

cer cell lines, whereas only 10.5% of overexpressed genes demonstrated the increased copy 

number [140].

Many model mechanisms for the formation of gene amplification have been proposed. 
First model involves the breakage-fusion-bridge (BFB) cycle, which was first proposed by 
McClintock [141], between the sister chromatids in mitosis [142]. Lo et al. [142] demonstrated 

that spontaneous telomere loss on a marker chromosome 16 resulted in sister chromatid 

fusion in a human tumour cell line followed by the amplification of subtelomeric DNA, sup-

porting BFB cycles-mediated gene amplification model (Figure 10a).

Figure 10. Model mechanisms of gene amplification producing the duplicated units in inverted orientation. (a) A 

gene amplification model involving BFB cycles resulted in hsr on the dicentric chromosome. (b) Short IR-mediated 

amplification model involving intrastrand pairing leading to hairpin formation followed by palindrome. (c) 

Microhomology-mediated gene amplification producing a dicentric chromosome followed by BFB cycles.
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Tanaka et al. [143] showed that a short inverted repeat, which is introduced into the genome 

of Chinese hamster ovary cells, promoted the formation of a large DNA palindrome after an 

adjacent double-strand break. Therefore, the authors proposed an intramolecular recombi-

nation model initiating gene amplification through formation of head to head duplication 
(Figure 10b).

Okuno et al. [144] have sequenced the junction of head-to-head palindromes of an ampli-

con containing DHFR amplification in Chinese hamster ovary cells and showed that junction 
includes a 2-bp microhomology between sites separated by 4 kb. The authors thus proposed a 

microhomology-mediated recombination model for palindrome formation leading to dicen-

tric chromosome, followed by BFB cycles that trigger the gene amplification (Figure 10c).

Difilippantonio et al., [145] reported that a recombination activating gene (RAG)-induced DNA 

cleavage resulted in coamplification of IgH and c-myc genes after development of lymphoma 

in NHEJ DNA repair protein Ku and p53 tumour suppressor-deficient mice. The authors 
proposed a model mechanism involving RAG-induced translocation of IgH and c-myc in G1, 

followed by break-induced replication and c-myc/IgH amplification (head to head) after BFB 
cycles (Figure 11).

On the other side, the replication-based mechanisms for gene amplification were also pro-

posed. Amler and Schwab [26] showed that neuroblastoma cell lines harboured multiple tan-

dem arrays of DNA segments including MYCN gene, in head to tail orientation with sizes 

varying from 100 to 700 kb. The authors proposed that gene amplification may be involved in 
unscheduled DNA replication, recombination, and dmin formation followed by integration 

into a chromosome, resulting in subsequent in situ multiplication (Figure 12a). Schwab [146] 

also proposed an extra replication model involving excision of amplified segment, integration 
into a chromosome site, and in situ amplification, resulting in hsr (Figure 12a).

Figure 11. A gene amplification model triggered by double-strand breaks (DSBs). A DSB stimulates break-induced 
replication (BIR) and unbalanced translocation in G1, resulting in juxtaposition of two different genes. After DNA 
replication in S phase, BFB cycles cause gene duplication in inverted orientation, resulting in coamplification of two 
genes.
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Tower [147] suggested that initial step in amplification of human oncogene and drug-resistant 
genes may be started by firing of DNA re-replication during S phase. Watanabe et al. [148] 

developed a gene amplification system based on double rolling-circle replication (DRCR) in 
yeast and mammalian cells, utilising a recombinational process induced by IRs coupled with 

replication, leading to hsrs and dmins (Figure 12b). In addition, Slack et al. [149] proposed 

the FoSTeS mechanism involving long-distance template switching for the gene amplification 
mechanism (Figure 4a).

3.2. Numerical chromosome abnormalities

Changes in chromosome number are frequently observed in particular solid tumours [4]; see 

Table 1. These changes can result from aneuploidy or polyploidy [150]. Aneuploidy refers to 

abnormal chromosome number deviated from euploidy that is defined as exact multiples of 
a haploid chromosome set [13, 150]. The chromosome sets in haploid and diploid number are 

cases of normal euploidy, whereas polyploidy reflects more than two sets of chromosomes, 
resulting in triploidy (3n), tetraploidy (4n), pentaploidy (5n), and so forth [150].

Aneuploidy involving gain or loss of whole chromosomes, at the same time, can result from some 

gross chromosomal structural abnormalities including deletion, duplication, unbalanced translo-

cation, and overamplification, as described in other sections of this chapter. This type of aberrant 
ploidy regarding chromosomal parts is termed segmental or structural aneuploidy [151].

Near-diploid chromosome number (≤68) was predominant (71.8%) in solid tumours com-

pared with near-tetraploid chromosome number (≥69) (19.3%) [13].

Figure 12. Replication-based mechanisms for gene amplification. (a) Extrareplication mechanism involving dmin 

formation followed by integration of dmin into a chromosome and in situ amplification. (b) Double rolling-circle 

replication (DRCR) model by trans and cis recombination producing hsr and dmin, respectively.
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Aneuploidy is one of the main implications of chromosomal instability (CIN), leading to 

tumourigenesis in somatic cells [14]. Errors in cellular processes, such as chromosome con-

densation, chromatid cohesion, kinetochore assembly, and microtubule/centrosome forma-

tion as well as checkpoints, which involved in replication and segregation of chromosomes 

during mitosis, could lead to the CIN, resulting in chromosomal losses and gains in most 

cancers (Figure 13a–d) [25].

In addition, tetraploid cells can give rise to CIN and aneuploid cell populations in vivo 

(Figure 13e) [152]. Increased 4N (G2/tetraploid) fraction along with p53 inactivation during 

neoplastic progression of Barett's epithelial cells progressed to aneuploidy in Barrett's esopha-

gus, which is a pre-malignant condition [153]. Studies in human cancer cell lines derived from 

glioblastoma, breast cancer, and melanoma showed direct relation between cell invasiveness 

and tumour-genome duplication (tetraploid) [154].

Figure 13. Formation mechanisms of aneuploidy. Errors in (a) mitotic checkpoint, (b) chromatid cohesion, (c) kinetochore 

attachment, and (d) centrosome formation can lead to aneuploidy. (e) In addition, tetraploid cells can cause aneuploid 

cell populations.
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In addition, it was proposed that the acquisition of a single trisomy may initiate change 

from euploidy to aneuploidy as initial event in the development of all malignant solid 

tumours [155]. Aneuploidy was shown to arise from missegregation of tetraploid nuclei in 

yeast [156].

In addition, mice with reduced levels of CENP-E motor protein developed aneuploidy and 

chromosomal instability in vitro and in vivo, later formed spontaneous lymphomas and lung 

tumours by an increased rate of aneuploidy in aged animals, suggesting that aneuploidy 

drives tumourigenesis [157]. Transduction experiments between congenic euploid and triso-

mic fibroblasts with different oncogenes showed that nearly all aneuploid cell lines divided 
slowly in vitro, relative to matched euploid lines, suggesting that aneuploidy, particularly 

single-chromosome gains can reveal a tumour suppresive function, but at same time, may 

facilitate the development of high-complexity karyotypes, leading to advanced malignancies 

[158].

3.3. MYCN gene amplification in neuroblastoma

Neuroblastoma derived from primitive cells of the sympathetic nervous system is the most 

common malignancy among childhood cancers [159, 160]. Neuroblastoma is usually a spo-

radic disease that manifests many complex chromosomal abnormalities such as MYCN 

amplification, 1p deletion, 17q gain, unbalanced t(1;17) translocations, whole chromosome 
aneuploidies involving trisomies of chromosomes 6, 7, 19 and monosomies of 13, 22, X and 

Y, as well as LOH of chromosomes 2q, 3p, 4p, 9p, 11q, 14q, 16p and 18q observed in both pri-
mary tumours and cell lines [16, 42, 161–163].

MYCN amplification is observed in 18–38% of neuroblastoma cases and multiple neuro-

blastoma cell lines [45, 164–168]. MYCN amplification and 1p36 deletion are important poor 
prognostic factors in neuroblastoma [17, 164, 169]. We demonstrated that both 1p36 deletion 

and MYCN amplification are significant correlated with undifferentiated tumours [164]. Our 

group also showed that MYCN amplification and 1p36 deletion were associated with high 
tumour vascularity in neuroblastoma, suggesting close relation of MYCN amplification and 
1p36 deletion with angiogenesis [170].

The causes and consequences of MYCN amplification have been widely studied, but the for-

mation mechanism of MYCN amplification still remains to be completely explained. As pre-

sented in gene amplifications, some replication-based mechanisms involving the formation 
of MYCN amplification were described. In addition, multiple models of deletion including 
LIR-mediated gross deletion mechanism were argued in Section 3.1.4.

In this section of chapter, it was investigated the relation between LIRs and MYCN amplifi-

cation. For this aim, LIR distribution in a genomic segment of 16,135,119 bp lying between 

chromosome 2p25.3 and 2p24.3 loci, including MYCN gene locus was first examined. In addi-
tion, LIRs were identified in the boundary sequences of amplicons containing MYCN gene 

reported in 14 neuroblastoma cell lines and 42 solid tumours. The results show that a signifi-

cant association between LIRs and MYCN amplification loci. In addition, present data pro-

vide some insights into the MYCN amplification mechanism.
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3.3.1. Material and methods

3.3.1.1. Bioinformatics data

In this study, the boundaries of amplicon units containing MYCN gene in 14 neuroblastoma 

cell lines (CHP134, KP-N-YS, IMR-5, SIMA, NB17, CHP-212, NB7, NB14, NB6, GOTO, NB1, 
NB5, NB10 and CHP-126) and 42 primary solid tumours (10 lungs, 6 endometriums, 4 blad-

ders, 4 central nervous systems, 3 stomachs, 3 breasts, 2 heads and necks, 2 intestinals, 2 

germ cells, 1 ovary, 1 liver, 1 skin, 1 oesaphagus, 1 cervix and 1 adrenal) were analyzed for 

LIR identification (Table 2). Boundary positions and their reference sequences were obtained 

from COSMIC database that is a catalogue of somatic mutations in cancer [171]. In addition, 

Sample Tumour B Pos 

(Mb)

5′ LIR* <2 kb In/Out 3′ LIR** <2 kb In/Out Mh

CHP134 NB 15.86–

15.95

28 + O 17 + O 5

KPNYS NB 15.47–

15.97

6 + I 18 + O 5

IMR-5 NB 14.73–

15.98

0 − − 46 + I 5

SIMA NB 15.59–

15.99

25 + O 55 + I 6

NB17 NB 15.61–

16.80

8 + O 1 > Over 7

CHP212 NB 15.58–

16.07

23 + I 10 + O 3

NB7 NB 15.66–

15.96

3 > O 12 > O 5

NB14 NB 15.05–

16.94

1 + I 0 − − 8

NB6 NB 15.89–

15.96

10 + I 14 + O 5

GOTO NB 15.82–

15.95

15 + I 17 + I 6

NB1 NB 15.90–

15.97

23 + O 18 + O 3

NB5 NB 15.16–

16.26

0 − − 0 − − 2

NB10 NB 15.69–

15.97

3 + O 18 + O 4

CHP126 NB 15.41–

15.99

1 > Over 46 + O 2

1 EC 15.52–

16.05

5 > I 15 + Over 2

2 BC 5.26–17.60 0 − − 0 − − 4
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Sample Tumour B Pos 

(Mb)

5′ LIR* <2 kb In/Out 3′ LIR** <2 kb In/Out Mh

3 LSCC 0.013–

69.96

8 + I 13 + I 14

4 EC 7.06–17.55 1 > Over 0 − − 12

5 GLI 15.15–

15.95

3 + O 17 + I 6

6 LAC 12.47–

16.93

15 + I 0 − − 2

7 HNSCS 15.14–

22.35

3 + I 4 + I 13

8 EC 15.72–

16.05

2 > I 10 + I 5

9 CAC 15.93–

16.09

44 + O 37 + I 3

10 OSC 6.04–20.35 0 − − 26 + O 6

11 BC 12.20–

18.09

3 + I 0 − − 8

12 HCC 14.96–

19.29

1 + I 5 + I 5

13 GLI 14.57–

16.90

3 + I 4 + Over 8

14 LSCC 13.26–

16.35

2 + O 18 + O 6

15 GLI 15.75–

16.11

0 − − 9 + I 8

16 LAC 15.65–

16.00

15 + Over 21 + I 4

17 MM 0.013–

16.33

8 + I 1 > I 7

18 OC 15.92–

16.98

35 + I 10 + I 2

19 SAC 13.84–

17.27

2 + I 0 − − 7

20 CSCC 10.61–

31.02

27 + I 3 + I 2

21 GLI 12.83–

16.77

5 + O 4 + I 10

22 LAC 7.60–16.41 67 + O 1 > O 5

23 GCT 0.38–37.53 2 + I 4 + O 3

24 EC 0.013–

19.41

8 + I 7 + Over 9

25 CAC 0.013–

32.27

8 + I 86 + I 6
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Sample Tumour B Pos 

(Mb)

5′ LIR* <2 kb In/Out 3′ LIR** <2 kb In/Out Mh

26 BRC 13.15–

15.95

0 − − 17 + I 5

27 BC 13.02–

17.49

27 + I 0 − − 7

28 LAC 15.88–

17.36

8 + O 3 > Over 5

29 HNSCC 4.03–64.05 1 > O 35 + I 4

30 LAC 0.013–

25.64

8 + I 19 + O 2

31 LSCC 14.44–

17.81

0 − − 8 + I 5

32 LSCC 15.84–

16.98

10 + I 10 + I 4

33 BRC 5.56–16.48 3 > Over 1 > O 6

34 SAC 1.77–29.73 5 + I 0 − − 2

35 EC 15.69–

15.98

7 + Over 52 + I 2

36 EC 15.61–

17.52

9 + O 1 + I 4

37 BRC 0.013–

31.19

8 + I 1 > I 5

38 SAC 14.93–

16.74

2 + I 1 + I 3

39 BC 11.94–

20.22

6 + I 5 + O 2

40 ACC 15.59–

15.95

26 + I 17 + I 5

41 GCT 10.81–

22.55

28 + O 2 + I 4

42 LAC 14.72–

15.97

1 + O 18 + O 2

T: 56 T: 562 42 < 2 kb

75%

I: 28

O: 16

T: 757 40 < 2 kb

71.43%

I: 26

O: 16

M:5.18

(2–14)

aAll amplicons including MYCN gene analyzed here are located at the short arm (p) of chromosome 2.

*P < 0.05, compared with control group.

**P < 0.01, compared with control group.

Abbreviations: ACC, adrenal cortical carcinoma; BC, bladder carcinoma; BRC, breast carcinoma; CAC, colon 

adenocarcinoma; CSCC, cervix squamous cell carcinoma; EC, endometrioid carcinoma; GCT, germ cell tumour; GLI, 

glioma; HNSCS, head and neck squamous cell carcinoma; LAC, lung adenocarcinoma; LSCC, lung squamous cell 

carcinoma; MM, malignant melanoma; NB, neuroblastoma; OC, oesophagus carcinoma; OSC, ovary serous carcinoma; 

SAC, stomach adenocarcinoma. B Pos, boundary position; In/Out, inside/outside the amplicon; LIR, long inverted 

repeat; M, mean; Mh, microhomology; Over, on the boundary of amplicon; T, total.

Table 2. Boundary positions, microhomology and LIR analyses at the amplicon units containing MYCN gene locus in 

neuroblastoma cell lines and other solid tumoursa.
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contiq sequences (NCBI acc no: NT_005334.17) of Homo sapiens chromosome 2p containing 

MYCN gene for examining the LIR distribution were downloaded from NCBI website [172].

In addition, microhomology analysis between 150-bp DNA sequences spanning 5′ and 3′ 
boundaries was performed using Dialign software program [173].

3.3.1.2. LIR identification

LIRs with stem length ≥20 bp, stem identity ≥70%, and internal spacer (loop length) of 0–10 kb 
were identified at ±10 kb (a total of 20 kb) segments encompassing the rearrangement (bound-

ary) sites of the amplicon units including MYCN gene, using the inverted repeat finder (IRF) 
software [174] in cell lines and primary tumours, as described in Ref. [71]. In addition, LIR 

distribution was determined in a genomic segment of 16,135,119 bp lying between chromo-

some 2p25.3 and 2p24.3 loci, including MYCN gene locus. LIRs with same features were also 

investigated at the DNA segments of 20 kb in control group (n = 61), including the randomly 

selected genes that were not shown to associate with any DNA amplification or deletion in 
literature and HGMD site, respectively [15, 136, 175]. Total LIR numbers of both amplification 
boundaries and control gene segments were determined (Table 2) and statistically compared 

with each other.

3.3.1.3. Statistical analysis

Mann-Whitney U test was used for statistical comparison of mean ranks of LIR numbers 

between test and control groups. Two-sided P values <0.05 were considered statistically sig-

nificant. Analyses were performed using SPSS 11.0 software (Chicago, USA).

3.3.2. Results and discussion

We previously showed that Kelly neuroblastoma cell line harbours only one of chromosomes 

2 in 23 metaphases using FISH method (Aygun N and Altungoz O, unpublished data). We 

also confirmed that MYCN locus is deleted on this unique chromosome 2, and hsrs containing 

MYCN amplification are located only two chromosomes 17 (Figure 14). In addition, I revealed 

a significant association between LIRs and breakpoint regions of gross deletions in human 
cancers and inherited diseases [71]. To investigate the relation between LIRs and mechanism 

of the MYCN gene amplification in this chapter, I examined the distribution of LIRs on a 
genomic segment of 16,135,119 bp lying between p25.3 and p24.3 loci of the short arm (p) of 

chromosome 2, which contains the MYCN gene (Figure 15a).

A total of 6839 LIRs with stem length ≥20 bp, stem identity ≥70% and internal spacer (loop 
length) of 0–10 kb were identified in this genomic segment (NCBI acc no: NT_005334.17), 
using IRF software (Figure 15b). Of these identified LIRs, 5155 (75.38%) are distributed 
along second half (9–17 Mb) of this segment (Figure 15b), containing MYCN locus at 2p24.3 

(Figure 15a). Of second half LIRs, a total of 1751 (33.97%) have stem length ≥20 bp, stem 
identity ≥70% and loop length of 0–2 kb (Figure 15c). Of this second group LIRs, a total of 330 

(18.85%) have stem length ≥20 bp, stem identity ≥85%, and loop length of 0–2 kb (Figure 15d), 

which may be potentially recombinogenic [177]. Second half of chromosome 2p25.3–2p24.3 
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also includes an SRO of ~68 kb (Table 2: 15,900,307–15,968,674, Figure 15b) between amplicon 

units analyzed here, all of them contain MYCN gene (NT_005334.17, 15,930,557–15,930,962).

It was found that two common fragile sites (cFS) spanning 747-kb FRA2Ctel and 746-kb 

FRA2Ccen at 2p24.3 and 2p24.2, respectively, are separated by a 2.8-Mb non-fragile region 

containing MYCN [178]. The authors also determined that 56.5% of MYCN amplicons from 

neuroblastoma cell lines and primary tumours are clustered in FRA2C, suggesting that MYCN 

amplicons could be formed due to extrareplication rounds of unbroken DNA secondary 

structures that accumulate at FRA2C.

To investigate significance of the association between LIRs and MYCN gene amplification, 
LIRs were identified at the ±10 kb segments encompassing both 5′ and 3′ rearrangement 
boundaries of amplicon units including MYCN gene, using IRF software in neuroblastoma 

cell lines and primary solid tumours. LIRs were also investigated at 20-kb segments of the 

genes in control group. In conclusion, statistical analysis showed that mean LIR number was 

significantly higher in both 5′ and 3′ rearrangement boundaries of the amplicon units includ-

ing MYCN gene than in control group, respectively (P < 0.025; P < 0.004; Table 2). Of 5′ bound-

aries in 56 amplicon units, 49 (87.5%) have at least one LIR with stem length ≥20 bp, stem 
identity ≥70%, and loop length of 0–10 kb, while 47 (83.93%) of 3′ boundaries include at least 
one LIR with same features (Table 2). Of these 49 5′ LIRs and 47 3′ LIRs, 28 (57.14%) and 26 
(55.32%) are inside the amplicon unit, respectively. In addition, 42 (85.71%) of 49 5′ LIRs have 
loop length <2 kb, while 40 (85.11%) of 47 3′ LIRs contain the loops <2 kb (Table 2). Of these 

42 5′ and 40 3′ LIRs with loops <2 kb, 26 (61.9%) and 24 (60%) were found inside the amplicon 

Figure 14. A metaphase demonstrating deleted 2p24 locus on single chromosome 2 and two hsrs including MYCN 

gene on chromosomes 17 in Kelly neuroblastoma cell line. Fluorescence in situ hybridization (FISH) probe: MYCN gene 

(2p24)/Chromosome 2 Alpha-Satellite (red/green, Qbiogene, cat. no., PONC0224).
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unit, respectively, suggesting that LIRs inside the amplicon unit could potentially generate 

a hairpin at single-stranded DNA and break the DNA strand during replication. Hairpin 

structure was shown to form at an interrupted LIR with 111-bp stem and 24-bp internal spacer 

on both leading and lagging strand templates during replication [110]. In addition, a single-

strand DNA break may cause replication fork stalling or collapse [48]. However, LIRs out-

side a replicon, near the rearrangement boundaries, may also cause a replication fork stalling 

through formation of cruciform extrusion [110].

Of 49 5′ LIRs, 28 (57.14%) have stem length ≥20 bp, stem identity ≥75% (18 LIRs with stem iden-

tity ≥85% were found, 14 of them were inside the amplicon unit) and loop length of 0–2 kb, 

Figure 15. LIR identification in chromosome 2p containing MYCN gene. (a) LIR distribution was examined in a genomic 

segment (NT_005334.17) of 16,135,119 bp lying between chromosome 2p25.3-p24.3. Map of this chromosomal region was 

obtained from UCSC genome browser [176]. (b) LIR frequency with stem length ≥20 bp, stem identity ≥70%, and loop 
length <10 kb. (c) LIR frequency with stem length ≥20 bp, stem identity ≥70%, and loop length <2 kb. (d) LIR frequency 

with stem length ≥20 bp, stem identity ≥85%, and loop length <2 kb.
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while 37 (78.72%) of 47 3′ LIRs have stem identity ≥75% (9 LIRs with stem identity ≥85% were 
found, six of them were inside the amplicon unit; data not shown in Table 2). LIRs with stem 

identity >85% were highly recombinogenic in human and other organisms [177]. In addition, 

the long Alu IRs with 75% stem identity can cause a mild replication blockage in E. coli [106]. 

Therefore, present data suggest that LIRs with 85 and 75% stem identities identified here in 
the boundaries of the amplicons including MYCN gene can be potentially recombinogenic or 

can lead to at least mild replication blockage, respectively.

Present results also showed that a microhomology of mean 5.18 bp ranging from 2 to 14 

bp between sequences of 5′ and 3′ boundaries in the amplicons (Table 2). Microhomology 

between 0 and 15 bp can be a signature for NHEJ, MMEJ, MMBIR, or FoSTeS mechanisms 

[86, 149, 179].

On the other side, a recombination hotspot harbouring tandem amplicons in head to 

tail orientation at 17q21 that is not linked to common fragile sites, containing ERBB2 

gene locus, was discovered, indicating an alternative mechanism other than BFB model 

in oncogene amplification [180]. Interestingly, additional copies of MYCN oncogene in 

Kelly cell line are also integrated at 17q21 locus, whereas it is deleted at original 2p24 

locus (Figure 14). In addition, it was shown that multiple tandem arrays of DNA seg-

ments including MYCN gene were in head to tail orientation with sizes varying from 100 

to 700 kb in neuroblastoma cell lines [26]. In this chapter, the boundaries of the amplicons 

containing MYCN gene located 2p were analyzed for LIRs, however, LIRs at 17q21 locus 

remained investigated.

Taken together, present results suggest that LIRs could be contributed to induce MYCN 

amplification possibly through either replication fork stalling or break-induced replication 
dependent on microhomology during replication in chromosome 2p (Figure 16). In addition, 

LIRs may cause deletion of MYCN gene at 2p24 and trigger its insertion into chromosome 

17q21 involving nonhomologous recombination in Kelly cell line. After insertion, 2p24 hsr 

including MYCN gene at 17q21 might be arisen from again replication fork stalling or break-

induced replication dependent on microhomology.

Figure 16. A model of long inverted repeat (LIR)-induced gene amplification. A cruciform near 5′ boundary of an 
amplicon unit can cause the fork stalling during replication. Hairpins formed at both leading and lagging strand 

templates may slow the DNA synthesis. Both cruciform and hairpin structures could trigger a rereplication between 

two microhomology (mh) sites located 5′ and 3′ boundaries of the amplicon, leading to the formation of head-to-tail 
tandem duplication.
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