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Abstract

Macroporous silicon (MPS) is a versatile material that since its origin in the early 1990s has
seen intense research and has found applications in many fields. MPS is a key technology
in photonic crystals research, and optic and photonic applications are its main applica-
tions. However, this chapter is devoted to several of the non-photonic uses of MPS. In
particular, new electronic and MEMS devices and applications will be described. Further-
more, in this chapter, the technology of MPS fabrication will be presented.

Keywords: macroporous silicon, electrochemical etching, field effect transistors,
supercapacitors, microneedles, MEMS

1. Introduction

Macroporous silicon (MPS) is a novel material, which was described as such in the early 1990s

by Lehmann in his pioneering works [1–3] and by other researchers [4, 5]. Since its first

description, MPS has attracted great interest, and it has been suggested for many applications

in several fields such as electronics [6], optics [7], photonics [8], solar cells [9], and even energy

storage [10], fuel cells [11] or catalysis [12].

One particular form of MPS consists on an ordered arrangement of the pores that are etched on

the silicon bulk. In such form, the primary interest of MPS is as photonic crystals (PCs).

However, as it will be revealed throughout the chapter, many other applications have been

proposed for MPS, which does not make use of that interesting optical properties. For such

cases, the use of an ordered array of pores may not be necessary, but in many cases, this can

give certain advantages.

In the present chapter, a brief review on the technology of macroprorous silicon, its fabrication

techniques and its applications will be presented. In this chapter, special emphasis is made

regarding the non-photonic applications of MPS.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Brief history of macroporous silicon

Electrochemical etching (EE) of silicon (and germanium) was known from the late 1950s. The

works of Uhlir [13], Turner [14] and others [15] were the first to study the semiconductor

dissolution in an electrolyte under anodic conditions. These initial works dealt with

electropolishing of the semiconductor in order to obtain flat, defect-free surfaces or for bulk

thinning. However, it was noticed that under certain conditions, pits were formed instead of a

uniform etching over the treated surface [13, 14]. In particular, low voltages and currents, or

the pre-existence of surface defects, were found to promote surface pitting, preferentially at

surface irregularities or defects. Therefore, this allows removing material locally in a more or

less controlled manner. The processing of surfaces done by this technique in the described way

gives rise to porous materials, in which a portion or the whole of it is porosified, resulting in a

sponge-like structure. An example of this process is schematically shown in Figure 1.

Hydrofluoric acid (HF) is one of the electrolytes used for EE. Its interest is that, in ambient

conditions, it reacts very slowly with silicon1 but readily etches the semiconductor when an

electric current flows through the electrochemical cell. The anodic oxidation of silicon in

hydrofluoric acid with the correct potential and current produces porous silicon2 (PS). The first

specimens of PS were found to be microporous with a random distribution of the etched voids.

However, this first form of PS was not initially distinguished as microporous, and, nowadays,

the term PS is still used to refer to its microporous form.

After the discovery, the interest of this new material in fields such as electronics and photonics

became clear. Later on, the macroporous form of PS was developed, and it has also shown its

potential in fields as different as catalysis [16], drug delivery [17], energy storage [18] or optical

ELECTROLYTE SEMICONDUCTORPROTECTIVE
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Figure 1. Electrochemical set-up for semiconductor etching and electropolishing. Details of the surface during several

steps of the etching process are shown in panels (A), (B) and (C). Initially, the surface has a low content of defects such as

pits, dislocations or protrusions. After the anodic treatment is started with the right conditions, the surface (B) shows a

certain degree of electropolishing but existing pits start growing, and new pits evolve. After a prolonged treatment, the

surface and bulk (C) show noticeable change, and pores grow deep into the sample creating a sponge-like material.

1Silicon dissolution in HF is a thermodynamically favourable process; however, the dissolution rate is very small:

RSi ¼ 2:5 � 1023 cm�2 s�1 (about 0:3 Å=min) at room temperature [33].
2It must be noted that electrochemical etching is one possible method to obtain porous silicon. A different technique is

stain etching. This is a purely chemical method based on the chemistry of silicon in HF�HNO3 mixtures, which also

produces PS. See for example [24].
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sensors [7]. The first instances of MPS can be found in the early 1990s in Lehmann's pioneering

works on fabrication [1, 2] and application of macroporous silicon [19]. In his works, he

focused primarily on the formation of ordered MPS in a controlled manner. The fabrication

technique used in his works was the photo electrochemical etching (PECE) of silicon in HF and

was thoroughly characterized [3]. Nevertheless, PECE is not the only method available for

MPS fabrication, the other main one being (deep) reactive ion etching ([D]RIE). MPS will be

covered in more detail in the next section. In this chapter, particular emphasis will be made

on the photo electrochemical fabrication process as described by Lehmann.

2.1. What is macroporous silicon?

Macroporous silicon is a particular form of porous silicon. One way of classifying porous

silicon is looking at the ‘pore size’. According to the IUPAC [20], the material can be desig-

nated as microporous for pore sizes below 2 nm, then mesoporous for sizes under 50 nm, and

macroporous for pore diameters larger that 50 nm. However, this simple classification does not

give enough information about the material, as the pore morphology can vary greatly, and

therefore, the ‘pore size’ cannot be precisely defined. In spite of these limitations, the average

pore diameter dpore is often regarded as the ‘pore size’. MPS has an average pore diameter

greater than 50 nm, and in practical realizations of the material, typical pores are larger than

100 nm.

Besides pore size, MPS can also be described either as ordered or random regarding the surface

pore growth site distribution; this is shown in Figure 2. Nevertheless, the individual pore

diameter distribution is not generally accounted in the classification of the material. Other

morphological characteristics of macroporous silicon such as pore shape, branching, depth or

depth profile are not normally considered when classifying MPS.

MPS is a versatile material that has some very interesting properties. To begin with, silicon is

the material of choice in the semiconductor and MEMS industry. This opens the possibility to

use many of the existing production methods, techniques, experience and equipment available

in VLSI foundries and research labs. As a result, important costs savings can be achieved for

the development and fabrication of devices based on MPS. Furthermore, it has been shown

that by employing standard CMOS fabrication methods, it is possible to integrate MPS (and PS

in general) into VLSI devices [21]. The possibility of monolithic integration is a clear advantage

B

Figure 2. Top view of random (A) and ordered (B) macroporous silicon. Pore radius may not be uniform, as shown in the

random sample (A).
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of MPS for next-generation device fabrication. Furthermore, MPS can be processed to create

complex structures, as those of Figure 3 from Ref. [22]. The as-etched structures can be further

processed to alter some morphological properties [23], to passivate the surface or to

functionalize the MPS device with coatings such as catalysts [12], nanoparticles and others.

3. Fabrication of macroporous silicon

There exist several microfabrication andmicromachining techniques that allow the production of

MPS devices. Due to its historical importance, and because it allows micromachining in three

dimensions, the electrochemical etching of silicon remains one of the most important and versatile

fabrication methods, as will be shown later. The next method in importance is reactive ion etching.

Other remarkable methods3 include electroless etching of silicon4 (stain etching [24], metal-

assisted etching [25], etc.), direct laser writing (DLW) [26], lithographic methods (layer-by-layer

[27], interference lithography [28], block copolymer [29]…) and glancing angle deposition [30].

3.1. Reactive ion etching

RIE is a well-known method for shaping silicon in microelectronics and MEMS device fabrica-

tion [31]. A succinct description is as follows: this is a dry etching process where a plasma of a

specific mixture of gases is used to selectively remove material from the stock. This process is

done in a low-pressure chamber. A mask is necessary to define the affected regions, and the

etch proceeds anisotropically in the unmasked areas. The material is eroded at a speed that

depends on the gas mixture, temperature, chamber pressure and power of the plasma. As

described, RIE is simply a necessary step in the fabrication of MPS, as the mask can be defined

Figure 3. Complex MPS structure fabricated with the PECE of silicon in HF. Reprinted from [22], Copyright 2002, with

permission from Elsevier.

3An exposition of the different methods for PC fabrication and their possibilities can be seen in Ref. [89].
4For a general treatment on the subject, see Ref. [33].

New Research on Silicon - Structure, Properties, Technology158



by several means. For instance, layer by layer or DLW may or may not require the use of RIE

for the fabrication of MPS and PCs.

The most interesting aspects of RIE for the processing of MPS are that it allows defining very

small features, and that it is completely integrated into the VLSI fabrication process flow.

Using RIE to create the pores gives great freedom in the mask layout as both processes are

independent. This allows adding point defects, linear defects or other lattice disordering

elements. This ability is of great interest for light processing and optical devices, such as

waveguides, interferometers or resonators. It is, however, not limited to the photonics field,

as it has also been demonstrated for electronic applications such as capacitors.

In spite of these advantages, the fabrication of MPS with RIE has some limitations. Firstly,

etching high aspect ratio5 (AR) pores into silicon using plain RIE can be tricky. Effects such as

masking, microloading, footing or redeposition must be taken into account, otherwise the

resulting pores will not have a uniform profile in depth. These effects are particularly serious

when trying to develop high AR trenches, as pores may close after a certain depth and grow no

further. For deeper pores, a DRIE process must be adopted. Nevertheless, DRIE leaves ‘large’

scallops on the sidewalls that are generally undesired. Besides this, MPS fabricated by RIE is

limited to 2-d structures, as the etched features depend on a planar mask6 and material etching

is essentially in the direction of the plasma electric field.

3.2. Electrochemical etching

Electrochemical etching of silicon is a very versatile method for the fabrication of MPS. As was

found from the initial works on silicon etching, silicon can be selectively dissolved when

immersed in an HF bath, and an electric current flows through. Therefore, this in an electro-

chemical method as a current is needed to activate the chemical reactions that dissolve silicon.

In the absence of such current, the silicon substrate remains practically unaltered. Further-

more, to perform the etching, the silicon must be the anode in the electrochemical system.

Otherwise, there will be no reaction at the surface, as for the reactions to occur holes must be

exchanged. Both n- and p-type silicon can be dissolved by this technique.

The pore evolution and morphology using the EE method depends on several factors. On one

hand, the current density and electrode potential determine de amount of etched silicon but have

little influence in the advance of the ‘pore front’, that is the etch velocity. On the other hand, the

electrolyte concentration, temperature, and optional additives affect the etch velocity and pore

shape, and limit the practical operation area of the electrical parameters [1, 32]. Furthermore, the

Si bulk characteristics such as doping type and density, crystal orientation, and carrier lifetime

strongly determine the morphology of the pores, and the obtainable pore dimensions [32].

In the porous layer formation regime, it has been found that currents through the electrochemical

cell have a similar shape to that shown in Figure 4 (for n-type silicon). In particular, PS formation

5
‘Aspect ratio’ is defined as the ratio between the pore width over the pore length.
6Some attempts have been made into creation of 3-d PCs exploiting the scalloping effect of RIE; however, progress has

been slow [90].
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occurs if the current density is kept below JPS. Larger currentswill start to electropolish the surface

of the semiconductor. For very large currents, j > Jox, only electropolishing will take place. The

chemical processes involved in the dissolution of silicon are quite complex anddependon the local

current intensity and fluoride ion concentration. Two competing mechanisms act on the silicon

surface: formation of SiO2 and subsequent dissolution by HF, and direct dissolution of silicon

[4, 33]. Oxide formation and dissolution consume four holes, and thus have valence 4 (λ ¼ 4). On

the other hand, direct dissolution of silicon requires two to three holes depending on light inten-

sity: low intensity favours λ ¼ 3, while high intensity favours λ ¼ 2. More insight on the

chemicophysical aspects of silicon dissolution can be found in theworks of Lehmann [2, 3], Zhang

[4, 32] andKolasinski [33].

The electrical characteristics of the silicon wafer substrate are determinant for the morphology

of the etched pores. The size of the resulting pores is strongly dependent on the wafer resistiv-

ity (as seen in Figure 5) and the use of a mask to define the nucleation centres. From Lehmann's

[3] and Zhang's [4] work, in the MPS etching regime, the pore morphology and growth are

basically dependent on the space charge region (SCR) formed in the pore region in contact

with the electrolyte. It was proposed that etching occurs at localized sites with a current

density of JPS whose value is just a function of the weight concentration of hydrofluoric acid:

JPS ¼ Kc3=2 exp ð�Ea=kTÞ. The pore growth speed depends only on the current passing through

the etched areas; thus, it can be calculated by the removed charge and valence of the reaction:

v ¼ JPS=nqeNSi: Here, K ¼ 3300 mA cm�2 is an empirically determined constant, c ðwt: % HFÞ

is the electrolyte concentration, Ea ¼ 343 meV is the empirically found activation energy, k is

the Boltzmann constant, T is the temperature in Kelvin, n is the reaction valence, qe is the

electron charge (1:602 � 10�19 C), and NSi is the atomic density of silicon (5 � 1022 cm�3) [2].

Typical concentration of HF used for MPS etching is around 2.4–10%.

In the case of ordered MPS, where a mask is used to define the pore growth sites (nucleation

centres), etching current at the tips will be such that jtip ¼ JPS; thus, the pore will advance at the

j (mA/cm²)

j
PS

j
OX

U (V)

ANODIC DISSOLUTION

PORE FORMATION

ELECTROPOLISHING

Figure 4. Currents through an H/Si electrochemical system for different applied potential and illumination. The shown

jðv,ΦeÞ is for an n-type silicon bulk. Solid line (—) is for ‘infinite’ illumination, dash-dot (— •) is for high illumination

intensity, dash (—□—) is for medium IR intensity, and short dash (–□–) is for no illumination condition.
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same speed irrespective of pore size. However, by adjusting the total current through the Si

substrate, it is possible to change the actual etched area (and thus pore diameter) since porosity

p ¼ Atotal=Aetched ¼ j=JPS. The pattern for the pore distribution can be fabricated using any

lithographic means like UVor NIL. The mask can be a corrosion-resistant material such as silicon

nitride, but, given that MPS etching is highly anisotropic and selective under the correct param-

eters, it is possible to transfer the pattern directly to the silicon and create etch pits at the desired

sites that will act as nucleation points. This will promote the pore formation at only these sites.

The unreacted silicon ‘left behind’ the pore tip is further passivated by hydrogen adsorption

reducing the already low Si etch rate in HF.

As holes are needed for the porosification, for n-type silicon, these need to be generated some-

how. One of the most extended methods is PECE, after the work by Lehmann [2]. This method

requires illuminating the work silicon with suitable IR light; thus, the etching cell and controlling

system must be similar to the one depicted in Figure 6. In such system, the cell current is

proportional to the illumination intensity. Knowing the current limits from Figure 4, the com-

puter control can be programmed to adjust the photogenerated current and cell potential to keep

the pore growth stable. Electrolyte temperature is also controlled, as variations of it will change

the JPS and thus the etching speed. HF is pumped through the cell to remove any gas bubbles

that may form from the release of hydrogen during etching and to provide fresh electrolyte. The

electrical contact on the Si substrate may be done by coating with a thin transparent conductor or

by physical contact with a different electrolyte on the backside. The simple configuration shown

in Figure 6 uses a high-doped layer on the backside with a probe to contact the backside. Oxygen

Figure 5. Etched pore diameter for different silicon doping type and concentration. © 1996 IEEE. Reprinted, with

permission, from [19].
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dissolved in the electrolyte can also affect the pore shape, particularly if these are very deep. To

reduce the unwanted oxidation, purging the electrolyte with bubbling N2 is recommended.

It was seen that pore diameter (porosity) can be controlled in MPS by adjusting the

photogenerated etching current. This is exploited to create 3-d structure by freely changing

the IR illumination intensity as the pores progress. In spite of the limits to the achievable

shapes imposed by the electrochemical system, it is possible to create very complex structures

like chirped modulations [34], embedded defects [35], etc. MPS with pores with diameters

down to 100 nm has been reported [36]; however, only straight pores have been shown, and

surface quality is still low. Better pores are obtained for dpore ¼ 275 μm [37]; however, those are

still straight. The smallest reported 3-d MPS is about 500 nm pitch [38].

3.3. Surface treatment and functionalization

After the MPS layer is etched, several post-processing steps can be applied to the device. This

may be of particular importance for MPS fabricated using EE. This is because the electrochem-

ical process leaves a thin microporous silicon layer on the pores’ walls. The thickness and

roughness of this microporous layer will depend on the electrolyte composition and concen-

tration, as well as on the substrate resistivity and applied potential [32] (see Figure 7a). A

simple way to remove this layer is to perform a short thermal oxidation of the MPS structure.

The microporous layer will readily oxidize [39]. After the oxidation step, the oxidized PS layer

can be removed by dipping the MPS structure in an HF solution, leaving a very smooth and

defect free surface on the walls of the pores. The so-prepared surface can be further processed,

for instance to create high-quality oxide layers, as seen in Figure 7b.

This oxidation-oxide removal cycle can be repeated several times in order to create enlarged,

cylindrical pores.7 This is useful when creating 3-d MPS structures and strong modulation is

desired, such as pores interconnecting with each other at specific points and resulting in an

opal-like structure (see Figure 8). The pore shape can be further altered by etching the freshly

fabricated MPS structure in diluted wet chemical etchants such as KOH or TMAH. This allows

obtaining flat faces that are not possible from PECE alone [40].

7The actual pore cross-sectional shape obtained with EE is not perfectly cylindrical and depends on potential applied and

other factors [19].

IR 

SOURCEPUMP

HF

reservoir
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+

COMPUTER

CONTROL

Figure 6. Etching system used in the MNT group for the fabrication of MPS.
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3.3.1. Functionalization

The increased available surface in MPS has been of interest for sensors. To improve the

adsorption of species on the surface or the sensitivity of the device, several surface functiona-

lization approaches have been proposed. For instance, carbonization of the PS structure

helps in passivating and stabilizing the porous layer better than oxidation [41] or to avoid

oxidation altogether. This is of particular interest for photoluminescence applications [41]

and humidity sensors [42]. Other surface treatments have been proposed depending on the

application. For example, using the atomic-layer deposition (ALD) method, it is possible to

cover the walls of a MPS structure conformally with materials such as alumina (Al2O3),

300 nm 1 µm

B

Figure 7. Detail of the pore surface of a MPS structure fabricated by EE. (A) shows a freshly etched pore revealing a layer

of microporous silicon in the walls. After oxidizing, stripping and further oxidizing, a much smoother, microporous-free

surface is seen in (B).

Figure 8. Bird's-eye views of the 3-d MPS modulated pores and subsequent widening of the pores. Reprinted from [23],

Copyright 2008, with permission from Elsevier.
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titania (TiO2) or tantalum oxide (Ta2O5), which have applications in sensing devices [43] and

electronic devices [44]. Other surface treatments of great interest for energy applications or

chemical reactors are the deposition of nanoporous materials like zeolites [45] and catalysts

like cobalt, platinum or palladium [12, 16].

3.4. Porous membranes

Certain applications require the passage or filtering of a fluid. Other applications seek that

the passing fluids undergo certain chemical reactions. In either case, having a very large

surface is beneficial. The main advantages are the fast mass and heat transfer, the short

diffusion length and pressure drop, and the precise control of the process, resulting in higher

product yields (for chemical reactors) and increased efficiency [16]. For this application, MPS

has been proposed as a better alternative to common monoliths used in catalysis [12]. MPS

membranes have also been suggested as ratchets [46] for physically selecting particles.

Membranes have also been found useful for microfluidics [17] and for electrodeposition

inside the pores.

The fabrication of the MPS membranes can be done by dissolving the remaining silicon

bulk on the backside after the electrochemical etching of the pores. A common technique

is to use alkaline anisotropic etchants typical in MEMS processing [47]: potassium

hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). The membrane is

formed when the removed silicon reaches the pore tips. When performing such process,

it is necessary to protect the porous volume, as it will etch much faster than the silicon

bulk. Furthermore, it may be interesting to selectively etch the MPS structure to reveal

only part of the pores. For this reason, first a protective layer must be prepared on the

structure surface. This can be accomplished by oxidation of the MPS sample. This protec-

tive layer must have a minimum thickness: the dissolution process is not perfectly uni-

form, leaving a roughened surface [48]. Therefore, in some places, the pore tips will be

uncovered earlier. The protective layer must be thick enough to withstand until the full

membrane is finished, otherwise the etchant will leak and rapidly dissolve the porous

volume.

This process has to be carefully monitored to avoid overetching and the destruction of the

protective layer. In this regard, TMAH has a greater Si-SiO2 selectivity [47], therefore making

this process more robust. The actual method employed for the membrane fabrication will

ultimately depend on any further processing and application of the MPS device. In particular,

KOH may not be suitable if there are posterior high-temperature steps or the process flow has

to be CMOS compatible.

3.4.1. In situ

As an alternative to alkaline etching of silicon, there is the possibility to create the mem-

brane during the electrochemical pore growth phase. Two approaches are possible: enter-

ing the electropolishing regime during EE [49], and creating a sacrificial PS layer at the

bottom [50]. The latter approach has been successfully applied for MEMS devices where

the sacrificial micro-PS is formed underneath the actual device, such as cantilevers [51],
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thermal actuators [52] or sensing devices [53]. After the micro-PS is formed, the devices are

released by dissolving this porous volume [50]. This can be done with a sufficiently diluted

etchant or with plasma. Alternatively, one can oxidize the PS and then remove the oxide by

an HF dip [50, 54]. This method can be also applied to MPS structures by a double-layer

technique: first etching the macroporous volume and afterwards evolving the micro-PS

beneath the macropores [54]. This may require changing the HF solution between etching

phases.

The fabrication of an in situ membrane using the electropolishing regime is very similar to

the sacrificial method. As in the previous method, it can be applied for both micro-PS and

MPS. In this case, only the current density (and potential if necessary) is increased above

the jPS threshold [55]. This will promote the electropolishing of silicon at the pore tip depth

and can be performed for an extended period of time to completely detach the MPS

membrane from the Si substrate [49] (see Figure 9). For very high AR structures, it is

important to take into account the acid concentration and the diffusion of reactants at the

pore ends [2].

3.5. Pore filling

Conformal coating of the high AR structures present in MPS is often straightforward. Several

techniques common in microfabrication are available for the task (e.g. ALD) [56]. However, the

complete filling of such structures can be more difficult. Such methods can be very slow to

fully fill the pore volume or have conformality issues for very thick depositions. An alternative

method to fill the pores is to use either electroless deposition or electrodeposition (also

electroplating). These methods are also common in MEMS [56] and CMOS microfabrication for

the metallization layers of VLSI circuits [57].

Electroless deposition and electrodeposition are commonly used to deposit metals, though

these processes are not limited to those materials. Copper is typically used in VLSI

Figure 9. MPS membrane fabricated with in situ electropolishing. The black surface corresponds to the backside of the

detached membrane; at the right is the supporting silicon substrate where the MPS was etched. © 2008 IEEE. Reprinted,

with permission, from [49].
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microfabrication. However, Cu easily diffuses through SiO2 and Si [58], and it has poor

adhesion to dielectrics like SiO2. Noble metals can also be deposited by these means, for

example gold; however, this would result in exceptionally expensive devices as the total

volume of a MPS structure is large. Some good candidates for pore filling are nickel and

aluminium. Aluminium plating would be the preferred material for an industrial process;

however, Al plating is more complex (non-aqueous solution [59]) and has higher safety

risks (inflammable or explosive products). On the other hand, nickel plating is simple and

well known in industry, both electroless and electrodeposition. A MPS structure can be

directly plated without further processing: Ni will deposit along the walls of the pores

and exposed surface. However, for high AR pores, the deposition can be non-uniform,

resulting in early pore closing and leaving voids inside the filling [57]. A way to avoid

such issues is to use MPS membranes. Open membranes allow the passage of the electro-

lyte, thus reducing concentration gradients. Electrode size and electrolyte are also impor-

tant for uniformity of the deposition.

Focusing in Ni electroplating, a typical plating bath is a dissolution of nickel sulphamate,

nickel chloride and boric acid for pH correction. This plating solution is used at about 55�C.

The resulting surface is a smooth, matte finish deposit. In particular, in the work of Vega et al.

[18], this technique was used to fill MPS membranes as seen in Figure 10. The membranes were

initially oxidized, and a metal evaporation was performed on one of the sides (the front face

was used due to the better, smooth, surface). The so-prepared membrane was contacted on the

metal face and afterwards insulated to avoid deposition on this face. The sample was sub-

merged in the plating solution with the free face looking the counterelectrode, and the plating

was performed at a mean current of 30 mA=cm2. Deposition speed varied linearly with

current, but the open surface (total pore area) determined the actual speed and had to be

calibrated for each different MPS structure. The electrodeposits can be performed both with

DC current and with pulsed current. As the silicon structure is protected by an insulating layer

of silicon dioxide, Ni only deposits on the advancing Ni front inside the pores. This results in a

smooth and void-free pore filling as seen in Figure 10.

MPS

ANODE

Ni

Protection

Advancing

Ni front

+

Ni

Si

Figure 10. SEMmicrograph of a macroporous silicon membrane filled with nickel. The left panel shows schematically the

deposition on Ni inside the pores. To the right, a SEM image of a filled MPS structure is cut using FIB milling to expose

the interior of the membrane; a platinum layer is used to aid the milling procedure. It can be seen that nickel fully covers

the pore interior as well as the surface of the sample.
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4. Applications of macroporous silicon

In this section, a brief description of a selection of the non-photonic applications of MPS will be

presented. In particular, applications in the electronic devices and MEMS fields will be exam-

ined. However, bear in mind that MPS can be applied to a very broad range of fields, only

some applications can be introduced here.

4.1. Field effect transistors

Power applications either demand operating at high voltages, high currents or both. In power

MOS-FET devices, the gate oxide thickness determines the maximum potential the transistor

can withstand (in the absence of a drift region). However, thick oxides will increase the

threshold voltage, V th. Furthermore, MOS transistors have a negative thermal coefficient,

therefore for high currents, on-resistance, RON, will increase and thus limit the maximum

current. In this situation, a large number of devices connected in parallel may be necessary to

handle the demanded current density.

In these circumstances, power MOS structures evolved to trench transistors in the early 1990s

and to the superjunction (SJ) devices [60] in mid-1990s. The outcome is a device with a much

reduced RON. A summary of the vertical trench device structures is shown in Figure 11.

Having millions of ‘micro transistors’, each one will handle a tiny amount of the requested

current. As seen from Figure 11, the construction of these devices is fairly complex, requiring

many steps and masks.

Figure 11. Structure of vertical MOS-FETs, (a) n-channel, trench gate and (b) conventional. Copyright 1997 The Japan

Society of Applied Physics, from [60].
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MPS provides an alternative to simplify the fabrication of trench FET transistors. Basically, the

aim is to take advantage of the ease to obtain a large number of pores or trenches. EE of silicon

provides a material with a controllable density of pores, which can be arranged freely (under

certain constraints), and with a profile, which can be further adjusted to meet the device

performance goals. The pores can subsequently be coated or filled by appropriate means (e.g.

chemical vapor deposition (CVD) or thermal oxidation) to make either the gate or the channel

of the device. Overall, the obtained structure is simpler and easier to fabricate, thanks to the

reduced number of processing steps required. In Ref. [6], the suitability of such MPS structures

was studied theoretically.

According to the definition of the channel region, two kinds of devices can be distinguished:

vertical structures are those whose channel corresponds to the pore volume, while the gate is

formed by the MPS surrounding material; and horizontal devices are those with the roles

reversed, that is the channel is the MPS bulk material, while the pore volume constitutes the

gate. Thus, carrier flow takes place in the pores for the vertical devices and through the MPS

substrate for the horizontal devices.

Using ordered MPS, some of the proposed FET have the configurations shown in Figure 12:

vertical J-FET and MOS-FET, and horizontal J-FET and insulated gate (IG) J-FET.8 Using a

square lattice with a pitch of 4 μm, a density of over 10million unit devices per cm2 is

achieved. MPS of the given feature size fabricated using the PECE technique employs low-

doped silicon substrates. In particular, n-type, phosphorous doped, ρ ¼ 3 Ω cm, 〈100〉 ori-

ented wafers are suitable for the above case. For the vertical devices, where the MPS substrate

acts as the gate, this is not a limiting factor. However, for the horizontal operating devices, this

is indeed an issue. To overcome this drawback, a doping of the as-etched MPS must be

performed. Furthermore, removing the microporous layer after EE to get a smooth, defect-free,

surface will slightly widen the pores. This must be taken into account when designing the
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Figure 12. Breakout view of the proposed devices. For vertical structures (J-FET [a] and MOS-FET [b]), the channel

corresponds to the pores, while for horizontal structures (J-FET [C] and IG J-FET [D]), the channel is the bulk porous

silicon. © 2011 IEEE. Reprinted, with permission, from [6].

8As will be shown, it can operate with both positive and negative VGS , and thus is also referred as enhanced J-FET.
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devices. For the MOS or IG devices, a thin layer of insulating material, such as silicon oxide,

can be deposited or thermally grown on the pores’ walls.

After preparing the MPS supporting structure, the pores are filled. For the vertical structures, a

CVD process may be performed to fill the pores with a semiconductor, such as silicon, of the

desired doping. In contrast, for the horizontal ones, this step is not as critical. To form the gate,

one can either choose a CVD process to coat with a relatively thin film of conducting or

semiconducting material, or, alternatively, use an electrodeposition method, such as the one

described in section pore filling to fill the pores with a metal.

From the work in Ref. [6], it can be seen that the overall specific on-resistance, RON, is

comparable to that of more complex trench and SJ devices. It can be noticed that J-FET devices

have larger RON; but this is to be expected as it solely depends on the channel resistivity,

whereas MOS devices operate in strong inversion. Reducing the drift region (particularly for

J-FET devices) and exploring alternative pore profiles may help in reducing RON. Regarding

the breakdown voltage Vbr of the devices, it was found that for all of them it was around 40 V.

The electric field distribution revealed that this was caused mainly by the sharp edges found

near the gate-drain region. The obtained Vbr results are similar to those other found in litera-

ture (with no drift region for high-voltage operation). Nevertheless, a higher breakdown

voltage can be obtained by adding a drift region and physically separating the gate from the

drain, at the cost of a more complex fabrication process.

A summary of the device characteristics from Ref. [6] is given in Table 1. One of the most notable

characteristics is the large current densities that these devices can handle. For instance,9 the vertical

J-FET from Ref. [6] is able to handle near 600 A=cm2. In general, the performance of the proposed

devices is comparable to that of more complex trench FETs. Finally, for the IG device, two things

stand out: when operating in enhancement mode (VGS > 0 V), the transfer function is surprisingly

linear, and that achieving complete turn-off of the device may require large potentials.

Regarding the small signal behaviour of the devices, the obtained results show that individual

cell devices have moderate capacitance. Though these devices may be unsuitable for their use

in signal applications, they are satisfactory for fast switching of loads in power applications.

4.2. Supercapacitors

MPS has also been shown to be applicable for energy storage since the beginnings of its

research, see, for example, the work by Lehmann [61] or IBM [62]. The purpose of using MPS

for capacitors is twofold: on one hand, there is the need of large capacitance devices for energy

storage [10]; on the other hand, there is a drive towards higher integration, be it for cost and

space savings or for efficiency reasons [63].

To fabricate high-capacity devices using MPS, one takes advantage of the greatly enlarged

available surface area. Basically, there are few ways to increase capacity: electrochemical

means (Helmholtz double layer or chemical energy storage10), decrease plate separation,

9The current density is calculated over the cross section of the channel.
10The former case would apply to capacitors, while the latter case would be for batteries.
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increase the plate surface, increase the dielectric constant or a combination of the former.

Electrolytic capacitors (ELCs) and EDLCs are based on the double layer effect,11 while electro-

static capacitors (ESCs) rely only on charge accumulation. In particular, ELCs are capable of

offering moderate-to-large capacity densities. ESCs, on the other hand, are capable of larger

power densities and have a lower ESR (thus a higher operating frequency) [64]. To improve

capacity, ESCs rely on choosing materials with high dielectric constant, reducing the dielec-

tric thickness and extending the surface of the capacitor. Two types of dielectrics can be

distinguished: class 1 or direct/paraelectric, and class 2 or ferroelectric [65]. Ferroelectric

materials have very large dielectric constants but are sensitive to electric field and to ambient

conditions (humidity and temperature) [66]. On the other hand, paraelectric materials have

lower dielectric constant but are more stable. Some class 1 dielectrics are silicon dioxide and

other materials frequently used in semiconductor industry for gate insulator such as alumina

(Al2O3), silicon nitride (Si3N4) or high-k materials [67]. Though using high-k materials seems

the most obvious solution, it has to be considered that they also have lower breakdown

electric field (Ebd) and larger leakage; thus, complex insulator layer stacks [68] may be

needed to achieve the desired performance.

Having a thinner insulating layer between the capacitor plates will help increase the capaci-

tance of the device. However, care must be exercised as leakage currents will increase substan-

tially due to direct tunnelling for thin insulators [68]. Furthermore, a thinner insulating layer

will also affect the maximum operating voltage. Finally, to maximize capacitance, the effective

Vertical Horizontal

J-FET MOS-FET J-FET IG J-FET

Specific on-resistance RON 5:1 0:67 0:74 0:074 mΩ cm2

Gate bias* VGS 0 10 0 10 V

Transconductance gain gm 16:6 70:6 616:7 875:0 μS

Pinch-off/threshold Voltage Vpo or V th �3:21 0:45 �3:8 �3:5 V

Input gate capacitance CG 11:6 40:0 17:4† 70:0† fF

Gate oxide thickness tox – 100 – 100 nm

Pore diameter dpore 2 2 3 3:6 μm

These results correspond to: channel doping is 10�18 cm�3.

Gate doping is 10�16 cm�3.

Pore length lpore ¼ 20 μm.

Drain-source potential was set to VDS ¼ 8 V for parameter determination.
*Value used for parameter determination.
†The given values are for a single cell and may not scale linearly.

Table 1. Transistor characteristics summary for a single pore device, from Ref. [6].

11Modern implementations of such capacitors having activated carbon as electrodes offer large gains in capacity density

and are referred as electric double-layer capacitors (EDLCs), ultracapacitors and commercially as supercapacitors.
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plate area can be extended without increasing the footprint of the device. To achieve such goal,

advanced devices have intricate surface shapes that extend into the volume of the capacitor

plates [18, 61, 62, 69].

The use of PS in its various forms for high-value capacitor devices can be traced back to the early

development of PS.MPSwas first suggested for its use as capacitorswith thework fromLehmann

[61], and since then, the industryhas shown interest in the research anddevelopment ofhigh-value

capacitors based on this material [61, 70]. The techniques used to build the MPS structures of the

capacitors have been both PECE [61, 71] and RIE [70, 71]. The pores of MPS give an enlarged

surface to create the plates of the capacitor device. Poresmaybe arranged randomlyor in apattern.

Random MPS is simpler to fabricate, and capacitor devices with Csp ¼ 4 nF=mm2 have been

reported in Ref. [69]. However, using randomMPSwill result in uneven current distribution, and

sharpedgeswhere the electric fieldwill concentrate andpossiblybreak thedielectric. Furthermore,

if the devices are to be defined in specific zones, a mask is needed nonetheless, so not using a

patterned pore array is less justified. The use of orderedMPS requires a more complex fabrication

flow; however, it has the advantage of being well defined, so final capacitance can be accurately

calculated and obtained, plus giving control over the actual shape of the pores.

MPS-based capacitors use the porous substrate as one of the plates, so the other electrode must

be deposited over the substrate. Plates can be arranged in several ways. For instance, it is

possible to deposit a single layer to create a two-plate capacitor [18, 69], or to use a multiple

layer approach, stacking several dielectric-conductor coatings to create a MIM-like capacitor.

In the work by Klootwijk [70], the MIMIMIM stack depicted in Figure 13 results in a very large

capacitance density device, with a specific capacitance Csp ¼ 440 nF=mm2 [70]. However, its

performance is lower than expected, see Table 2. Using multilayer stacking greatly complicates

the fabrication process, so the simpler approach of a two-plate capacitor may be desirable. In

Table 2, a summary of the state-of-the-art supercapacitors based on MPS is given.

4.2.1. Fabrication

Once the MPS is etched, it may be necessary to perform a doping of the porous substrate. This is

especially necessary in case of EEMPS as the Si substrate used has ‘low’doping concentrations as

seen in section Electrochemical Etching. In particular, for a 4 μm pitch MPS structure, an n-type

phosphorous doping of 1:5� 1016 cm�3 is used in Ref. [18]. To improve ESR, a degenerate nþþ

layer deep enough is diffused surrounding all of the porous area. Additionally, a porous mem-

brane can be formed as described in section Porous Membranes. This step can be done after the

doping step, though it is preferably donebefore it to better control thedopingof theMPS structure.

A common issue found in such large surface capacitors is the elevated leakage currents,12 as

seen in Table 2. To keep them at reasonable levels is mandatory to have a very high quality

insulating layer. The predominantly used insulating materials have been those common in

CMOS: SiO2, Si3N4, and Al2O3. Thicknesses used have been around 10 nm to 50 nm. However,

most works noted a larger than expected leakage, and this has been primarily attributed to the

12Leakage current density is calculated considering the footprint area of the device.
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increased E field strength in the curved regions (tip and edges) of the pores. To achieve the

remarkably low leakage current in [18], the authors note that especial care of surface cleanli-

ness was needed; also after the membrane opening and substrate doping, it was found best no

to completely fill the pores.

After the dielectric layer is placed, the pores are filled to define the other plate. This can be

done with nickel following the procedures described in section pore filling. The use of a metal

electrode helps in achieving a very low ESR for the final device. The fabrication process flow is

schematically depicted in Figure 14.

Figure 13. Cross-sectional TEM view for MIM-type MPS supercapacitors. (a) shows an overview of the capacitor MIM

stack at the bottom of the pore. In (b), a detail view of the top and bottom of the pore is shown. © 2008 IEEE. Reprinted,

with permission, from [70].

Refs. Method Configuration

Depth

(μm)

Density

ðpore=μm2Þ

Specific

capacitance

Csp ðnF=mm2Þ

Breakdown

voltage

Vbr ðVÞ

ESR

ðΩÞ

Leakage

Ileak ðmA=cm2Þ

[71] EE ONO/polySi 100 0:094 100 – 0:1 –

[72] RIE SiO2=TaN 0:1 721:69 31:3 –
†

– 1 @ 1V

[44] EE Al2O3=ZnO : Al 50 0:16 25 ~8* – 1.5 @ 2.5V

[70] DRIE SiO2=½TiN=Al2O3�3 30 – 440 6 10 1 @ 3V

[73] EE ON/polySi 72 1 700 8 20 1 @ 3V

[18] EE SiO2=Ni 130 0:0625 110 20 1:1 ≪ 0:001@ 1V

*Not reported but inferred from Figure 4.
†From Figure 3, the reported device should be able to operate in the �3 V range.

Table 2. MPS supercapacitors state of the art. Best figures reported.
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Electrical characterization of the devices can be approximated by a simple RC model. As the

main contributor to capacitance is due to the cylindrical pores, the capacitance value can be

predicted by the formula of the cylindrical capacitor Cunit ¼ 2πε0εrlf ill=lnð1þ tox=rporeÞ. As seen

from Figure 15, the simple RC model is reasonable at low frequencies; however, the capacity is

shown to be not ideal and is presumed to be due to relaxation in the dielectric interfaces [74].

4.3. Through silicon vias

Nowadays, the microelectronics industry is highly interested in 3-d (monolithic) integration

looking for improvements in package integration, the reduction of interconnect delays, cost

savings and system scaling [75]. Among the different technological options, through silicon

vias (TSVs) and silicon interposers have been shown to be an enabling technology that has

recently reached the consumer market in the form of ultra-high-density memory modules [76].

The most common method for TSV fabrication found in the literature is RIE etching of the

silicon to create the vias, then pore filling with copper by a dual damascene process, surface

planarization, and pad definition (and repeat the process for the other side) [75]. Pore surface

roughness may impose certain complications when filling the pores [77], as well as pore shape

has an impact on reliability by thermal cycling [77].

EE MPS may offer a simplified approach to TSV fabrication. The pore shape is easily controlled

by the current waveform, and deep pores are effortlessly etched. The obtained surfaces can be

made smooth by a short oxidation and oxide stripping (see Surface treatment and functionalization),

Si Si - n++ SiO₂ Ni

A B D EC

Figure 14. Fabrication flow for the capacitor described in Ref. [18]. (a) Etching of the pores, (b) membrane opening, (c)

substrate doping, (d) thermal SiO2 layer growth and (e) pore filling and electrode connection.

Figure 15. Series capacitance (symbols) and the fitted RC model (solid line) for the MPS capacitors of [18]. © 2014 IEEE.

Reprinted, with permission, from [18].
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and pores can be easily filled. An example of MPS for TSVs can be found in the work by Defforge

[78].

4.4. Microneedles

For biomedical applications, microfabrication of miniaturized complete analysis platforms

(lab-on-a-chip) is being vigorously researched [79]. In particular, the extraction and injection

of fluids to tissues are of great interest. Microneedles provide a way to simplify this procedure

while minimizing some nuisances like pain [80] or risk of infection, being minimally invasive13

[80]. Microneedles have been reported of several materials and features, as well as fabrication

methods [80]. MPS has also been shown to be suitable to be used in such applications.

Furthermore, MPS-based microneedles have shown distinct advantages over ‘conventional’

ones, like smaller diameter and higher density, and foremost a simpler fabrication process.

The first reference to MPS fabricated by EE applied for microneedles is found in the work by

Rodríguez et al. [17] and Rajaraman [81]. In Rodriguez et al. work, MPS is used to create arrays

of SiO2 microneedles with diameters ranging from 2 to 5 μm, up to 140 μm in length, and wall

thickness about 100 nm. The process and results obtained are shown in Figure 16. The fabri-

cation process consists of creating a MPS membrane, and once the pore tips are exposed,

remove them by a rapid dip in HF (see Figure 16c). To create the needles, the membrane is

further processed in TMAH to remove silicon from the backside (see Figure 16d). At this stage,

the microneedles are prepared and just remain attaching the fluid handling fixtures.

Rajaraman's work is essentially identical, though a slightly more complex process is described,

as needles are formed in the front face.

A similar approach is followed by Barillaro and his group [82]. In this case, instead of

forming the needles by removing silicon from the backside, they use the back-face

13Microneedles are short and only penetrate the epidermis [91], avoiding the dermis where nerve terminations are

located.

Figure 16. Silicon dioxide microneedles fabricated from MPS. From the starting MPS in (A), a membrane is done (B) and

the oxidized pore tips are etched in HF to open the membrane (C). The membrane is further processed by removing

silicon from the backside with TMAH (D) and revealing the SiO2 microneedles. A reservoir is glued to the prepared

device (E) and a tube for fluid delivery can be attached (F). In (G), a close-up of the needles tip is shown. Adapted from

[17], Copyright 2005, with permission from Elsevier.
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membrane cavity to create a reservoir and subsequently etch the frontside to create the

needles. Furthermore, Barillaro et al. conducted skin penetration tests showing that 1 μm

wall thick can withstand repeated skin insertion without breaking. Other studies confirm

these findings and show that SiO2 microneedles require less force for effective penetration

[83].

Besides hollow microneedles as the ones previously described, MPS has also been used to

create high AR SiO2 pillars [84]. Basically, the fabrication process is the same as for the

microneedles, described earlier (see Figure 16), but stops after the membrane creation. The

released pillars can be further used for sensing applications, drug delivery by coating the

pillars [80], skin pre-perforation [80] or microreactors [45].

Microneedles can also be applied to other uses in addition to biomedicine. For example, for inkjet

printing [85], micronozzles have been shown to be able to print extremely fine detail lines.

4.5. Other MEMS devices

MPS technology can be adapted for the fabrication of complex shapes and structures with uses

in other MEMS applications. For example, EE micromachining has been proposed as way for

fabrication of embedded heat sinks [86]. The idea is to create a free-standing MPS structure by

in situ membrane etching and later filling the porosified volume with copper by electrodepo-

sition. Thanks to the higher thermal conductivity of Cu, higher efficiency in thermal dissipa-

tion can be achieved for dense VLSI circuits.

However, it is in microfluidics and lab-on-chip applications that MPS is most interesting.

Pore diameter can be modulated and adjusted for filtering applications [46, 54], such that

using the appropriate pore size one can selectively allow the passage of particles or biolog-

ical species. Furthermore, the device can easily be protected against harsh environments by

oxidation or other surface treatment. Particular mention must be made to the work of

Barillaro's group [22]. Some outstanding examples are a capillarity-driven (self-powered)

microfluidic system based on MPS [87] and a MPS microstructures for label-free optical

detection of cells [88].

6. Conclusion

This review has shown several applications of macroporous silicon to a wide range of fields,

besides the optical and photonic, that are also of utmost relevance. In particular, it has been

shown that MPS has many uses the fabrication of electronic devices, such as in energy storage

(supercapacitors). Other important areas of application of MPS are microfluidics and lab-on-a-

chip, where the freedom in structure micromachining allows creating complex structures

capable of being integrated in a complete sensing platform. The use of MPS has helped to

improve existing devices and has allowed to develop new ones. Also, MPS has been applied in

MEMS device fabrication. The applications of MPS represent a vast field that is still in active

development.
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