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Abstract

Pigments can be divided into four categories: natural, nature-identical, synthetic, and 
inorganic colors. Artificial colorants are the most used in food and pharmaceutical 
industries because of their advantages related to color range, price, resistance to oxygen 
degradation, and solubility. However, many natural pigments present health-promot-
ing activities that make them an interesting option for human use and consumption. 
Natural colorants are derived from sources such as plants, insects, and microorganisms. 
Carotenoids are natural pigments with important biological activities, such as antioxi-
dant and pro-vitamin A activity, that can be either extracted from plants and algae or 
synthesized by various microorganisms, including bacteria, yeasts, filamentous fungi, 
and microalgae. Advantages of microbial production include the ability of microorgan-
isms to use a wide variety of low cost substrates, the better control of cultivation, and the 
minimized production time. After fermentation, carotenoids are usually recovered by 
cell disruption, solvent extraction, and concentration. Subsequent purification steps are 
followed depending on the application. The most prominent industrial applications of 
carotenoids, considering their health benefits, are in the food, feed, and pharmaceutical 
industries.
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1. Introduction

Color has a great influence on the appearance, processing, and acceptance of food products, 
textiles and pharmaceutical products. The first quality impact by which consumers make the 
decision to purchase a product is its visual appearance.

Food colorants can be divided into four categories: natural, nature-identical, synthetic, and 

inorganic colors [1]. The production of synthetic coloring agents and other chemicals used 
as food additives is under increasing pressure due to a renewed interest in the use of natural 
products and the strong interest in minimizing the use of chemical processes [2]. Since the 
number of permitted synthetic colorants has decreased because of undesirable toxic effects 
including mutagenicity and potential carcinogenicity, interest focuses on the development of 
food grade pigments from natural sources [3–5].

Natural pigments are derived from sources such as plants, insects, and microorganisms. 
Algae and microalgae, bacteria, fungi, and yeasts are organisms commonly found in nature 

that can produce natural pigments in different color spectra, such as violacein, phycocyanin, 
monascins, flavins, quinones, and carotenoids.

Carotenoids represent one of the most important groups of natural pigments, they are respon-

sible for the yellow, orange, red, and purple colors in a wide variety of plants, animals, and 
microorganisms [6]. They are lipid-soluble, commercially, and biotechnologically significant 
pigments produced from various organisms such as plants [7], algae and microalgae [8–12], 

bacteria [13–15], fungi [16–20], and yeasts [4, 21–25].

Pigments from natural sources have been obtained since long time ago, and their attractive-

ness has increased due to the toxicity problems caused by the synthetic pigments [26–28]. 

Carotenoids are obtained industrially by chemical synthesis or extraction from plants or 
algae; however, there has been an increasing interest in biotechnological processes for carot-
enoids production [29]. The pigments from microbial sources are a good alternative to obtain 
natural colorants for industrial uses.

The biotechnological production of carotenoids has advantages related to the diversity of micro-

organisms in nature, versatility in the use of substrates and agro-industrial wastes and the pos-

sibility to control operating conditions such as pH, temperature, dissolved oxygen, and light 
intensity; also, biomass from other bioprocesses can be submitted to the extraction of carotenoids. 
The production of microbial carotenoids has become a potential alternative for the replacement 
of artificial pigments, even with technological, economic, and legislation limitations.

Studies have demonstrated that carotenoids play an essential role for the maintenance of living 
bodies. In plants, carotenoids play an important role in photosynthesis, acting as light-har-

vesting pigments and protectors against photo-oxidation. In foods, carotenoids confer yellow, 
orange, or red color, serve as precursors of aroma compounds, and, as natural antioxidants, 
may help to extend the shelf-life [30, 31]. In humans, carotenoids have been associated with the 

reduction of the risk of developing chronic diseases such as cancer, cardiovascular diseases, 
high levels of cholesterol, cataract, and macular degeneration, aside from the pro-vitamin A 
activity of some of these compounds [31–33]. This is important because in the developed world, 
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as life expectancy increases and the birth rate declines, the demand for solutions focusing on 
longevity and life quality increases too. The number of people aged >60 years is expected to 
account for approximately one-fifth of the world’s population by 2050 [34].

2. Biotechnological production of carotenoids

2.1. Carotenoids diversity

Carotenoids are lipid-soluble pigments, colored from yellow to red, with a basic structure 
consisting in a tetraterpene with a series of conjugated double bonds. They can have only 
carbon and hydrogen in their structures or have one or more oxygen atoms, being classified 
as xanthophylls. The majority of carotenoids are C

40
 terpenoids, which act as membrane-pro-

tective antioxidants scavenging O
2
 and peroxyl radicals [35].

There are more than 700 types of carotenoids described and only about 50 are precursors of 
vitamin A. Carotenoids can reduce risks for degenerative diseases such as cancer, cardiovas-

cular diseases, macular degeneration, and cataract. The biological activities, specially the anti-
oxidant properties, depend on their chemical structure: number of conjugated double bonds, 
structural end-groups, and oxygen-containing substituents [36].

Carotenoids occur in photosynthetic systems of higher plants, algae, and phototrophic bacte-

ria. In plants, carotenoids are embedded in the membranes of chloroplasts and chromoplasts. 
The colors of these pigments are masked by chlorophyll, but they contribute to the bright 
colors of many flowers and fruits [37].

Nonphotosynthetic organisms, as some bacteria and fungi, present carotenoids as protectors 
against photo-oxidative damage, a way of protection in growth conditions with light and 
abundant air. The main carotenoids produced by fungi are β-carotene, torulene, torularhodin, 
and astaxanthin [38]. Bacteria have been reported as producers of cantaxanthin mainly. The 
microalgae are producers of lutein, β-carotene, and astaxanthin [35].

Animals usually present carotenoids provenient from their diet. Marine animals that feed on algae 
or on products rich in carotenoids may exhibit the coloration of these pigments, as the salmon fish. 
The color of the feathers of some birds also comes from a diet rich in carotenoids, as flamingos [39].

The industrial production of carotenoids by plants is dependent on the season and geographic 
variability, and these cannot always be controlled. The chemical synthesis of carotenoids gen-

erates wastes that can cause damage to the environment and resistance by the consumers. 

Because of this, the biotechnological resources are becoming more interesting. The microbial 
production of carotenoids can be performed using low-cost substrates or substrates that are 
residues from industrial processes, like molasses, resulting in lower costs of production [40]. 

All conditions of this kind of production can be controlled and optimized, especially knowing 
the metabolic route of each microorganism utilized.

Carotenoids are intracellular products, and a process to increase their accessibility at the 
downstream stage is necessary. The techniques most used combine physical and chemical 
methods like maceration and contact with organic solvents [4].

Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products
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2.2. Main carotenoid biosynthesis pathways

Carotenoids are usually produced from the building blocks geranyl geranyl diphosphate 
(GGPP) and farnesyl diphosphate (FPP), like other secondary metabolites such as sesqui-
terpenoids and steroids. The most common pathway is the condensation of 2 GGPP units 
into prephytoene diphosphate and then to phytoene, a 40-carbon polyunsaturated pre-

cursor which is colorless. This precursor is converted into lycopene and then into several 
derived carotenoids such as β-carotene and oxidized derivatives such as lutein. The con-

densation of two units of FPP leads to 30-carbon precursors that are converted to steroids 
or apocarotenoids such as staphyloxanthin [41, 42]. Apocarotenoids can also be produced 
by oxidative cleavage of carotenoids. Figure 1 presents a simplified carotenoid biosynthe-

sis pathway.

Most carotenoids present maximal absorption in the violet to green region of the visible spec-

trum, so these substances appear as red to yellow pigments. Table 1 shows the carotenoids 

with permitted food use according to the Food and Drug Administration (FDA) and the Food 
and Agriculture Organization (FAO).

Figure 1. Biosynthesis pathways of common carotenoids. Source: Adapted from Ref. [38] with permission.
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2.3. Carotenoid sources

The most common sources for natural carotenoids for food and cosmetic use are plants, 
although microorganism biomass is becoming more common as a source for these sub-

stances. Table 2 illustrates some commercial sources for microorganism-based carotenoids.

Additive/source Color Main component International 

Numbering System

Algae meal, dried Green to red Mixture of carotenoids, 
xanthophyll, and 
chlorophylls

Astaxanthin and astaxanthin 
dimethyldisuccinate (several 

microorganisms)

Orange-red Astaxanthin

β-apo-8′-carotenal (from carrot 
oil)

Reddish orange All-trans-β-apo-8′-carotenal 160e, 160f

β-carotene, synthetic and natural: 
from vegetables, Blakeslea trispora 

and Dunaliella salina

Orange β-carotene 160a(i), 160a(ii)

Canthaxanthin; most of the 
pigment used in feeds is synthetic

Orange pink β-carotene-4,4′-dione 
(canthaxanthin)

161g

Carrot oil Orange to yellow 160a(ii)

Gardenia red and yellow Red, yellow Crocin, crocetin

Haematococcus algae meal Orange-red Astaxanthin

Lycopene, tomato extract (i) or 
concentrate (ii) or from Blakeslea 

trispora (iii)

Red Lycopene 160d

Lutein (bras), from marigold 

oleoresin

Lutein 161b

Marigold color Yellow Lutein

Orchil dyes Red Orcein

Paprika and paprika oleoresin Red Capsanthin, capsorubin 160c

Paracoccus pigment Red Astaxanthin

Phaffia yeast Orange-red Astaxanthin esters

Saffron Yellow to orange α-crocin 164

Tagetes (Aztec marigold) meal 
and extract

Yellow to orange Lutein 161b

Sources: Compiled from the FDA Color Additive Status List [http://www.fda.gov/ForIndustry/ColorAdditives/
ColorAdditiveInventories/ucm106626.htm] and from the Combined Compendium of Food Additive Specifications 
[ftp://ftp.fao.org/docrep/fao/009/a0691e/a0691e00a.pdf].

Table 1. Carotenoids and carotenoid-rich products used as food color additives.
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Microorganism Molecule Culture medium* X
max

  

(g/L)

P
max

 

(mg/L)

Conc. 

(mg/g)**

μ
x
  

(h−1)

References

Blakeslea trispora 

(fungus)

β-carotene Corn steep liquor 20 800 40 0.022 [43]

Blakeslea trispora β-carotene Whey 8 1360 170 0.023 [44]

Sporobolomyces roseus 

(yeast)

β-carotene Reconstituted whey 4.71 2.58 0.55 – [40]

Rhodotorula glutinis 

(yeast)

β-carotene Potato extract 5.70 1.08 0.19 – [40]

Dietzia natronolimnaea 

(bacterium)

Canthaxanthin Whey 3.29 2.87 0.87 0.020 [45]

Phaffia rhodozyma 

(yeast)

Astaxanthin Cassava residues 8.6 2.98 0.35 0.060 [46]

Sporobolomyces 

ruberrimus (yeast)

Torularhodine Technical glycerol 30 3.7 0.12 0.040 [47]

Chlorella zofingiensis 

(microalga)

Astaxanthin BBM with glucose 10.2 – 1 0.031 [48]

Coelastrella striolata 

(microalga)

Canthaxanthin
Astaxanthin
β-carotene

BBM 2.7 – 47.5

1.5

7

0.30 [49]

Coccomyxa onubensis 

(microalga)

β-carotene
Lutein

K9 1.6 – 2.88

6.48

0.50 [50]

Haematococcus 

pluvialis (microalga)

Astaxanthin BBM 2.2 – 13.5 – [51]

Chlorella zofingiensis Astaxanthin Bristol, modified 10 – 1.25 0.043 [52]

Dunaliella salina 

(microalga)

β-carotene f2 – – 14*** 0.55 [53]

Haematococcus 

pluvialis

Astaxanthin Standard 3 – 12–15 0.56 [54]

Muriellopsis sp. 
(microalga)

Lutein Arnon, modified 5.37 – 6.51 0.17–0.23 [55]

Haematococcus 

pluvialis (wild-type)
Haematococcus 

pluvialis (mutant)

Astaxanthin NIES medium 1.6

2.25

–

–

47.62

54.78

0.07

0.08

[56]

Paracoccus 

carotinifaciens 

(bacterium)

Astaxanthin 
Canthaxanthin

Glucose and 

peptone based
– – 25–40 – [57]

*Except where specified, these are mineral-based media. Recipes may be found at UTEX, SAG, or CCMP collections 
web sites.

**Milligrams of carotenoids per gram of biomass.
***Estimated. The original reference reports 28.1 mg/L carotenoids.
Xmax—maximum biomass concentration; Pmax—maximum carotenoids concentration; μX—biomass production rate.
Source: Adapted from Ref. [58].

Table 2. Main sources for concentrated carotenoids.
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2.4. General downstream operations for carotenoid production

Carotenoids are nonpolar molecules that accumulate intracellularly in plant tissues and micro-

organisms. Therefore, the production usually consists in a biomass pretreatment that may 
accelerate the dissolution of these substances, followed by a solid-liquid extraction (leaching) 
with a suitable, low-polarity solvent. The resulting solution can be a final product, can be 
desolventized, and can be further purified, depending on the use intended for the extract. 
Figure 2 illustrates the main steps in the production of carotenoids.

The first step in carotenoid production is the pretreatment of the raw biomass, usually by dry-

ing and milling. Drying is convenient because it reduces the weight of the material to be pro-

cessed, facilitates the access for solvents to the biomass, and reduces contaminants that could 

be extracted in water micelles with the solvent. The milling step is also important because it 
increases the surface area of the biomass matrix, facilitating contact with the solvent. In the 
case of tough-walled organisms, chemical or mechanical cell disruption may be done prior to 
drying. Fine milling of the dry biomass is less common.

Figure 2. Main steps in carotenoids production.
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The dry biomass is then extracted using a nonpolar solvent such as hexane or a vegetable oil, 
for the dissolution of carotenoids. A higher polarity solvent such as acetone can be used for 
the extraction of xanthophylls. In both cases, lipids are extracted in the mix. This extraction is 
an equilibrium operation; therefore, the final concentration in the solvent affects the extrac-

tion efficiency. Following extraction, the solution containing carotenoids must be concen-

trated and desolventized. This is why low boiling point solvents, which are easy to evaporate, 
are more common extractants than oils.

The carotenoids in the concentrated extract may be purified or not, depending on the intended 
use. For example, β-carotene that will be used as a vitamin A precursor must be purified, 
while paprika oleoresin is a mixture of carotenoids used mainly as a color and flavor addi-
tive and needs no further purification. In general, for carotenoids used as color additives, 
it is enough to concentrate the extract because (1) the tinctorial strength of the molecules is 
large—therefore, the additive is added at a low concentration to the formulated product and 

(2) the sources used are generally regarded as safe (GRAS), and the molecules extracted with 
the carotenoid are harmless in the concentrations used.

In the case of purified carotenoids, the operations to be used—adsorption, chromatography, 
crystallization, etc.—depend largely on the properties of the target molecule and the con-

taminants in the mixture, such as melting point, polarity, solubility, etc. All sorts of nonpolar 
compounds are extracted with the solvent, such as neutral and slightly polar lipids, steroids, 
and waxes. The differences in the properties of the carotenoid and the contaminants will be 
explored in the purification strategy.

Following extraction and purification, the carotenoid must be formulated for further applica-

tion. This formulation will also depend on the intended use. The formulation may be as simple 
as adding an antioxidant such as butylated hydroxytoluene (BHT) or butylated hydroxyani-
sole (BHA) to the extract or may be more complex, such as emulsifying the carotenoid as an 
oil-in-water product for use in polar matrixes such as juices.

3. Industrial application of carotenoids as additives in food, feed and 

pharmaceutical products

Because of the rising of health concerns by consumers, the demand for carotenoids as natural 

coloring products is growing. Beta-carotene, astaxanthin, canthaxanthin, lycopen, and lutein are 
the most required and valuable carotenoids, and they are currently used by the food, feed, and 
cosmetic industries (Table 3). The use of carotenoids is regulated by the legislation of each coun-

try that specifies the source, purity, product, and quantities of the colorant that can be used [59].

According to BBC Research [65], the carotenoid global market in 2014 was of US$ 1.5 billion, 
this value is increasing year by year and is expected to reach US$ 1.8 billion in 2019, with an 
annual growth rate of 3.9%. Beta-carotene, the carotenoid of highest value, had a global market 

of US$ 233 million in 2010, which is expected to reach US$ 309 million by 2018. Astaxanthin, 
due to its powerful antioxidant activity, is the third carotenoid in terms of high added value, 
with a global market size of US$ 225 million, estimated to increase to US$ 253 million by 2018.
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3.1. Importance and use of carotenoids in food products

Commercial food products using carotenoids are expanding, and the greatest demand is in 
the Asian continent. The pigment is extracted from microalgae such as Chlorella, Dunaliella, 

Haematococcus [66, 67], from the cyanobacterium Spirulina [68], and from the fungus Monascus [69].

In Asia, the production red koji dates of hundreds of years and uses the fermentation of rice 

by Monascus to produce the typical reddish color. These red pigments are also used as food 
colorants for wine, red soy cheese, meat, and by-products of meat and fish [26]. The French 
cheese named vieux-pan contains the carotenoid produced by Brevibacterium linens due to 

its orange-red-brown color that improves the sensory quality of the product [70]. In Russia, 
infant formulas are enriched with natural pigments such as lutein, which is present in breast 
milk, in order to improve children's health [71].

Nutraceutical food products have also been applied in bakery products and pasta. In Japan, 
Undaria pinnatifida (wakame), an edible seaweed rich in fucoxanthin, is commercialized as an 
ingredient for pasta [72]. In India, a pasta containing fucoxanthin as an ingredient to improve 
its biofunctional and nutritional qualities was developed [73].

3.2. Importance and applications of carotenoids in the pharmaceutical industry

Besides the use of nutraceutical foods as a form of prevention and treatment of diseases, the 
administration of the bioactive compounds in their concentrated form is also a possibility for 
promoting health. The transport of carotenoids occurs from the intestinal mucosa to the blood 
vessels carried by lipoproteins [74]. Carotenoids functional properties are related to reactions 
such as oxidation, reduction, hydrogen abstraction, and addition in biological membranes, 
and their antioxidant power is fundamental for cell protection against free radicals and sin-

glet oxygen formed in tissues [75].

Carotenoid Color Application Activities References

Lutein Yellow Poultry feed; 

functional nutrient

Antioxidant [60]

Canthaxanthin Orange Poultry feed; fish 
feed; cosmetic

Antioxidant, 
anticancer

[61]

Lycopene Red Supplement in 
functional foods; 

additive in cosmetics

Antioxidant, 
anticancer

[62]

β-carotene Orange-red Nutraceutical; 

cosmetic; animal feed 

industries

Antioxidant, 
anticancer, precursor 
of vitamin A

[63]

Astaxanthin Pink-red Fish feed; cosmetic 

industry

Antioxidant, 
photoprotectant, 
anticancer, 

anti-inflammatory

[64]

Table 3. Carotenoids' colors, applications and biological activities.
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Some carotenoids are precursors of vitamins, and they also present activities such as anti-
inflammatory, antioxidant, immunomodulatory, anticancer, for cardiovascular therapy 
and neurodegenerative diseases [76], and anti-obesity [77]. The carotenoids included as 
pro-vitamin A are β-carotene, α-carotene, and cryptoxanthin. Vitamin A is an essential 
nutrient for operation and maintenance of biological functions including vision, repro-

duction, and immunity [78]. Beta-carotene is present in blood and tissues, which is associ-
ated with antioxidant activity and concomitantly with other carotenoids or antioxidants 
can enhance their activity against free radicals. However, it can bring health risk at high 

doses [79].

Carotenoids, acting as antioxidants eliminating free radicals, can modulate the risk of devel-
oping chronic diseases by inhibiting reactions mediated by reactive oxygen species (ROS). 
Reactive species are produced during cellular metabolism as a defense to infectious and 
chemical agents that may cause damage to DNA, proteins, and tissues, contributing to the 
development of chronic diseases such as diabetes, Parkinson’s, Alzheimer’s, cardiovascular 
diseases, and cancer [80].

In addition to the antioxidant properties, carotenoids exhibit anti-inflammatory activities 
owing to the protective effects of phytochemicals such as lutein and astaxanthin. Astaxanthin 
has been shown to inhibit the production of pro-inflammatory mediators such as nitric oxide 
(NO) in macrophages, to increase the level of inflammatory cytokines, and to reduce oxidative 
stress. Neuroprotective effect, reduced neuroinflammation, improvement of insulin signals, 
and reduction of lipid levels were also verified [81].

Inhibition of cell proliferation of colon cancer cells by the use of Neochloris oleoabundans carot-

enoids was observed, enabling its use as a functional food additive or nutraceutical with 

potential for the prevention of colon cancer [82]. Beta-carotene, astaxanthin, and capsanthin 
demonstrated antiproliferative effects on leukemic K562 cells [83]. Studies indicated that the 
simultaneous use of different carotenoids was efficient against liver cancer. Patients were 
administered with β-cryptoxanthin-enriched mandarin orange juice and capsules of a carot-
enoids mixture-containing lutein, β-cryptoxanthin, lycopene, zeaxanthin, and fucoxanthin. 
Analyses of DNA array and protein-antibody array showed that the carotenoids interferred 
in the induction of genes such as p16 and p73 [84].

4. Conclusion and final remarks

There are many advantages related to the use of carotenoids instead of artificial pigments 
in food products and for pharmaceutical applications. Their biological properties such as 
antioxidant, anti-inflammatory, antitumoral, and pro-vitamin A activities contribute to the 
quality of the product and to the consumer’s health. Among the production strategies, micro-

bial synthesis is considered advantageous, and the downstream techniques usually involve 
cell disruption, solvent extraction, concentration, and purification, when necessary. Several 
researches have proved the beneficial effects of carotenoids on health, so they can meet the 
demand for solutions focusing on longevity and life quality.

Carotenoids134



Author details

Ligia A. C. Cardoso1*, Susan G. Karp2, Francielo Vendruscolo3, Karen Y. F. Kanno1, Liliana I. C. Zoz2 

and Júlio C. Carvalho2

*Address all correspondence to: ligiacardoso@up.edu.br

1 Positivo University, Curitiba, Brazil

2 Federal University of Paraná, Curitiba, Brazil

3 Federal University of Goiás, Goiás, Brazil

References

[1] Aberoumand A. A review article on edible pigments properties and sources as natural 
biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences. 
2011;6:71-78.

[2] Domínguez-Espinosa RM, Webb C. Submerged fermentation in wheat substrates for 
production of Monascus pigments. World Journal of Microbiology and Biotechnology. 
2003;19:329-336. DOI: 10.1023/A:1023609427750

[3] Sabater-Vilar M, Maas RFM, Fink-Gremmels J. Mutagenicity of commercial Monascus 

fermentation products and the role of citrinin contamination. Mutation Research. 
1999;444:7-16. DOI: 10.1016/S1383-5718(99)00095-9

[4] Pennacchi MGC, Rodrígues-Fernández DE, Vendruscolo F, Maranho LT, Marc I, Cardoso 
LAC. A comparison of cell disruption procedures for the recovery of intracellular carot-
enoids from Sporobolomyces ruberrimus H110. International Journal of Applied Biology 
and Pharmaceutical Technology. 2015;6:136-143.

[5] Vendruscolo F, Bühler RMM, Carvalho JC, Oliveira D, Moritz DE, Schmidell W, Ninow 
JL. Monascus: A reality on the production and application of microbial pigments. Applied 
Biochemistry and Biotechnology. 2016;178:211-223. DOI: 10.10007/s12010-015-1880-z

[6] Oliver J, Palou A. Chromatographic determination of carotenoids in foods. Journal of 
Chromatography A. 2000;881:543-555.

[7] Hanson P, Yang RY, Chang LC, Ledesma L, Ledesma D. Mint: Carotenoids, ascorbic 
acid, minerals, and total glucosinolates in choysum (Brassica rapa cvg. parachinensis) and 

kailaan (B. oleraceae Alboglabra group) as affected by variety and wet and dry season 
production. Journal of Food Composition and Analysis. 2011;24:950-962. DOI: 10.1016/j.
jfca.2011.02.001

[8] Rodrigues DB, Flores EMM, Barin JS, Mercadante AZ, Jacob-Lopes E, Zepka LQ. 
Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food 

Research International. 2014;65:144-148. DOI: 10.1016/j.foodres.2014.06.037

Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products
http://dx.doi.org/10.5772/67725

135



[9] Přibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new 
isolate of Scenedesmus sp. Algal Research. 2015;11:22-27. DOI: 10.1016/j.algal.2015.05.020

[10] Chen L, Zhang L, Liu T. Concurrent production of carotenoids and lipid by a filamen-

tous microalga Trentepohlia arborum. Bioresource Technology. 2016;214:567-573. DOI: 
10.1016/j.biortech.2016.05.017

[11] Liu J, Mao X, Zhou W, Guarnieri MT. Simultaneous production of triacylglycerol and high-
value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella 

zofingiensis. Bioresource Technology. 2016;214:319-327. DOI: 10.1016/j.biortech.2016.04.112

[12] Tsai HP, Chuang LT, Chen CNN. Production of long chain omega-3 fatty acids and 
carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food 
Chemistry. 2016;192:682-690. DOI: 10.1016/j.foodchem.2015.07.071

[13] Fang CJ, Ku KL, Lee MH, Su NW. Mint: Influence of nutritive factors on C
50

 carotenoids 

production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresource 
Technology. 2010;101:6487-6493. DOI: 10.1016/j.biortech.2010.03.044

[14] Peter-Wendisch P, Götker S, Heider SAE, Reddy K, Nguyen AQ, Stansen KC, Wendisch 
VF. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, 

diamine and carotenoid production. Journal of Biotechnology. 2014;192:346-354. DOI: 
10.1016/j.jbiotec.2014.01.023

[15] Autenrieth C, Ghosh R. Random mutagenesis and overexpression of rhodopin-3,4-de-

saturase allows the production of highly conjugated carotenoids in Rodospirillum rubrum. 

Archives of Biochemistry and Biophysics. 2015;572:134-141. DOI: 10.1016/j.abb.2015.01.023

[16] Goodwin TW. Fungal carotenoids. Botanical Review. 1952;18:291-316.

[17] El-Jack M, Mackenzie A, Bramley PM. The photoregulation of carotenoid biosynthesis in 
Aspegillus giganteus mut. alba. Planta. 1998;174:59-66.

[18] Denter J, Rehm HJ, Bisping B. Changes in the contents of fat-soluble vitamins and 
provitamins during tempo fermentation. International Journal of Food Microbiology. 
1998;45:129-134.

[19] Iturriaga EA, Papp T, Breum J, Arnau J, Eslava AP. Strain and culture conditions improve-

ment for b-carotene production in Mucor. In: Microbial Processes and Products, Methods in 
Biotechnology series. 1st ed. Humana Press; 2005. pp. 239-256. DOI: 10.1385/1-59259-847-1:239.

[20] Csernetics A, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, Papp T. 
Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid 
production of the zygomycete Mucor circinelloides. Fungal Genetics and Biology. 

2011;48:696-703. DOI: 10.1016/j.fgb.2011.03.006

[21] Valduga E, Ribeiro AHR, Cence K, Coilet R, Tiggemann L, Zeni J, Toniazzo G. 
Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agro-

industrial substrates. Biocatalysis and Agricultural Biotechnological. 2014;3:207-213. 

DOI: 10.1016/j.bcab.2013.10.001

Carotenoids136



[22] Dias C, Sousa S, Caldeira J, Reis A, Silva TL. New dual-stage pH control fed-batch cul-
tivation strategy for the improvement of lipids and carotenoids production by the red 
yeast Rhodosporidium toruloides NCYC 921. Bioresource Technology. 2015;189:309-318. 

DOI: 10.1016/j.biortech.2015.04.009

[23] Cardoso LAC, Jäckel S, Karp SG, Framboisier X, Chevalot I, Marc I. Improvement of 
Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresource 
Technology. 2016;200:374-379. DOI: 10.1016/j.biortech.2015.09.108

[24] Odoñez MC, Raftery JP, Jaladi T, Chen X, Kao K, Karim MN. Modelling of batch kinetics 
of aerobic carotenoid production using Saccharomyces cerevisiae. Biochemical Engineering 

Journal. 2016;114:226-236. DOI: 10.1016/j.bej.2016.07.004

[25] Yoo AY, Alnaeeli M, Park JK. Production control and characterization of antibacterial 
carotenoids from the yeast Rhodotorula mucilaginosa AY-01AH. Process Biochemistry. 

2016;51:463-473. DOI: 10.1016/j.procbio.2016.01.008

[26] Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar G. 
Microorganisms and microalgae as sources of pigments for food use: A scientific oddity 
or an industrial reality? Trends in Food Science and Technology. 2005;16:389-406. DOI: 
10.1016/j.tifs.2005.02.006

[27] Dufossé, L. Production of food grade pigments. Food Technology and Biotechnology. 
2006;44:313-321.

[28] Kumar A, Vishwakarma HS, Singh J, Dwivedi S, Kumar M. Microbial pigments: 
Production and their applications in various industries. International Journal of 
Pharmaceutical, Chemical and Biological Sciences. 2015;5:203-212.

[29] Valduga E, Tatsch PO, Tiggemann HT, Toniazzo G, Zeni J, Luccio M. Produção de 
carotenoides: Microrganismos como fonte de pigmentos naturais. Química Nova. 
2009;32:2429-2436. DOI: 10.1590/S0100-40422009000900036

[30] Ruiz-Sola MA, Rodríguez-Concepción M. Carotenoid biosynthesis in Arabidopsis: A col-

orful pathway. In: The Arabidopsis Book: American Society of Plant Biologists. 1st ed. 
2012. 29. DOI: 10.1199/tab.0158

[31] Rodriguez-Amaya DB. Status of carotenoid analytical methods and in vitro assays for 
the assessment of food quality and health effects. Current Opinion in Food Science. 
2015;1:56-63. DOI: 10.1016/j.cofs.2014.11.005

[32] Krinsky NI, Johnson E. Carotenoid actions and their relation to health and disease. 
Molecular Aspects of Medicine. 2005;26:459-516. DOI: 10.1016/j.mam.2005.10.001

[33] Woodside JV, McGrath AJ, Lyner N, McKinley MC. Carotenoids and health in older 
people. Maturitas. 2015;80:63-68. DOI: 10.1016/j.maturitas.2014.10.012

[34] WHO – World Health Organization. Ageing and Life Course [Internet]. 2012. Available 
from: http://www.who.int/world-health-day/2012/toolkit/background/en/ [Accessed: 
2016-08-08].

Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products
http://dx.doi.org/10.5772/67725

137



[35] Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological pro-

duction of carotenoids by yeasts: An overview. Microbial Cell Factories. 2014;13:12. DOI: 
10.1186/1475-2859-13-12

[36] Rodrigues E, Mariutti LRB, Chisté RC, Mercadante AZ. Development of a novel micro-
assay for evaluation of peroxyl radicalscavenger capacity: Application to carotenoids 
and structure-activity relationship. Food Chemistry. 2006;135:2103-2111. DOI: 10.1016/j.
foodchem.2012.06.074

[37] Bartley GE, Scolnik PA. Plant carotenoids: Pigments for photoprotection, visual attrac-

tion and human health. The Plant Cell. 1995;7:1027-1038. DOI: 10.1105/tpc.7.7.1027

[38] Zoz L, Carvalho JC, Soccol VT, Casagrande CC, Cardoso L. Torularhodin and toru-

lene: Bioproduction, properties and prospective applications in food and cosmetics – A 
review. Brazilian Archives of Biology and Technology. 2015;58:278-288. DOI: 10.1590/
S1516-8913201400152

[39] Hill GE, Inouye CY, Montgomerie R. Dietary carotenoids predict plumage coloration in 
wild house finches. Proceeding of the Royal Society B: Biological Sciences. 2002;269:1119-

1124. DOI: 10.1098/rspb.2002.1980

[40] Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. Use of 
several waste substrates for carotenoid-rich yeast biomass production. Journal of 
Environmental Management. 2012;95:338-342. DOI: 10.1016/j.jenvman.2011.06.018

[41] Lin FY, Liu CI, Liu YL, Zhang Y, Wang K, Jeng WY, Ko TP, Cao R, Wang AH, Oldfield 
E. Mechanism of action and inhibition of dehydrosqualene synthase. Proceedings of the 
National Academy of Sciences. 2010;107:21337-21342. DOI: 10.1073/pnas.1010907107

[42] Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, Christou P. Travel advice on the road 
to carotenoids in plants. Plant Science. 2010;179:28-48. DOI: 10.1016/j.plantsci.2010.03.009

[43] Papaioannou EH, Liakopoulou-Kyriakides M. Substrate contribution on carotenoids pro-

duction in Blakeslea trispora cultivations. Food and Bioproducts Processing. 2010;8:305-

311. DOI: 10.1016/j.fbp.2009.03.001

[44] Varzakakou M, Roukas T, Kotzekidou P. Mint: Effect of the ratio of (+) and (−) mat-
ing type of Blakeslea trispora on carotene production from cheese whey in submerged 
fermentation. World Journal of Microbiology Biotechnology. 2010;26:2151-2156. DOI: 
10.1007/s11274-010-0398-3

[45] Khodaiyan F, Razavi SH, Mousavi SM. Optimization of canthaxanthin production by 
Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. 
Biochemical Engineering Journal. 2008;40:415-422. DOI: 10.1016/j.bej.2008.01.016

[46] Yang J, Tan H, Yang R, Sun X, Zhai H, Li K. Astaxanthin production by Phaffia rhodozyma fer-

mentation of cassava residues substrate. Agricultural Engineering International. 2011;13:1-6.

[47] Razavi SH, Marc I. Effect of temperature and pH on the growth kinetics and carotenoid 
production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. 

Iranian Journal of Chemistry and Chemical Engineering. 2006;25:59-64.

Carotenoids138



[48] Ip PF, Chen F. Production of astaxanthin by the green microalga Chlorella zofingiensis in 

the dark. Process Biochemistry. 2005;40:733-738. DOI: 10.1016/j.procbio.2004.01.039

[49] Abe K, Hattori H, Hirano M. Accumulation and antioxidant activity of secondary carot-
enoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry. 

2007;100:656-661. DOI: 10.1016/j.foodchem.2005.10.026

[50] Vaquero I, Ruiz-Domínguez C, Márquez M, Vílchez C. Cu-mediated biomass produc-

tivity enhancement and lutein enrichment of the novel microalga Coccomyxa onubensis. 

Process Biochemistry. 2012;47:694-700. DOI: 10.1016/j.procbio.2012.01.016

[51] Harker M, Tsavalos A, Young AJ. Factors responsible for astaxanthin formation in the 
chlorophyte Haematococcus pluvialis. Bioresource Technology. 1996;55:207-217. DOI: 
10.1016/0960-8524(95)00002-X

[52] Ip PF, Wong KH, Chen F. Enhanced production of astaxanthin by the green microalga 
Chlorella zofingiensis in mixotrophic culture. Process Biochemistry. 2004;39:1761-1766. 

DOI: 10.1016/j.procbio.2003.08.003

[53] Kleinegris DMM, Janssen M, Brandenburg WA, Wijffels RH. Continuous production of 
carotenoids from Dunaliella salina. Enzyme and Microbial Technology. 2011;48:253-259. 

DOI: 10.1016/j.enzmictec.2010.11.005

[54] Garcıa-Malea MC, Brindley C, Del Río E, Acien FG, Fernandez JM, Molina E. Modeling 
of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of 

irradiance and nutrients supply. Biochemical Engineering Journal. 2005;26:107-114. DOI: 
10.1016/j.bej.2005.04.007

[55] Del Campo JA, Moreno J, Rodrıguez H, Vargas MA, Rivas J, Guerrero MJ. Carotenoid 
content of chlorophycean microalgae: Factors determining lutein accumulation in 
Muriellopsis sp. (Chlorophyta). Journal of Biotechnology. 2000;76:51-59. DOI: 10.1016/
S0168-1656(99)00178-9

[56] Hong ME, Choi SP, Park YI, Kim YK, Chang WS, Kim BW, Sim SJ. Astaxanthin pro-

duction by a highly photosensitive Haematococcus mutant. Process Biochemistry. 

2012;47:1972-1979. DOI: 10.1016/j.procbio.2012.07.007

[57] Hirschberg J, Harker M. Carotenoid-Producing Bacterial Species and Process for 
Production of Carotenoids Using Same. United States Patent 5,935,808. August 10, 1999.

[58] De Carvalho JC, Cardoso LC, Ghiggi V, Woiciechowski AL, de Souza Vandenberghe 
LP, Soccol CR. Microbial pigments. In: Brar SK, Dhillon GS, Soccol CR, editors. 
Biotransformation of Waste Biomass into High Value Biochemicals. Springer: New York; 
2014. pp. 73-97. ISBN: 978-1-4614-8005-1

[59] Jaswir I, Noviendri D, Hasrini RF, Octavianti F. Carotenoids: Sources, medicinal proper-

ties and their application in food and nutraceutical industry. Journal of Medicinal Plants 
Research. 2011;5:7119-7131. DOI: 10.5897/JMPRx11.011

[60] Lin JH, Lee DJ, Chang JS. Lutein production from biomass: Marigold flowers versus  
microalgae. Bioresource Technology. 2015;184:421-428. DOI: 10.1016/j.biortech.2014.09.099

Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products
http://dx.doi.org/10.5772/67725

139



[61] Ravaghi M, Razavi SH, Mousavi SM, Sinico C, Fadda AM. Stabilization of natural can-

thaxanthin produced by Dietzia natronolimnaea HS-1 by encapsulation in niosomes. Food 
Science and Technology. 2016;73:498-504. DOI: 10.1016/j.lwt.2016.06.027

[62] Hernandez-Almanza A, Montañez J, Martínez G, Aguilar-Jimenez A, Contreras-Esquivel 
JC, Aguilar C N. Lycopene: Progress in microbial production. Trends in Food Science & 
Technology. 2016;56:142-148. DOI: 10.1016/j.tifs.2016.08.013

[63] Jing K, He S, Chen T, Lu Y, Ng I-S. Enhancing beta-carotene biosynthesis and gene tran-

scriptional regulation in Blakeslea trispora with sodium acetate. Engineering Journal. 
2016;114:10-17. DOI: 10.1016/j.bej.2016.06.015

[64] Panis G, Carreon JR. Commercial astaxanthin production derived by green alga 
Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all 
through production line. Algal Research. 2016;18:175-190. DOI: 10.1016/j.algal.2016.06.007

[65] BBC Research. The Global Market for Carotenoids [Internet]. 2015. Available from: 
http://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-
market-report-fod025e.html [Accessed: 2017-01-18]

[66] Spolaore P, Joaniss-Cassan C, Duran E, Isambert A. Commercial applications of micro-

algae. Journal of Bioscience and Bioengineering. 2006;101:87-96. DOI: 10.1263/jbb.101.87

[67] Raja R, Haemaiswarya S, Rengasamy R. Exploitation of Dunaliella for β-carotene pro-

duction. Applied Microbiology and Biotechnology. 2007;74:517-523. DOI: 10.1007/
s00253-006-0777-8d

[68] Singh RP. Spirulina: Health food for complete nutrition. Biotech Today. 2013;3:48-51. 

DOI: 10.5958/j.2322-0996.3.1.009

[69] Lian X, Liu L, Dong S, Wu H, Zhao J, Han Y. Two new monascus red pigments pro-

duced by Shandong Zhonghui Food Company in China. European Food Research and 
Technology. 2014;240:719-724. DOI: 10.1007/s00217-014-2376-8

[70] Galaup P, Sutthiwong N, Leclercq-Perlat MN, Valla A, Caro Y, Fouillaud M, Guérard 
F, Dufossé L. First isolation of Brevibacterium sp. pigments in the rind of an industrial 
red-smear-ripened soft cheese. Society of Dairy Technology. 2015;68:144-147. DOI: 
10.1111/1471-0307.12211

[71] Kon IY, Gmoshinskaya MV, Safronova AI, Alarcon P, Vandenplas Y. Growth and toler-

ance assessment of a lutein-fortified infant formula. Journal Pediatric Gastroenterology 
Hepatology Nutrition. 2014;17:104-111. DOI: 10.5223/pghn.2014.17.2.104

[72] Prabhasankar P, Ganesan P, Bhaskar N, Hirose A, Stephen N, Gowda LR, Hosokawa M, 
Miyashita K. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in 

pasta: Chemical, functional and structural evaluation. Food Chemistry. 2009;115:501-

508. DOI: 10.1016/j.foodchem.2008.12.047

[73] Kadam SU, Prabhasankar P. Marine foods as functional ingredients in bakery and pasta  
products. Food Research International. 2010;43:1975-1980. DOI: 10.1016/j.foodres. 
2010.06.007

Carotenoids140



[74] Niranjana R, Gayathri R, Stephen NM, Sugawara T, Hirata T, Myashita K, Ganesan 
P. Carotenoids modulate the hallmarks of cancer cells. Journal of Functional Foods. 
2015;18:968-985. DOI: 10.1016/j.jff.2014.10.017

[75] Jomova K, Valko M. Health protective effects of carotenoids and their interactions with 
other biological antioxidants. European Journal of Medicinal Chemistry. 2013;70:102-

110. DOI: 10.1016/j.ejmech.2013.09.054

[76] Shahidi F, Ambigaipalan P. Novel functional food ingredients from marine sources. 
Current Opinion in Food Science. 2015;2:123-129. DOI: 10.1016/j.cofs.2014.12.009

[77] Lai CS, Wu JC, Pan MH. Molecular mechanism on functional food bioactives for anti-
obesity. Current Opinion in Food Science. 2015;2:9-13. DOI: 10.1016/j.cofs.2014.11.008

[78] Revuelta JL, Buey RM, Ledesma-Amaro R, Vandamme EJ. Microbial biotechnology for 
the synthesis of (pro) vitamins, biopigments and antioxidants: Challenges and opportu-

nities. Microbial Biotechnology. 2016;9:564-567. DOI: 10.1111/1751-7915.12379

[79] Curhan SG, Stankovic KM, Eavey RD, Wang M, Stampfer MJ, Curhan GC. Carotenoids, 
vitamin A, vitamin C, vitamin E, and folate and risk of self-reported hearing loss in women. 
American Journal Clinical Nutrition. 2015;102:1167-1175. DOI: 10.3945/ajcn.115.109314

[80] Bakan E, Akbulut ZT, Inanç AL. Carotenoids in foods and their effects on human health. 
Akademik Gıda. 2014;12:61-68.

[81] Lu CC, Yen GC. Antioxidative and anti-inflammatory activity of functional foods. 
Current Opinion in Food Science. 2015;2:1-8. DOI: 10.1016/j.cofs.2014.11.002

[82] Castro-Puyana M, Pérez-Sánchez A, Valdés A, Ibrahim OHM, Suarez-Álvarez S, Ferragut 
JA, Micol V, Cifuentes A, Ilbáñez E, García-Cañas V. Pressurized liquid extraction of 
Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative 
activity. Food Research International, in press. DOI: 10.1016/j.foodres.2016.05.021

[83] Zhang X, Zhao W, Hu L, Zhao L, Huang J. Carotenoids inhibit proliferation and regu-

late expression of peroxisome proliferators-activated receptor gamma (PPARc) in K562 
cancer cells. Archives of Biochemistry and Biophysics. 2011;512:96-106. DOI: 10.1016/j.
abb.2011.05.004

[84] Nishino H, Murakoshi M, Tokuda H, Satomi Y. Cancer prevention by carotenoids.  
Archives of Biochemistry and Biophysics. 2009;483:165-168. DOI: 10.1016/j.abb.2008.09.011

Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products
http://dx.doi.org/10.5772/67725

141




