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Abstract

Introduction: Hepatocellular carcinoma (HCC) accounts for the majority of primary liver 
cancers. Approximately 5–30% of HCC patients lack a readily identifiable risk factor for 
their cancer, and most of these cases are attributed to nonalcoholic fatty liver disease 
(NAFLD) and nonalcoholic steatohepatitis (NASH).

Body: Recent lines of evidence have suggested the role of intestinal microbiota, in partic-
ular the dysbiosis, in the pathogenesis of chronic liver diseases, such as NAFLD/NASH. 
Intestinal microbes produce a large array of bioactive molecules from mainly dietary 
compounds, establishing an intense microbiota-host transgenomic metabolism with a 
great impact on physiological and pathological conditions. A derangement of intestinal 
microbiota may lead to microbial translocation of bacteria or their products in the liver, 
where endotoxins trigger inflammation, and hepatocellular damage, which in turn plays 
a key role in the development of HCC. The following liver injury and hepatocellular 
necrosis can promote the activation of a secondary proliferative pathway involving the 
hepatic progenitor cells (HPCs), a bipotential cell compartment that seems to contribute 
to hepatocarcinogenesis.

Conclusion: The aim of this chapter is to summarize current knowledge on the potential 
role of intestinal microbiota in the pathogenesis of NAFLD and the subsequent develop-
ment of HCC.

Keywords: dysbiosis, nonalcoholic steatohepatitis, hepatic progenitor cells, 
hepatocellular carcinoma
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a common form of a chronic liver disorder world-

wide, with an estimated global prevalence of 25% among adults and ~10% among children [1, 2]. 

NAFLD is traditionally regarded as hepatic manifestations of metabolic syndrome and encom-

passes the pathological spectrum ranging from simple hepatic steatosis (so-called “nonalcoholic 

fatty liver or NAFL”) to the more aggressive form nonalcoholic steatohepatitis (NASH), which 
can progress to cirrhosis and its associated complications, including liver failure and hepatocel-

lular carcinoma (HCC) [3, 4].

HCC accounts for the majority of primary cancers of the liver, representing the fifth most com-

mon cancer and the third leading cause of cancer death [5]. Many risk factors, including hepati-

tis B (HBV), hepatitis C (HCV), and alcohol, are well established, but 5–30% of HCC cases lack 
a readily identifiable risk factor. The majority of these cases of HCC is attributed to NAFLD, in 
particular in Western countries, and coincides with the growing epidemic of metabolic disor-

ders. Diabetes mellitus and obesity are known to play a pivotal role in the development and 
progression of NAFLD [6–8]. An increase in the body-mass index and emergence of diabetes 
mellitus have been associated with progression to cirrhosis, whereas a reduction in body weight, 
and improved glycemic control promote resolution of liver fibrosis. The risk of progression to 
end-stage liver disease is influenced by the severity of the underlying liver histopathology. 
Although most patients with NAFLD remain asymptomatic, 20% of them progress to chronic 
hepatic inflammation, which in turn can lead to cirrhosis, portal hypertension, and HCC [9, 10].

Recent evidence points to a new factor involved in the development and progression of NAFLD: 
the intestinal microbiota [11, 12]. Many authors show that patients with NAFLD are character-

ized by dysbiosis, defined as any change in the composition of the microbiota that deviates 
from the composition commonly found in healthy people [13]. Intestinal microbes produce a 
large array of bioactive molecules mainly from dietary compounds, thus establishing intense 
microbiota-host transgenomic metabolism with a strong influence on physiological and patho-

logical conditions [14]. In this regard, it is important to know the role of the various phyla, 
genera, or species of bacteria in maintaining the proper (healthy) metabolism or in inducing 
pathological changes predisposing to metabolic syndrome (or obesity, diabetes, or NASH).

Dysbiosis of the intestinal microbiota increases the ability of bacteria to harvest energy from the 
host diet and intestinal permeability and may lead to translocation of bacterial endotoxins into 
the liver [15]. These endogenous mediators can initiate hepatic inflammation and exacerbate 
hepatocyte damage through production of proinflammatory cytokines. The final result is lipid 
accumulation in (and death of) hepatocytes, causing steatosis, inflammation, and stimulation 
of hepatic stellate cells (HSCs) to produce collagen, resulting in fibrosis and cirrhosis [16, 17].

There is a broad consensus regarding the association between dysbiosis and colorectal cancer 
[18–21]. In contrast, the associations of microbiota with NAFLD and cancers other than colorec-

tal are less proven [22, 23]. As suggested by the strong relation between the liver and gut, the 
microbiota seems to be also involved in the pathogenesis and development of HCC, although 
the exact molecular mechanisms integrating these events remain unclear (Figure 1) [24, 25].
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Activation of hepatic progenitor cells (HPCs) is one of the factors likely promoting inflamma-

tion and hepatocarcinogenesis in NAFLD [26]. Chronic inflammation and DNA-damaging 
agents such as reactive oxygen species (ROS) induce replicative senescence of mature hepa-

tocytes, and this inhibition can activate a secondary proliferative pathway involving HPCs 
[26, 27]. Activation of HPCs also leads to the production of several profibrogenic factors, such 
as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF), which 
activate HSCs and boost the production of collagen [28].

The aim of this chapter is to summarize current knowledge on the potential role of the intestinal 
microbiota in the pathogenesis of NAFLD and in subsequent development of HCC.

2. Microbiota-host transgenomic metabolism of dietary compounds

Intestinal microbes produce a vast array of bioactive molecules from any dietary compounds, 
thus establishing intense microbiota-host transgenomic metabolism with a tremendous impact 
on our physiology and nutritional state [29]. In particular, fermentation of indigestible plant 
polysaccharides by the gut microbiota involves a remarkable interspecies metabolic network, 
where primary and secondary fermenters act in concert [30]. Plant cell wall polysaccha-

rides—including hemicellulose, pectins, and xylans—reach the colon solubilized or trapped 
in the plant cellulose matrix. The latter is solubilized by specialized cellulolytic ruminococci, 

Figure 1. Role of intestinal microbiota and hepatic progenitor cells in the progression of liver injury from steatosis to 
steatohepatitis and cirrhosis.
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which produce acetate and propionate from cellulose. Furthermore, soluble cell wall polysac-

charides are readily metabolized by butyrate producers of Clostridium clusters IV and XIVa 

(e.g., Faecalibacterium prausnitzii, Butyrivibrio, Roseburia, and Eubacterium rectale). On the other 

hand, soluble starches are preferentially fermented to propionate, acetate, and succinate by 
Bacteroidetes [31, 32]. These microorganisms are also capable of fermenting host mucus poly-

saccharides and plant cell wall polysaccharides, shifting from one carbon source to another 
depending on their bioavailability [33, 34].

Primary fermenters of polysaccharides produce both short-chain fatty acids (SCFAs: acetate, pro-

pionate, and butyrate) and molecular hydrogen (H2). In turn, H2 is the principal energy resource 

for secondary fermenters in the gut microbial community, and many of them compete for H2 in 

the gut [35]. Indeed, acetogens such as Blautia hydrogenotrophica, sulfate-reducing bacteria such as 
Bilophila wadsworthia, and methanogen Methanobrevibacter smithii can all metabolize H2, thereby 
producing different endpoint molecules, such as acetate, H2S, and CH

4
, respectively. Finally, ace-

tate produced by primary and secondary fermenters can be metabolized to butyrate by members 
of Clostridium clusters IV and XIVa; this phenomenon establishes balanced syntrophy among 
members of intestinal microbial communities [32].

The metabolism of dietary amino acids by the intestinal microbiota involves proteolytic 
clostridia, such as members of Clostridium clusters I and XI [36, 37], Bacteroidetes, and some 

enterococci and enterobacteria [38]. The metabolism of amino acids involves production of a 
variety of bacterial metabolites, also depending on the type of amino acid being fermented [37]. 

In particular, in addition to SCFAs, fermentation of simple aliphatic amino acids results in the 

production of methylamines, whereas branched-chain amino acids lead to the production of 
branched-chain fatty acids. Microbiota-mediated metabolism of aromatic amino acids gener-

ates a variety of phenolic and indolic metabolites [39].

The microbial metabolites derived from the metabolism of dietary compounds modulate several 
traits of the host physiology [29, 40]. In particular, SCFAs perform a key multifactorial function 

in human physiology and homeostasis [41]. For instance, acetate, propionate, and butyrate mod-

ulate several parameters of our nutritional state. Although butyrate represents an important 
energy source for host colonocytes [40, 42], acetate and propionate regulate lipid synthesis in 

the liver [41] and intestinal gluconeogenesis [43]. Furthermore, by supporting insulin secretion, 
butyrate is also involved in the regulation of the host energy storage and is known to regulate 
appetite by enhancing the production of leptin and peptide YY [29].

SCFAs are also strategic modulators of immune function. Butyrate acts both locally, through-

out regulatory mechanisms governing production of proinflammatory cytokines in the gut [44], 

and systemically, by modulating the extrathymic formation of regulatory T cells [45]. In con-

trast, propionate governs the de novo formation of peripheral regulatory T cells and, together 

with acetate, guides their homing in the colon. Moreover, propionate has been implicated in the 
enhancement of hematopoiesis of dendritic cells with impaired T helper 2 type of activation [45].

Certain microbial metabolites generated by amino acid fermentation in the gut have a det-
rimental effect on the host [39]. In particular, phenolic and indolic metabolites generated by 
the bacterial metabolism of aromatic amino acids in the gut have been linked with immune 
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activation and diabetes [39]. Similarly, production of methylamines from aliphatic amino 

acids is associated with diabetes, obesity, and NAFLD or NASH [46]. Finally, the endpoint 

metabolites produced by secondary fermenters in the microbiota are relevant to host health. 
Although acetate produced by acetogens supports butyrate producers in a feedback process, 
sulfate reducers are detrimental for host health because they support inflammation [47].

The microbiota-mediated metabolism of complex polysaccharides mainly results in the pro-

duction of beneficial SCFAs, whereas protein fermentation involves production of a vast array 
of harmful metabolites. Therefore, we can hypothesize that the gut microbiota-host mutual-
ism evolved in the context of a plant-based diet, with only occasional consumption of meat. In 
fact, according to the aforementioned observations, a plant-based diet should lead to massive 
production of SCFAs by a saccharolytic intestinal microbiota, preventing the accumulation of 
detrimental metabolites as a result of bacterial proteolytic fermentation processes [38]. Finally, 

recent studies support a direct connection between the intake of saturated fats and proin-

flammatory dysbioses of the intestinal microbiota [48]. High intake of saturated fats results 

in an increase of bile acid secretion, stimulating the growth of bile-resistant sulfate-reducing 
bacteria B. wadsworthia in the gut and forcing an inflammatory boost as a result of increased 
H2S production.

Aside from the diet, there are some stressors that can influence the balance of a microbiota; in 
particular, antibiotics modify the microbiota, which, after this treatment, is characterized by 
a different equilibrium [49].

3. Microbiota and liver diseases

In the last two decades, there has been considerable growth in the number of publications 
evaluating the associations among NAFLD, NASH, and HCC. The progression from NAFLD 

or NASH to hepatic carcinogenesis represents another growing area of study [50]. A “two-
hit” mechanism has been proposed for the NAFLD and NASH pathogenesis. The “first hit,” 
hepatic steatosis, is closely associated with lipotoxicity-induced mitochondrial abnormali-
ties that sensitize the liver to additional proinflammatory insults. The “second hit” includes 
enhanced lipid peroxidation and increased production of ROS [51]. Recently, some investiga-

tors proposed a multiple-hit process with successive liver injuries leading from fat accumula-

tion to inflammation and fibrosis [52]. In particular, there is a report of a relation between the 
liver-gut correlation and the development of liver diseases [53].

Alteration of a microbiota seems to be involved in the induction and progression of liver damage, 
in addition to direct injury resulting from various casual agents [54].

Using a metagenomic approach, Turnbaugh et al. compared animals fed a low-fat diet or 
high-fat high-sugar “Western” diet and demonstrated a relative increase in the number of 
bacterial cells belonging to the Firmicutes phylum and a reduction in the number of bacterial 
cells belonging to Bacteroides during the Western diet [55]. The switch from a low-fat to the 
Western diet shifts composition of the microbiota and increases the ability of the bacteria to 
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harvest energy from the host diet, with progressive development of obesity [56]. In mouse 

models, Ley et al. observed a similar difference: a rise of the ratio of Firmicutes/Bacteroides 
in the microbiota in obese humans and re-equilibrium in favor of Bacteroidetes in case of a 
fat-restricted diet [57].

Therefore, in obese subjects, there are several changes in composition of the intestinal micro-

biota, which are characterized by upregulation of Firmicutes and a decline of Bacteroidetes 
(resulting in the so-called “obese microbiota”) and a reduction in gut bacterial richness [58, 59]. 

Small intestinal bacterial overgrowth (SIBO) by Gram-negative organisms may promote insulin 
resistance and induce choline deficiency: all of these factors are implicated in NAFLD [60]. The 

intestinal microbiota is the primary source of bacterial endotoxins (e.g., lipopolysaccharide; LPS) 
produced by Gram-negative bacteria. LPS normally crosses the mucosa only in trace amounts 
and enters portal blood to be cleared in the liver. LPS can initiate inflammation and insulin resis-

tance associated with obesity [16, 61].

Quantitative and qualitative alterations of the gut microbiota may lead to increased intesti-
nal permeability via several mechanisms, including regulation of tight junctions, and may 
favor microbial translocation defined as migration of bacteria or their products—also termed 
pathogen-associated molecular patterns (PAMPs)—from the gut to mesenteric lymph nodes 
or to other organs [62–64].

A link between bacterial overgrowth and NAFLD or NASH was first demonstrated by Wigg 
et al. [13]. In another study, Miele et al. [65] compared intestinal permeability in the three 
groups of human subjects (NAFLD, celiac disease, and healthy controls) and observed higher 
prevalence of SIBO and of leaky gut in the NAFLD group, thereby demonstrating the role of 
this increased permeability in the pathogenesis of hepatic fat deposition.

The gut-liver axis is the way bacteria and their possible hepatotoxic products (e.g., LPS, DNA, 
or RNA) can easily reach the liver. The final effect is activation of the signaling cascade triggered 
by a specific immune receptor resulting in the expression of proinflammatory cytokine genes, 
which may exacerbate the hepatocyte damage and contribute to the subsequent development 
of HCC [66, 67].

Bacterial components stimulate a toll-like receptor (TLR), which represents a highly conserved 
family of receptors that recognize specific PAMPs and are expressed on Kupffer cells, biliary 
epithelial cells, hepatocytes, HSCs, endothelial cells, and dendritic cells [68]. An interaction of 

a TLR with an endotoxin results in activation of nuclear transcription factors, leading to the 
release of numerous proinflammatory mediators, such as tumor necrosis factor α (TNF-α), 
which can induce liver injury, fibrosis, and insulin resistance [69, 70].

Miura and colleagues [71] showed that TLR9 ligands induce the production of IL-1β by Kupffer 
cells in a mouse model of NASH. IL-1β then promotes lipid accumulation in (and death of) 
hepatocytes, causing steatosis and inflammation and stimulates HSCs to produce fibrogenic 
mediators, such as collagen, resulting in fibrosis. In particular, TLR9-deficient mice (TLR9−/−) 

show a significant reduction in hepatic lipid accumulation when compared with their wild-
type counterparts [71]. In addition, TLR4 contributes to the development of inflammation and 
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fibrosis by inducing production of proinflammatory cytokines (TNF-α, IL-1β) and cooperates 
with TLR9 to induce active IL-1β in Kupffer cells [72, 73].

The inflammasome is a cytoplasmic multiprotein complex that recognizes a diverse set of 
inflammation-inducing stimuli and directly activates caspase 1. Activated caspase 1 causes a 
release of strong proinflammatory cytokines, such as IL-1β and/or IL-18, which are involved 
in the pathogenesis of the majority of chronic liver diseases, such as NAFLD and NASH 

[74, 75]. In particular, the NLRP3 inflammasome is activated by microbial PAMPs (via a 
two-step process involving a TLR), and therefore, it is the principal inflammasome subtype 
involved in the NAFLD progression and promoting insulin resistance and β-cell death [11]. 

Csak et al. [76] described for the first time the role of NLRP3 inflammasome activation in 
NASH. In mice on a high-fat diet, those authors observed upregulation of the inflamma-

some, according to increased caspase 1 activity and higher serum levels of IL-1β, in com-

parison with controls. Another study confirmed these data, pointing to a contribution of the 
inflammasome to the pathogenesis of NAFLD or NASH [77].

Recent evidence revealed that dysbiosis can promote the development of NAFLD or NASH 
by modifying the bile acid metabolism. Bile acids can modulate glucose and lipid metabolism 
via their binding to and activation of G protein-coupled receptor TGR5 and farnesoid X recep-

tor (FXR): nuclear hormone receptors expressed by hepatic Kupffer, stellate, and endothelial 
cells. In FXR-deficient mice, researchers have demonstrated glucose intolerance, insulin resis-

tance, and elevated circulating levels of free fatty acids, which lead to the development of 
severe hepatic steatosis [78–80].

FXR regulates hepatic inflammation and fibrosis and is important for hepatocarcinogenesis. 
Fickert et al. [81] studied FXR knockout mice (FXR−/−) and showed that the FXR loss alleviates 
fibrosis of the hepatic biliary tree. FXR−/− mice develop spontaneous HCC at age >12 months 
[82, 83]. Selective reactivation of intestinal FXR can restore bile acid enterohepatic circulation 
and protect FXR−/− mice from spontaneous development of HCC [84].

4. NAFLD and hepatic progenitor cells

Several lines of evidence suggest that another factor is implicated in the development and 

progression of chronic liver diseases. Namely, HPCs are a bipotent cell population that can 
differentiate into hepatocytes or into biliary epithelium cells and reside in the terminal bil-
iary ductules and in the so-called “canals of Hering” [85, 86]. They represent a heteroge-

neous cell population expressing phenotypic markers of both immature hepatocytes (such as 
α-fetoprotein) and bile duct cells (such as bile duct-type cytokeratins) [26, 87].

HPCs have been studied regarding regeneration after severe hepatocellular necrosis [88], but 
recent studies revealed that this cellular compartment is also activated in chronic viral hepatitis, 

alcoholic liver disease, and NAFLD [89]: the most important hepatocarcinogenic conditions in 

the Western world. Activation of progenitor cells in these diseases suggests that they are a pos-

sible target cell population for hepatocarcinogens [67, 90].
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In the healthy liver, replacement of necrotic and apoptotic hepatocytes involves proliferation 

of adjacent hepatocytes within the lobules [26]. Nonetheless, this primary pathway is often 
impaired by a variety of insults, including experimental toxins, viral infection, steatosis, oxi-
dative stress, and alcohol. Chronic inflammation, the presence of growth factors, and DNA-
damaging agents like ROS and reactive nitrogen species induce replicative senescence of 

hepatocytes, and this inhibition activates a secondary proliferative pathway involving HPCs 
[91–93].

The combination of oxidative liver damage and inhibited hepatocyte proliferation, as observed 
in NAFLD and NASH, seems to provide a strong stimulus for activation of HPCs and plays 

a key role in the pathogenesis of HCC. Roskams et al. [91] studied three murine models of 

fatty liver disease (genetically obese ob/ob mice and normal mice with fatty livers induced 
either by ethanol or methionine choline-deficient diets) and patients with nonalcoholic fatty 
liver disease or alcoholic liver disease. Mice with fatty liver show greater numbers of progeni-
tor cells than controls do, and mitochondrial ROS production is significantly increased in all 
three groups. This increased oxidative stress promotes replicative senescence in mature hepa-

tocytes and expansion of progenitor cells, in both mice and humans [91].

The magnitude of progenitor cell activation seems to correlate with the severity of liver dis-

ease [89, 91]. In a recent work, Richardson et al. showed that NASH with portal or linking 
fibrosis (disease stages 2–4) is associated with more frequent replicative arrest of hepatocytes 
and with expansion of HPC numbers as compared to steatosis alone [94].

Literature data are suggestive of the involvement of the inflammatory infiltrate in the activa-

tion of progenitor cells, through the secretion of inflammatory cytokines, in particular TNF-α 
[95, 96]. Expression of these cytokines is upregulated during hepatic injury and performs an 

important function in HPC activation [97, 98]. The result is production of some profibrogenic 
factors that activate HSCs and boost the production of collagen [28].

Other signaling pathways participate in the complex mechanism controlling the behavior of 
HPCs. Must1, Must2, and Yap genes are important for proliferative control and tumorigen-

esis in the liver. Defects in this signaling pathway lead to sustained liver overgrowth and 
eventual development of either HCC or cholangiocarcinoma in mice [99]. Studies in humans 

confirmed that a loss of regulation of Mst1 or Mst2 is a common aberration in HCC and 
may account for Yap activation in these tumors. In fact, approximately 30% of HCCs show 
reduced Yap phosphorylation and aberrant overexpression of Yap [100, 101].

Approximately, a half of human HCCs (28–50%) express one or more markers of progenitor 
cells that are not present in normal mature hepatocytes [102, 103]. When analyzing the precur-

sor lesions of HCC, many authors detected HPCs and intermediate hepatocyte like cells in 50% 

of small cell dysplastic foci and in hepatocellular adenoma [90, 104]. These findings support the 
hypothesis that some human HCCs arise from HPCs. Moreover, HCCs expressing HPC mark-

ers have a worse prognosis than HPC marker-negative HCCs. Wu et al. observed significantly 
shorter survival of patients with HCCs expressing CK19 [105]. Similar findings were made by 
Uenishi et al. [106]. In a recent study, Durnez reported that CK19-positive HCC shows a higher 
rate of tumor recurrence after a liver transplant as compared with CK19-negative HCC [103].
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The available data suggest that HPCs are involved in fibrogenesis and progression of 
NAFLD and that their activation during chronic liver disease may increase the risk of HCC. 

Nonetheless, further studies are necessary to better clarify the function of these cells in hepa-

tocarcinogenesis and in the liver’s response to NAFLD injury.

5. Conclusion

Recent pieces of evidence are indicative of the role of the intestinal microbiota—in particu-

lar its dysbiosis and activation of HPCs—in the clinical course of NAFLD and in the subse-

quent development of HCC. Intestinal microbes produce a large array of bioactive molecules 
mainly from dietary compounds, thus establishing intense microbiota-host transgenomic 
metabolism with a strong impact on pathological conditions. Derangement of the intestinal 
microbiota may lead to translocation of bacteria or their products to the liver, where endotox-

ins trigger inflammation and hepatocellular damage, which in turn is crucial for the develop-

ment of HCC.

The subsequent liver injury and hepatocellular necrosis can activate a secondary prolifera-

tive pathway involving HPCs: a bipotential cell compartment that seems to contribute to 
hepatocarcinogenesis.

Better knowledge of these factors is necessary for understanding the HCC pathogenesis in 
NAFLD and for discovery of new therapies, but further research is necessary to identify the 
carcinogenesis process.
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Nonalcoholic fatty liver disease NAFLD

Nonalcoholic fatty liver NAFL
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Hepatic progenitor cells HPCs

Reactive oxygen species ROS

Transforming growth factor β TGF-β
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