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Abstract

The renin-angiotensin system (RAS) is a chief regulator of the cardiovascular system and 
body fluid homeostasis. Stem/progenitor cell therapy has pointed towards a novel tool 
for medical and therapeutic intervention. In addition to the physiological and pathologi-
cal role of the RAS and its pharmacological inhibitors, the proliferation, differentiation 
in stem cells is mediated through various cell-signalling pathways. This book chapter 
reviews the new role of RAS components, distinct from other common roles by consider-
ing its regulating impact on the several signalling pathways involved in different body 
tissues, as well as in stem cell therapy.

Keywords: stem cell, progenitor cell, renin-angiotensin system, pancreatic stem cells, cardiac 
stem cells

1. Introduction

The concept that the renin-angiotensin system (RAS) is involved in the regulation of stem 
(progenitor) cell function is novel. This is beyond the conventional notion of the RAS acting 
as a potent vasoconstrictor responsible for blood pressure regulation and body fluid homeo-

stasis. The expression of RAS components during human embryonic development has been 
addressed in the literature. The existence of RAS components in different organs and tis-

sues suggests the presence of local RAS in addition to the circulating common RAS, which 
has paracrine effects mediating stem (progenitor) cell function. Moreover, recent evidence 
has shown the expression of major RAS components such as angiotensinogen, renin, angio-

tensin-converting enzyme (ACE), angiotensin receptors type 1 and 2 and angiotensin-(1–7) 
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during growth, proliferation and differentiation of stem cells. Improvement of the stem cell 
functionality and making them ideal candidates in different kinds of disorders has been a 
new research field in the last decade. Meanwhile, the effect of RAS on stem cell growth, pro-

liferation and function is an emerging attempt among researchers. Ang II receptor activation 
increases the proliferation of several progenitor cells, such as mouse bone marrow-derived 
stem cells and human cord blood cells. Accordingly, manipulation of the RAS may alter 
and/or have beneficial effects on the efficacy of stem cell therapy.

2. Stem cells

The term stem cell stands for the population of immature precursor cells, which are able to 
renew themselves and be the source of de novo replacement for many body tissues. Stem cells 
are classified into two main groups: embryonic stem cells (ESCs) and adult stem cells. ESCs 
can be obtained from the inner cell mass of the embryonal blastocyst. Although they are eas-

ily achieved, some disadvantages restrict their application. Adult stem cells such as mesen-

chymal and haematopoietic stem cells (HSCs) are obtained from mature tissues. Due to their 
plasticity, adult stem cells produce cell lineage different from their original organ. Thus, adult 
stem cells seem to be an appropriate candidate for organ regeneration in different kinds of 
diseases or lost/damaged organs. Table 1 represents the main stem cell and their advantages 
and disadvantages.

3. The RAS and ESCs

ESCs are pluripotent cells capable of differentiation into different cells such as cardiomyo-

cytes, and endothelial cells have been considered as a source of regenerative medicine [1]. For 
instance, ESC-derived endothelial cells have therapeutic effects via the increment of angio-

genesis and heart functionality [2]. PI3/Akt-signalling pathway has been shown to be linked 
with human ESC-derived cardiomyocyte proliferation in vitro [3]. RAS stimulation activates 
PI3/AKT pathway, while the inhibition of RAS increases Akt phosphorylation [4], which 

Stem cell type Origin Advantages Disadvantages

Embryonic stem cell Blastocyst stage of an 

embryo

- High expansion
- Pluripotent

- Ethical objection
- Risk of rejection
- Risk of teratocarcinoma

Adult stem cell Mature tissue - Easily obtained

- No ethical objection
- High compatibility

- Lack of specific 
identification markers

Table 1. Main stem cell and their advantages and disadvantages.
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might influence the proliferation of ESCs. High survival rate after transplantation is another 
main, noteworthy issue about ESCs [5].

RAS is a novel regulatory candidate, which controls the development of ESCs into differ-

ent cell types. It has been reported that the expression AT1 receptors were detected in an 
early stage of human ESCs differentiation. Since the addition of Ang II results in the phos-

phorylation of extracellular signal-regulated kinase (ERK) 1/2 and Jun N-terminal (JNK) 
1/2, this peptide is capable of acting as signalling molecules and thus it could regulate 
differentiation [6]. Moreover, Ang II has been shown to increase glucose uptake in ESCs 
[7] and induce mitogenic effect, possibly through protein kinase C and mitogen-activated 
protein kinase (MAPK)-signalling pathways. Interestingly, exposure to a high glucose 
niche in the presence of Ang II has been shown to produce a synergistic impact on ESC 
proliferation [8].

4. The RAS and mesenchymal stem cells

Mesenchymal stem cells (MSCs) as multipotent cells are mainly found in bone marrow and 
adipose tissue and can differentiate into various cell types [9]. Simple isolation, high immune 
prevalence and angiogenic-inducing properties have made MSCs suitable candidates for stem 
cell therapy of different kinds of diseases [10]. Besides, these MSCs exert paracrine effects 
causing the modulation of a large number of cellular responses, such as survival, prolifera-

tion, migration and gene expression [11]. Diminishing oxidative stress and suppression of the 
TGF-β/Smad2-signalling pathway are some of these paracrine effects [12, 13]. In the rat pul-
monary hypertension model, MSCs have shown superiority regarding the lowering of blood 
pressure and ventricular overload; hence, MSC transplantation in chronic lung disease with 
pulmonary hypertension has pointed towards a new therapeutic option [14]. Concomitant per-

cutaneous trans-luminal renal angioplasty with MSC therapy has been reported to decrease 
inflammation, fibrinogenesis and vascular remodelling in atherosclerotic renal artery steno-

sis of swine [15]. Also, MSCs have the ability to recognize inflammation lesions, and Ang II 
effects the migration and homing of these cells to the site of injury [16]. Dysregulation of the 
RAS decreases the paracrine therapeutic potential of MSCs [17].

Expression of renin, AT1 and AT2 receptors has been implicated with the regulation of MSCs 
differentiation to adipocytes, while the differentiated cell produces significant amounts of 
endogenous RAS [18]. Indeed, endogenous blockade of AT1 receptor inhibited adipogenesis 
of MSCs [18]. These outcomes are in line with clinical observations that RAS blockade acts as a 
protective factor against the onset of obesity-induced diabetes mellitus type 2 [19]. Ang II also 
has been shown to stimulate the synthesis of vascular endothelial growth factor (VEGF) that 
is an angiogenic agent in MSCs [20]. Additionally, MSCs have been suggested as a promising 
regenerative medicine for treating ischaemic heart disease and diabetes [21]. Hence, it is prob-

able that Ang II-induced production of VEGF might be a contributing underlying mechanism 
of the beneficial consequences obtained following MSC transplantation.
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5. The RAS and endothelial progenitor cells

The identification of circulating endothelial progenitor cells (EPCs) has introduced the con-
cept of postnatal vasculogenesis. EPCs could originate from haematopoietic stem cells (HSCs) 
or MSCs [22, 23]. Also, the EPCs existing in the adventitial layer of vessels have the ability 
to differentiate into adult endothelial cells [24]. Different factors such as ischaemia, vascular 
damage and even physical exercise result in the recruitment of circulating EPCs and thus 
neovascularization and restoration of endothelial functionality [25, 26]. In this context, the 
improvement of myocardial perfusion after EPC transplantation has been observed in clini-
cal trials [27]. Several mechanisms have been suggested regarding EPCs mobilization. For 
instance, it was observed that ischaemic lesions release angiogenic factors like VEGF and 
activate MAPK or the RAS-signalling pathways [28], which increase EPCs migration.

Despite the important role of vascular endothelium in cardiovascular disease (CVD), their 
limited regeneration capacity remains a vital problem. EPCs improve angiogenesis and 
participate in endothelium recovery subsequent to vascular injuries [29]. Cardiovascular 
diseases (CVDs) are directly related to both the decline of EPC mobilization and the num-

ber of EPCs present in the damaged site. In this context, Ang II stimulates EPCs migration 
to ischaemic regions and commences vascularization through VEGF-associated endothelial 
nitric oxide synthase [30]. The activation of NAPH and subsequent ROS (reactive oxygen 
species) generation constitutes the stimulatory impact of Ang II on EPCs that is required for 
normal EPC function. However, the long-term activation of NADPH and oxidative stress 
is concomitant with cell senescence [31]. Moreover, acute high-dose exposure to Ang II has 
been shown to negatively modulate EPC function in the hind limb ischaemic rat model [32].

6. The vascular RAS and erythropoiesis

RAS has been shown to result in progenitor cell senescence and suppression of differentiation 
and adherence in bone marrow-derived EPCs in Ang II infusion models. This inhibitory impact 
could be attenuated by the administration of AT1 receptor antagonists [31]. Previous reports 
have proved the crucial role of Ang II during erythropoiesis [33]. In studies using transgenic 
mice expressing human renin and angiotensinogen, a drastic rise in levels of erythropoietin was 
observed, which is a glycoprotein hormone that controls erythropoiesis. Genetic ablation of AT1 
receptor from these mice reduced erythropoietin levels and restored haematocrit levels [34]. Also, 
ACE blockade has been concomitant with haematocrit decrease in vivo [35]. The idea of ACE 
and/or Ang II being contributed to erythropoiesis was further confirmed by a recent research in 
which ACE marked haematopoietic stem cells from human embryonic, fetal and adult haemato-
poietic tissues [36]. However, the mechanism of Ang II-associated regulation of erythropoiesis is 
mainly unclear. Most of these effects are observed during early phases of erythropoiesis [37]. As 
mentioned above, some researchers imply that Ang II acts indirectly via its effect on erythropoi-
etin levels [38], whereas others do not agree with this link [39]. The other possible mechanism is 
proposed to be the involvement of JAK (Janus kinase)/STAT (signal transducer and activator of 
transcription) pathway. JAK/STAT pathway is known to be activated by Ang II [40].

Renin-Angiotensin System - Past, Present and Future162



7. Current research on the RAS in pancreatic stem cells

The local RAS is not only involved in the physiology of pancreas, but it also influences the 
pancreatic stem cell (PSC) functionality. RAS has been shown to be associated with pancre-
atic islet cell function and proliferation and differentiation of PSCs/progenitor cells during 
development [41]. Different stem/progenitor cells have been reported to be differentiated 
into insulin-expressing cells, which make them appropriate candidates for islet cell trans-
plantation. Regarding the potential role of RAS in stem cell differentiation, it is possible 
that RAS-modulated stem cell could be a new source of pancreatic β-cells. Both exocrine 
and endocrine pancreas are known to have local RAS components [42]. In exocrine part, 
AT1 receptor activation turns on signalling pathways such as ROS generation and activa-
tion of pro-inflammatory, vasoactive and growth factor receptors [43, 44]. Therefore, Ang 
II might result in fibrosis and inflammation of exocrine pancreas through the AT1 receptor. 
Hence, blockade of RAS has been considered a potential therapeutic opportunity for some 
pancreas disorders.

In the endocrine portion of pancreas, RAS has been shown to be a key regulator of insulin and 
islet physiology [43]. AT1 receptor stimulation leads to β-cells, decreased islet blood flow and 
insulin secretion, while AT2 receptor activation results in β-cell proliferation and islet blood 
flow and insulin secretion enhancement [19]. Moreover, the ACE2/Ang-(1–7)/Mas axis, which 
has been attracting more research attention recently, is present in several local tissues and 
mainly acts as a negative modulator of ACE/Ang II/AT1R signalling. Similar to AT2 receptor 
activation, ACE2 overexpression in the pancreas of type 2 diabetic animals restored glucose 
homeostasis, as evidenced by diminished blood glucose levels, elevated insulin secretion and 
β-cell proliferation [45].

PSCs exist in both developing and adult pancreas in three major pancreas sections, that is, 
ductal endothelium, islet and acinar tissues [46]. Embryo, foetus and adult pancreas as well 
as bone marrow-derived MSCs are probable sources for PSCs. Transplantation of mouse or 
human PSCs into diabetic mice has been revealed to reduce their diabetes [46].

A novel well-defined area of research is the developmental control of RAS on cell pro-
liferation in tumours and in tissue regeneration. Both the ACE/AngII/AT1R signalling 
and the alternative RAS arm (ACE2/Ang-(1–7)/Mas) interact with different growth fac-
tors; hence, they might contribute to cell proliferation and angiogenesis in neoplasms, 
including pancreatic cancers [47–49]. It has been demonstrated that RAS inhibition seems 
to be a promising therapeutic approach for the mitigation of pathophysiological circum-

stances of the pancreas including diabetes [50], pancreatitis [43] and pancreatic cancer 
[51]. Transplantation of human fetal pancreatic progenitor cell has been shown to reverse 
hyperglycaemia and glucose intolerance in diabetic mice [52]. ROS production has a close 
relation with RAS activation, and ROS-signalling pathway is associated with stem/progen-
itor cell proliferation, differentiation and function [53]. So, it is an interesting probability 
that the elevation of RAS-induced differentiation of pancreatic progenitor cells towards an 
endocrine lineage might offer a basis for therapy in terms of islet replacement treatments 
for diabetes.
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MSCs have been suggested as an appropriate substitute to islet transplantation for promoting 
regeneration of endogenous pancreatic progenitor cells to achieve permanent normal blood 
glucose level in patients with type 1 diabetes [54]. Local RAS in pancreatic islet could regulate 
PSC differentiation and thus lead to the beneficial outcomes following MSC transplantation. 
In a study, these kinds of pancreatic progenitor cells have shown to differentiate into insulin-
secreting cells.

RAS components like angiotensinogen and renin are expressed after the beginning of pancre-
atic progenitor cells differentiation, but they are not present in undifferentiated cells. These 
results indicate that a functional RAS exists in pancreatic progenitor cells and in mature islets 
that could be modulating cellular differentiation. The mitogenic behaviour related to the Ang 
II bindings of AT1 receptors has been proposed to regulate reprogramming of pancreatic cells 
and the differentiation plasticity [55]. However, it is unclear whether AT2 receptor activa-
tion reveals counter-regulatory role in this context. Furthermore, it is hypothesized that the 
ACE2/Ang-(1–7)/Mas axis plays an essential role in pancreatic stem cell differentiation as 
previous studies have shown the involvement of ACE2 arm in the proliferation and differen-
tiation of other stem cells [56].

8. Current research on the RAS in cardiac stem cells

Regarding the intracellular signalling pathway of Ang II, RAS effect on cardiovascular 
stem/progenitor cell transplantation has largely been investigated. Among the regenera-
tive medicine-based therapies in the cardiovascular system, induced pluripotent stem cells 
(iPSCs), which are artificially derived from an adult non-differentiated somatic cell, are a 
field of research study. In spite of different origin, they resemble ESCs in their growth and 
gene expression profile [57]. Also, Ang II receptors are expressed in iPSCs, which induce the 
proliferation and differentiation of pluripotent stem cells to several kinds of stem cells. As 
mentioned before, Ang II stimulates cell-signalling cascade through ROS production which 
in turn instigates stem cell proliferation [58]. In a study, the administration of Tempol (ROS 
generation-blocking agent) in Ang II-treated pluripotent stem cells has attenuated the prolif-
eration of stem cells and DNA synthesis suggesting the role of oxidative-signalling pathway 
in RAS-associated cell proliferation. The other signalling pathway linked to the differentiation 
of iPSCs and Ang II is JAK/STAT pathway [59].

Ang II is also able to induce ESCs differentiation. In this context, the effect of AT1 receptor 
activation on collagen IV protein has been investigated [18]. Collagen IV is an extracellular 
matrix protein having a role in cell adhesion, growth, migration and differentiation. Collagen 
IV has been shown to be involved in the differentiation of ESCs to smooth muscle cell.

Up-regulation of several transcription factors such as egr-1, c-fos/c-jun, Stat91, NFk-B, 
which has a fundamental role in stem cell differentiation, is mediated through PI3/Akt 
pathway. Ang II is the upstream cascade of PI3/Akt82-84. NFk-B is markedly up-regulated 
in Ang II-treated cells, proposing that there is NFk-B involvement in ESC differentiation 
into the smooth muscle cells [60].
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The TGF-β/Smad pathway plays a key role in the cellular responses to Ang II. Ang II activates 
TGF-β secretion in various tissues, such as fibroblasts and smooth muscle cells that induce 
interstitial fibrosis in the heart and kidney. Besides, TGF-β/Smad pathway is highly engaged 
to vascular fibrosis and arteriosclerosis [61] and gives rise to the differentiation of MSCs to 
smooth muscle cell. Furthermore, TGF-β secretion is connected with the MAPK/ERK cascade, 
and Ang II in this pathway interferes with TGF-β production, thus leading to the differentia-
tion of MSCs to smooth muscle cells [62].

Regarding owning various paracrine effects, MSC transplantation has gained great impor-
tance in cardiovascular disease [63]. The supportive effects of vascular VEGF have been rec-
ognized in the migration, invasion of extracellular matrix, proliferation, survival of MSCs, 
and they contribute to MSCs’ paracrine effects [64, 65]. In this context, all pathways increasing 
VEGF would give rise to the function of MSCs. Ang II increases VEGF mRNA and protein 
expression in MSCs [20], which is associated with Akt-signalling pathway. Pre-treatment of 
MSCs with the Akt inhibitor (LY292002) has been shown to reduce Ang II-induced VEGF 
expression. So, local Ang II, as a cytokine, might boost VEGF generation in MSC grafts and 
upgrade the transplantation effectiveness.

The excess RAS expression is detected in CVDs such as myocardial infarction, hypertension, 
heart failure and atherosclerosis [66]. On the other hand, RAS inhibition via ACE inhibitors 
(ACEIs) and angiotensin receptor blockers (ARBs) has been widely examined in cardiovascu-
lar disease beyond their effects in lowering the blood pressure [67]. Despite the daily increas-
ing use of regenerative medicine in treating different disorders, the functionality of stem cell 
transplantation is not sufficient in animal models and clinical trials [68].

Therefore, clarifying the mechanisms that enhance the graft efficacy seems important. 
Researchers have investigated the effect of RAS inhibition on stem cell therapy of cardiovas-
cular system [69].

The insulin-like growth factor 1-1 secreted from stem cells has a close relationship with the 
RAS and down-regulates the local RAS through the attenuation of the p53 gene [70]. The IGF-1 
has an anti-apoptotic effect on cardiomyocytes in ischaemic heart disease and also enhances 
differentiation and survival of stem cells after transplantation [71]. In acute MI in cardiomyo-
cytes, ACEIs up-regulate the IGF-1 receptors; thus, the concurrent use of perindopril in bone 
marrow stem cell transplantation increases the paracrine effects of the IGF-1, which abolishes 
apoptosis through increased Bcl2 expression and improves cardiac function [72]. Also, pre-
treatment of MSCs with ARBs before transplantation increases their trans-differentiation effi-

cacy and also improves the systolic function of the heart [73].

9. Limitations and future directions

Comprehensive elucidation of the complexity of the regulatory network that drives stem 
cell therapy will require extensive effort and time. The accretion of daily increasing research 
and obtained ideas will undoubtedly assist the current research field of stem/progenitor cell 
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therapy. Regenerative progenitor cell therapy has emerged as a possible alternative for phar-

macotherapy in different human diseases. A major problem in this field is insufficient efficacy 
during stem cell transplantation. In order to improve the efficiency of regenerative medi-
cine, researchers examined the impact of the modulation of various cell-signalling pathways, 
including the RAS. Effects of Ang II in stem cell proliferation and differentiation have been 
documented in the literature. The presence of the RAS components in progenitor cells and 
many tissues may regulate growth and development and thus might contribute to the prepa-

ration of various progenitor cells for clinical transplantation.
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