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Abstract

We present an overview of computational approaches for the prediction of metabolic 
pathways by which plants biosynthesise compounds, with a focus on selected very prom‐
ising anticancer secondary metabolites from floral sources. We also provide an overview 
of databases for the retrieval of useful genomic data, discussing the strengths and limita‐
tions of selected prediction software and the main computational tools (and methods), 
which could be employed for the investigation of the uncharted routes towards the bio‐
synthesis of some of the identified anticancer metabolites from plant sources, eventually 
using specific examples to address some knowledge gaps when using these approaches.

Keywords: anticancer, biosynthesis, computational prediction, natural products, plant 

metabolism

1. Introduction

An immense number of secondary metabolites (SMs) exist in nature, originating from plants, 
bacteria, fungi and marine life forms, serving as drugs for the treatment of many life‐threat‐

ening diseases, including cancer [1–4]. Taxol, vinblastine, vincristine, podophyllotoxin and 
camptothecin, for example, are typically well‐known drugs used in cancer treatment, which 
are of plant origin. The search for drugs against cancer has often resorted to plants and marine 

life for lead compounds. To illustrate this, Newmann and Cragg published a recent study in 

which it was shown that ~49% of drugs used in cancer treatment were either natural products 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



(NPs) or their derivatives [5]. We would henceforth refer to SMs and NPs  interchangeably, 

since NPs are the products of secondary (or specialised) metabolism, as opposed to primary 

metabolism, which results in molecules playing a key role in physiological processes of the 
organism and are thus necessary for the plant’s survival. It should be mentioned that SMs are 

important for the plant’s defence against attacks by other organisms. Several efforts have also 
been made towards the collection of data on naturally occurring plant metabolites showing 

anticancer properties. As an example, Mangal and co‐workers published the naturally occur‐

ring plant‐based anti‐cancer compound activity‐target database (NPACT), containing about 

1,500 NPs [6]. In addition to the experimentally verified in vitro and in vivo data for these NPs, 

the authors also include biological activities (in the form of IC
50

s, ED
50

s, EC
50

s, GI
50

s, etc.), 

along with physical, elemental and topological properties of the NPs, the tested cancer types, 

cell lines, protein targets, commercial suppliers and drug likeness of the NPACT compounds. 
A similar effort was published the following year, for NPs from African flora, resulting in a 
dataset of about 400 compounds, named AfroCancer [7]. A further study showed that the 

NPACT and AfroCancer datasets showed little intersection, thus providing us a combined 
dataset of about 2,000 NPs [8]. The anticancer properties of some of the most promising 

AfroCancer compounds have been described in detail in recent reviews [9–12]. Further cura‐

tion of data from Northern African species has recently resulted in the Northern African 

Natural Products Database (NANPDB), a web accessible and completely downloadable vast 

database of NPs, with a significant proportion of anticancer metabolites [13]. The NANPDB 

effort was founded on the observation that the Northern Africa region is particularly highly 
endowed with diverse vegetation types, serving as a huge reservoir of bioactive natural 

products [14–16].

For decades, NPs were identified exclusively by using chemical identification based on bio‐

activity‐guided screening approaches. Recently, it has been postulated that genomics and 

bioinformatics would transform the approach of natural products discovery, even though 

genome mining has had only little influence on the advancement of natural product discovery 
until now [17]. Several algorithms have been developed for the mining of the (meta)genomic 

data, which continue to be generated. Computational methods and tools for the identification 
of biosynthetic gene clusters (BGCs, which are physically clustered groups of a few genes 

in a particular genome that together encode a biosynthetic pathway for the production of 

a specialised metabolite) in genome sequences and the prediction of chemical structures of 

their products have been developed [18]. BGCs for SM biosynthetic pathways are impor‐

tant in bacteria and filamentous fungi, with examples being recently discovered in plants 
[19, 20], although some metabolic processes in plants, for example, the thalianol pathway for 
triterpene synthesis in Arabidopsis thaliana has been suggested to be controlled by operon‐like 
(clusters of unrelated) gene clusters [21]. This, coupled with the rapid progress in sequencing 

technologies has led to the development of new screening methods, which focus on whole 

genome sequences of the organisms producing the NPs. Genome mining approaches for NP 

discovery basically focus on:

• identifying the genes of the organism involved in the biosynthesis of the NPs,

• identifying the metabolic pathways by which the NPs are biosynthesised and

• predicting the products of the identified pathways (Figure 1A).
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The four main strategies that are mostly employed to identify such pathways are based on pro‐

cesses involved in the production of plant secondary metabolites, for example, physical clus‐

tering, co‐expression, evolutionary co‐occurrence and epigenomic co‐regulation of the genes 
[22–25]. Such approaches have been successfully applied for the investigation of fungal and 

microbial metabolites [26–28]. Since the discovery of the first gene cluster for secondary metabo‐

lism in Zea mays, the corn species [29], BGCs for plant secondary metabolism have become an 

emerging theme in plant biology [30]. It is even believed that synthetic biology technologies will 

eventually lead to the effective functional reconstitution of candidate pathways using a variety 
of genetic systems [25]. A knowledge of BGCs and their manipulation is therefore important in 
understanding how to activate a number of ‘silent’ gene clusters observed from the investigation 

of whole‐genome sequencing of organisms. This would make available a wealth of new chemical 
entities (NCEs), which could be evaluated as drug leads and biologically active compounds [20].

This chapter aims at discussing the metabolic pathways by which plants biosynthesise com‐

pounds with anticancer activities, with a focus on selected very promising anticancer SMs 

from the African flora. We also aim to provide an overview of computational tools, which 
have been used to predict metabolic pathways and eventually address knowledge gaps when 
using the former. Additionally, we will present some databases for the retrieval of useful 

genomic data, discuss the strengths and limitations of selected computational (prediction) 

tools, which could be employed for the investigation of the uncharted routes towards the 

biosynthesis of some of the identified anticancer metabolites from plant sources, with specific 
examples. It is believed that properly addressing knowledge gaps that exist would lay the 
foundation for proper future investigations.

2. Natural products and plant genomic data

Genome data mining indicates that the vast majority of plant‐based NPs have not yet been 

discovered [24, 25]. In addition, SMs are normally produced only at later growth stages of 

Figure 1. (A) Summary of genome mining approaches for the discovery of SMs and (B) classification of tools by 
applicability domain.
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plant metabolism and are frequently found only at low concentrations within complex mix‐

tures in plant extracts, due to several factors. Some of these factors include physiological 
variations, geographic variations, environmental conditions and genetic factors [25, 31, 32]. 

The aforementioned factors are the main drawbacks in the isolation and purification of NPs in 
meaningful quantities for either research or commercial aims. Nowadays, BGCs can be inves‐

tigated using computational methodologies and used to predict the NPs present in microbial, 

fungal and floral matter [18, 20, 33, 34]. It is current knowledge that more than 70 genome 
sequences for several plant species have been made available, along with a wealth of tran‐

scriptome data [25]. However, the interpretation of such data, for example, the translation 
of predicted sequences into enzymes, pathways and SMs remains challenging. Advances in 

bioinformatics and synthetic biology have permitted the cheap and efficient overproduction 
of secondary metabolites of medicinal interest in heterologous (non‐native) host organisms 

by reengineering of BGCs [35]. This is carried out through reengineering of BGCs as well 

as the activation of silent BGCs to yield unreported natural products of the target chemical 

space [17, 36], for example, an engineered Escherichia coli strain was used as the heterologous 

host organism for the production of taxadiene (a vital precursor of paclitaxel, an anticancer 
agent isolated from the bark of Taxus brevifolia), a precursor of the anticancer agent taxol [37]. 

In this way, quite a number of interesting SMs of plant origin (e.g. resveratrol, vanillin, cono‐

lidin, etc.) have been objects of pathway engineering in bacteria, yeast and other plants [38]. 

Thus, chemical libraries of diverse and novel hybrid natural products analogues can now 

be generated through combinatorial biosynthesis by manipulation of biosynthetic enzymes 

[39], for example, several analogues of the antibiotic erythromycin were obtained via combi‐

natorial biosynthesis [40]. Such bioengineered libraries of ‘unnatural’ natural products show 

promises in drug discovery campaigns against multidrug‐resistant cancer cells.

3. Some database resources for retrieving secondary metabolism 

prediction information

A summary of databases for retrieving information on BGCs is provided in Table 1. A major‐

ity of them focus on microbial BGCs, for example, ClusterMine360, ClustScan, DoBISCUIT, 
IMG‐ABC and the Recombinant ClustScan Database. Details on the utility of the aforemen‐

tioned databases have been provided in excellent recent reviews [26–28, 53]. Further efforts 
towards the construction of plant‐based BGC and genomic databases include those of the 

Medicinal Plants Genomics and Metabolomics Resource consortium [47]. This effort has been 
focused on 14 medicinal plants and includes a BLAST search module, a genome browser, a 

genome putative search function tool and transcriptome search tools. While the entire data‐

base is available for download, similar efforts from the Plant Metabolic Network (PMN) have 
the advantage of having included several plant metabolic pathway databases, mostly among 

food crops [49, 50]. The PMN, for example, currently houses one multi‐species reference data‐

base called PlantCyc and 22 species/taxon‐specific databases, providing access to manually 
curated and/or computationally predicted information about enzymes, pathways, and more 

for individual species.
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Database Description Web accessibility Advantages Disadvantages Reference

ClusterMine360 A database of microbial 

polyketide and non‐
ribosomal peptide gene 

clusters.

http://www.
clustermine360.ca/

Users can make contributions. 
Automation leads to high data 

consistency and quality data.

Focuses only on microbial PKS/

NRPS biosynthesis

[41, 42]

ClustScan Database A database for in silico 

detection of promising 

new compounds.

http://csdb.bioserv.pbf.hr/
csdb/ClustScanWeb.html

Allows easy extraction of 
DNA and protein sequences 

of polypeptides, modules, and 

domains.

Currently includes data for only 

57 SMs (PKS), 51 SMs (NRPS) 

and 62 SMs (PKS‐NRPS hybrid) 

biosynthesis.

[43, 44]

DoBISCUIT A database of secondary 

metabolite biosynthetic 

gene clusters.

http://www.bio.nite.go.jp/
pks/

Provides standardised gene/

module/domain descriptions 

related to the gene clusters. 

Available for download

Contains mostly data relating to 

bacterial species, mostly of the 

genus Streptomyces.

[45]

GenomeNet A network of databases 
and computational 

services for genome 

research and related 

research areas in 

biomedical sciences.

http://www.genome.jp/ Provides several web accessible 

tools, e.g. KEGG, E‐zyme, etc. 

See Table 2.

IMG‐ABC A knowledge base 
for biosynthetic 

gene clusters for the 

discovery of novel SMs.

https://img.jgi.doe.gov/
cgi‐bin/abc‐public/main.

cgi

Integrates structural and 

functional genomics with 

annotated BGCs and associated 

SMs.

Not available for download. 

Limited to data on microbes

[46]

Medicinal Plants 

Genomics Resource

A database for medicinal 

plants genome sequence 

data.

http://
medicinalplantgenomics.

msu.edu/

Available for download Only genomic data for 14 species 

are currently available.

[47]

Medicinal Plants 

Metabolomics Resource

A database for 

medicinal plants 

metabolomics data.

http://metnetweb.gdcb.
iastate.edu/mpmr_public/

Available for download Currently limited to metabolite 

data for 2 medicinal plant 

species.

[48]
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Database Description Web accessibility Advantages Disadvantages Reference

Minimum Information 

about a Biosynthetic 

Gene cluster (MIBiG)

A community standard 

for annotations 

and metadata on 

biosynthetic gene 

clusters and their 

molecular products.

http://mibig.
secondarymetabolites.org/

index.html

Facilitates the standardised 

deposition and retrieval of 

biosynthetic gene cluster data. 

Useful for the development of 
comprehensive comparative 

analysis tools. Available for 

download

[18]

Plant Metabolic 

Network (PMN)
Several plant metabolic 

pathway databases.

http://www.plantcyc.org/ Includes species/taxon‐specific 
data for more than 22 plant 

species.

[49, 50]

Plant Reactome/”Cyc” 

Pathways

A pathway database for 

several crops and model 

plant species.

http://gramene.org/
pathways

Currently includes gene 

homology‐based pathway 

projections to 62 plant species.

[51]

Recombinant ClustScan 

Database

A database of gene 

cluster recombinants 

and their corresponding 

chemical structures.

http://csdb.bioserv.pbf.hr/
csdb/RCSDB.html

Provides a virtual compound 

library, which could be a useful 

resource for computer‐aided 

drug design of pharmaceutically 

relevant chemical entities.

Currently contains only 47 

cluster combinations

[44, 52]

SMBP Secondary metabolites 

bioinformatics portal.

http://www.
secondarymetabolites.org/

Includes hand‐curated links to 
all major tools and databases 

commonly used in the field

[53]

Table 1. Summary of currently available database resources for retrieving genomic data for biosynthesis prediction.
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It provides a broad network of plant metabolic pathway databases that contain curated 
information from the literature and computational analyses about the genes, enzymes, 

compounds, reactions and pathways involved in primary and secondary metabolism in the 

included plant species. The PlantCyc database also provides access to manually curated or 

reviewed information about shared and unique metabolic pathways present in over 350 plant 

species. On the other hand, Plant Reactome is a pathway database for several crops and 

model plant species, making use of a framework of a eukaryotic cell model. Currently, it uses 
rice as a reference species and gene homology‐based pathway projections have been made to 

62 plant species [51].

4. Some computational tools for the analysis of genomic data and 

specialised metabolism prediction

Some computational tools for biochemical pathway prediction have been summarised in 

excellent reviews [54]. We have provided a more detailed summary of the main tools that 

could be useful in analysing plant and microbial genomic data for metabolism prediction in 

Table 2. Some of the tools are designed for the detection and analysis of specialised metabo‐

lism in microbes (e.g. antiSMASH, CompGen, GNP, PRISM and WebAUGUSTUS). Others are 
specially designed for plant metabolism prediction or may only include data for some specific 
organisms (e.g. AraNet, MADIBA, miP3v2, PlantClusterFinder, SAVI and WikiPathways for 
plants), while others are more general tools, useful for both microbial and plant metabolism 

prediction and BGC analysis (e.g. E‐zyme, KEGG, PathPred and PathComp) and others are 

more useful for developers (e.g. Geneious, OptFlux, PathVisio and Pathway GeneSWAPPER), 
Figure 1B. We could also classify the tools according to their respective tasks; prediction and 
analysis of BGCs (e.g. antiSMASH, MADIBA, Pathway GeneSWAPPER, WebAUGUSTUS), 
searching, visualisation and prediction of biosynthetic pathways and reaction paths (e.g. 

BioCyc, CycSim, FMM, GNP, KEGG, MetaCyc, PathComp, PathPred, PathSearch, PathVisio, 

Pathway GeneSWAPPER, PlantClusterFinder, SAVI, WikiPathways for plants), prediction of 
SMs (PRISM), metabolic engineering (OptFlux), other functions (miP3v2). Among the tools 
for specialised metabolism in plants, AraNet is a probabilistic functional gene network (with 
currently a total of 27,029 protein‐encoding genes) of A. thaliana. It is based on a modified 
Bayesian integration of data from multiple organisms, each data type being weighted based 

on how well it links genes that are known to function together in A. thaliana. Each interac‐

tion is associated with a log‐likelihood score (LLS), which is a measure of the probability of 
an interaction representing a true functional linkage between two genes [56]. On the other 

hand, MADIBA facilitates the interpretation of Plasmodium and plant (data currently avail‐

able for Oryza sativa and A. thaliana) gene clusters [64]. This tool eases the task by automating 
the post‐processing stage during the assignment of biological meaning to gene expression 
clusters. MADIBA is designed as a relational database and has stored data from gene to path‐

way for the aforementioned species. Tools within the GUI allow the rapid analyses of each 
cluster with the view of identifying the Gene Ontology terms, as well as visualising the meta‐

bolic pathways where the genes are implicated, their genomic localisations, putative common 
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Tool Utility Web accessibility Advantage Disadvantage Reference

antiSMASH* A web server and tool for 

the automatic genomic 

identification and analysis of 
biosynthetic gene clusters.

http://antismash.
secondarymetabolites.org.

Detects putative gene clusters 

of unknown types. Identifies 
similarities of identified clusters to 
any of 1172 clusters with known end 
products, etc.

Designed for analysis of 

BGCs in microbes.

[55]

AraNet Gene function identification 
and genetic dissection of plant 

traits.

http://www.functionalnet.
org/aranet/

Had greater precision than literature‐

based protein interactions (21%) 

for 55% of tested genes. Is highly 

predictive for diverse biological 

pathways.

Applicability is limited 

to one species ‐ A. 

thaliana.

[56]

BioCyc/CycSim/

MetaCyc

Online tools for genome‐scale 

metabolic modelling.

https://biocyc.org/http://
www.genoscope.cns.fr/

cycsim

https://metacyc.org/

Support the design and simulation of 

knockout experiments, e.g. deletions 
mutants on specified media, etc.

[57, 58]

CompGen Carry out in silico homologous 

recombination between gene 

clusters.

http://csdb.bioserv.pbf.hr/
csdb/RCSDB.html

Focuses on gene clusters 

encoding PKSs in 

Streptomyces sp. and 

related bacterial genera.

[52]

E‐zyme Assignment of EC numbers. http://www.genome.jp/
tools/e‐zyme/

Classifies enzymatic reactions and 
links the enzyme genes or proteins to 
reactions in metabolic pathways.

[59]

From Metabolite to 

metabolite (FMM)

A web server to find 
biosynthetic routes between 

two metabolites within the 

KEGG database.

http://FMM.mbc.nctu.edu.tw/ Both local and global graphical 

views of the metabolic pathways are 

designed.

[60]

Geneious Organisation and analysis of 

sequence data.

http://www.geneious.com/
basic

Includes a public application 

programming interface (API) 

available for developers. Freely 

available for download.

[61]

Genomes‐to‐Natural 

Products platform 

(GNP)

Prediction, combinatorial 

design and identification 
of PKs and NRPs from 

biosynthetic assembly lines.

http://magarveylab.ca/gnp/ Uses LC–MS/MS data of crude 
extracts to make predictions in a 
high‐throughput manner.

Focuses on bacterial 

NPs.

[62]
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Tool Utility Web accessibility Advantage Disadvantage Reference

Gene Regulatory 

network inference 
ACcuracy 

Enhancement 

(GRACE)

An algorithm to enhance the 

accuracy of transcriptional 

gene regulatory networks.

https://dpb.carnegiescience.
edu/labs/rhee‐lab/software

Focuses on plant species. Available 

for download.

Only algorithm is 

available. Lacks a 
graphical user interface

KEGG Mapper A tool to search a biosynthetic 

pathway.

http://www.kegg.jp/kegg/
tool/map_pathway1.html?rn

KEGG is applicable to all organisms 

and enables interpretation of high‐

level functions from genomic and 

molecular data.

[63]

MicroArray 

Data Interface 

for Biological 

Annotation 

(MADIBA)

A webserver toolkit for 
biological interpretation of 

Plasmodium and plant gene 

clusters.

http://www.bi.up.ac.za/
MADIBA

It allows rapid gene cluster analyses 

and the identification of the relevant 
Gene Ontology terms, visualisation 

of metabolic pathways, genomic 

localisations, etc.

Only 2 plant species are 

currently considered 

[rice (Oryza sativa), and 

A. thaliana].

[64]

miP3v2 Predicts microproteins in a 

sequenced genome.

https://github.com/npklein/
miP3

Sheds light on the prevalence, 

biological roles, and evolution of 

microProteins.

Only the algorithm 

is available. Lacks a 
graphical user interface

[65]

OptFlux A software platform for in 

silico metabolic engineering.

http://www.optflux.org/ Open source platform. Integrates 

visualisation tools. Allows users 

to load a genome‐scale model of 

a given organism. Wild type and 

mutants can be simulated. Available 

for download.

[66]

PathComp Possible reaction path 

computation.

http://www.genome.jp/tools/
pathcomp/

PathPred Prediction of biodegradation 

and/or biosynthetic pathways.

http://www.genome.jp/tools/
pathpred/

Specifically designed for biosynthesis 
of SMs (in plants) and xenobiotics 
biodegradation of environmental 

compounds (by bacteria).

[67]

PathSearch Search for similar reaction 

pathways.

http://www.genome.jp/tools/
pathsearch/
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Tool Utility Web accessibility Advantage Disadvantage Reference

PathVisio A biological pathway analysis 

software that allows users 

to draw, edit and analyse 

biological pathways.

http://www.pathvisio.org/ Plugins are included, which provide 

advanced analysis methods, 

visualisation options or additional 

import/export functionality. 
Available for download.

[68, 69]

Pathway 

GeneSWAPPER

Maps homologous genes from 

one species onto the PathVisio 

pathway diagram of another 

species.

http://jaiswallab.cgrb.
oregonstate.edu/software/

PGS

Improves the functionalities of 

PathVisio and WikiPathways for 
plants.

[70]

PlantClusterFinder Predicts metabolic gene 

clusters from plant genomes.

https://dpb.carnegiescience.
edu/labs/rhee‐lab/software

Focuses on plant species. Available 

for download.

Only the algorithm 

is available. Lacks a 
graphical user interface

Prediction 

informatics 

for secondary 

metabolomes 

(PRISM)

Genomes to natural products 

prediction informatics for 

secondary metabolomes.

http://magarveylab.ca/prism/ Open‐source, user‐friendly web 

available application.

Focuses on microbial 

SMs.

[71]

RetroPath A webserver for retrosynthetic 

pathway design.

http://www.jfaulon.com/
bioretrosynth/

Integrates pathway prediction and 

ranking, prediction of compatibility 
with host genes, toxicity prediction 
and metabolic modeling.

[72, 73]

Semi‐Automated 

Validation 

Infrastructure (SAVI)

Predicts metabolic pathways 

using pathway metadata (e.g. 

taxonomic distribution, key 
reactions, etc.).

https://dpb.carnegiescience.
edu/labs/rhee‐lab/software

Decides which pathways to keep, 
remove or validate manually. 

Available for download.

Only the algorithm 

is available. Lacks a 
graphical user interface.

WebAUGUSTUS Gene prediction tool. http://bioinf.uni‐greifswald.
de/webaugustus

One of the most accurate tools for 

eukaryotic gene prediction.
Focuses on eukaryotes. [74]

WikiPathways for 
plants

A community pathway 

curation portal.

http://plants.wikipathways.
org

Freely available. Currently limited to rice 

and Arabidopsis sp.

[70, 75, 76]

*Currently provided detection rules for 44 classes and subclasses of SMs.

Table 2. Summary of current computational tools which could be useful for the plant genomic data analysis.
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transcriptional regulatory elements in the upstream sequences, and an analysis specific to the 
organism being studied.

PlantClusterFinder, SAVI and WikiPathways for plants are all purpose tools designed to assist 
in the prediction of metabolic gene cluster from plant genomes, although WikiPathways for 
plants has currently included mostly data for rice and Arabidopsis sp. SAVI has the added 

advantage of offering the user the possibility of including pathway metadata (e.g. taxonomic 
distribution, key reactions, etc.) and offering the possibility to decide which pathway(s) to 
keep and which to remove or validate manually.

5. Some computational methods for efficient production and the de novo 

engineering of natural products

Two main areas for computational tools can be distinguished: on the one hand the rational 

modification of genomes for the production of molecules by host organisms, and on the other 
hand the modification or the de novo design of gene clusters for the biosynthesis of novel NPs. 

For both genetic engineering approaches, the already known genomes of bacteria, fungi and 
more and more plants provide the basic datasets. A very important computational approach 

for a rational modification of NP‐producing host organisms is the genome‐scale metabolic 
modelling [77, 78].

Automatic assignments of functional annotations of all genes in a genome are ideally proven 

by manual curation and enriched by current knowledge about the metabolic network of sub‐

jected organisms. The curated genomes are then applied to a complete automatic reconstruc‐

tion of the metabolic pathways of the cell. These metabolic models are normally encoded in 

the Systems Biology Markup Language (SBML) and are compatible with various software 
tools, for example, Cytoscape [79], which can be applied for static network analyses. For 
instance, missing enzymes (gaps) within the network become apparent by substrates that are 
not taken up or have not been produced by the cell, as well as products that are not consumed 
by other reactions and are not secreted from cell. The RAST annotation pipeline provides 

a full automatic server for predicting all gene functions and discovering new pathways in 

microbial genomes of bacteria [80]. Such models can then be used to predict the turnover rate 

of each reaction in a Flux Balance Analysis (FBA) [81]. Several tools have been built, which 

apply FBA to identify enzymes that should be either introduced or knocked‐out in the organ‐

ism to increase production rate in the host organisms. A widely used FBA package is the 
MATLAB‐based COBRA Toolbox [82]. With CycSim [58], BioMet [83] and FAME [84] power‐

ful web‐based FBA applications were published that do not require any software installation.

Within the last 10 years, FBA was applied to support numerous genetic engineering approaches,  

for example, for the determination of minimal media in Helicobacter pylori [85], for growth 

rate predictions in Bacillus subtilis [86] or for the development of metabolic engineering 

strategies in Pseudomonas putida [87]. Based on FBA, it was possible to increase vanillin 

production in baker’s yeast by twofold and enhance sesquiterpene production in the same 
species [88, 89].
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The rational modification of a given genome to design novel molecules needs a detailed 
understanding of the producing gene clusters. Well‐studied gene clusters such as polyketide 
synthases consist of specific domain types that can be identified by trained hidden Markov 
models that are stored in related databases, for example, PFAM [90]. Gene cluster analysis 

tools such as antiSMASH [55, 91] or PRISM [71] analyse a given gene cluster to predict 

the specific domains and to describe the architecture of a gene cluster. However, the pre‐

diction of the structure of the resulting natural products is a difficult task because sub‐

strate recognition of active sites and the correct ordering of enzymatic reactions has to 

be predicted. If subjected enzymes are catalysing multiple substrates, the availability of 

each substrate has to be predicted. Most frequently, the automatic analysis of a cluster 

is based on the deduction of information from gene clusters similar to the queried one. 

If well‐annotated similar gene clusters do not exist, the prediction of the structure of the 
biosynthesised NP is challenging. With more and more knowledge about the structure of 
natural products and the encoding sequences, the relation between the composition of the 

active sites and substrate binding will be better understood. Existing algorithms are often 
based on machine‐learning approaches and predict the correct substrates for a selected set 

of enzyme families [92]. For the prediction of NPs synthesised by non‐ribosomal peptide 

synthetases, such a sequence‐based prediction method is integrated in the related web‐

server NRPSpredictor2 [93]. Rational substitution of residues to generate novel molecules 

still requires a detailed manual analysis of the encoding gene cluster, and new software 

tools that propose mutations leading to novel molecules might accelerate this approach 

considerably in future.

6. Selected natural products with promising anticancer properties from 

African sources

Recent reviews on the anticancer potential of African flora have discussed the  anticancer, 
cytotoxic, antiproferative and antitumour activities of about 500 NPs [9–12]. In this  section, 

we focus on the most promising (recent) results for anticancer SMs from African flora 
(Table 3, Figure 2), published after the last reviews. The isolation of two new  lignans; 
3α‐O‐(β‐D‐glucopyranosyl) desoxypodophyllotoxin (1) and 4‐O‐(β‐D‐glucopyranosyl) 

 dehydropodophyllotoxin (2), alongside other known lignans (3 and 4), have been reported 

from the species, Cleistanthus boivinianus (Phyllanthaceae), collected in Madagascar 

( coordinates 13°06′37″S 049°09′39″E) [94]. These compounds showed potent to moderate 

antiproliferative activities against the A2780 ovarian cancer cell line, with compound 1 

showing potent antiproliferative activity against the HCT‐116 human colon carcinoma 

cell line (IC
50

 = 0.03 µM). The known compounds with promising activities from this 
species included the  lignans; (±)‐β‐apopicropodophyllin (3, PubChem CID: 6452099), 

(−)‐ desoxypodophyllotoxin (4, PubChem CID: 345501). The same authors also isolated a new 

butanolide,  macrocarpolide A (5, PubChem CID: 122372160) and two new  secobutanolides; 
macrocarpolides B (6, PubChem CID: 122372161) and C (7, PubChem CID: 122372162), 

together with other known compounds from the ethanol extract of the roots of the Madagascan 
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Cpd. No.* Molecule class Source species (Family) Cancer cell line IC
50

 (µM) Biosynthetic pathway References

1 lignan Cleistanthus boivinianus 

(Phyllanthaceae)

HCT‐116 human colon 

carcinoma cell line

0.03 shikimic acid pathway, 
via phenylalanine

[94]

A2780 ovarian cancer cell line 0.02

2 ” ” ” 2.10 ” ”

3 ” ” ” 0.06 ”

4 ” ” ” 0.23 ”

5 butanolide Ocotea macrocarpa 

(Lauraceae)

” 2.57 [95]

6 secobutanolide ” ” 1.98 ”

7 ” ” ” 1.67 ”

8 butanolide ” ” 2.43 ”

9 ” ” ” 1.65 ”

10 polyoxygenated 
cyclohexene derivative

Cleistochlamys kirkii 

(Annonaceae)

MDA‐MB‐231 triple‐negative 

human breast cancer cell line

0.03 Shikimic acid pathway [96]

11 ” ” ” 0.29 ” ”

12 ” ” ” 0.29 ” ”

13 ” ” ” 0.12 ” ”

14 ” ” ” 0.45 ” ”

15 ” ” ” 2.10 ” ”

16 ” ” ” 0.09 ” ”

17 ” ” ” 2.70 ” ”

18 ” ” ” 0.24 ” ”

*Compound number.

Table 3. Summary of recently published selected promising anticancer SMs from African flora.
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species Ocotea  macrocarpa (Lauraceae), which showed antiproliferative activities against 

the A2780 ovarian cell line [95]. The known isolates included the butanolides; linderano‐

lide B (8, PubChem CID: 53308122) and isolinderanolide (9, PubChem CID: 44576054). The 

anticancer activities showed IC
50

 values of 2.57 (5), 1.98 (6), 1.67 (7), 2.43 (8) and 1.65 µM 

(9) against A2780 ovarian cancer cell lines. Additionally, the leaves of Cleistochlamys kirkii 

(Annonaceae) from Tanzania have been recently shown to be a rich source of polyoxygen‐

ated cyclohexene derivatives with antiplasmodial activities, along with very potent activi‐
ties against MDA‐MB‐231 triple‐negative human breast cancer cell line [96]. The isolates; 
cleistodienediol (10), cleistodienol A (11), cleistodienol B (12), cleistenechlorohydrin A (13), 

cleistenechlorohydrin B (14), cleistenediol F (15), cleistophenolide (16), ent‐subglain C (17) 

and melodorinol (18, PubChem CID: 6438687) showed some activities as low as IC
50

 = 0.09 µM  

against the aforementioned cancer cell lines. To the best of our knowledge, mode of action 
studies have not yet been conducted for the SMs 1 to 18 and in vivo activity data is currently 

unavailable.

Figure 2. Chemical structures of selected anticancer SMs from African flora.
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7. Case studies

In this section, we shall discuss specific examples of the investigation of biosynthesis of anti‐
cancer plant‐based SMs by (computational) analysis of genomic data.

7.1. Biogenesis of several anticancer metabolites by Ocimum tenuiflorum (Lamiaceae)

Species from the genus Ocimum are well known for their high medicinal values and are there‐

fore used to cure a variety of ailments in Ayurveda, an Indian system of medicine [97, 98]. 

About 30 SMs have been reported from the genus Ocimum, with a variety of biological proper‐

ties [99]. Only 14 of these SMs belong to the five basic groups of compounds having a complete 
biosynthetic pathway information in the PMN database [49, 50], thereby leaving us with ~15 

medicinally relevant metabolites from Ocimum sp. with unknown pathways. This has prompted 
further investigation on SMs with uncharted biosynthetic pathways. Several bioactive SMs, 

including the anticancer compounds; apigenin (19, PubChem CID: 5280443), rosmarinic acid 

(20, PubChem CID: 5281792), taxol (21, PubChem CID: 36314), ursolic acid (22, PubChem CID: 

64945), oleanolic acid (23, PubChem CID: 10494) and the plant steroid sitosterol (24, PubChem 

CID: 222284) have been identified from the herb Krishna Tulsi (O. tenuiflorum, Lamiaceae), with 

the mature leaves retaining the medicinally relevant metabolites [100]. Upadhyay et al. carried 
out a draft genome analysis of the species and generated paired‐end and mate‐pair sequence 

libraries for the whole sequenced genome, together with transcriptomic analysis (RNA‐Seq) of 

two subtypes of O. tenuiflorum (Krishna and Rama Tulsi) and reporting the relative expression 
of genes in the both varieties. The authors further investigated the pathways, which lead to the 

biosynthesis of the identified SMs, with respect to similar pathways in A. thaliana and other 

model plants (e.g. Oryza sativa japonica). Six important genes (including Q8RWT0 and F1T282) 

were expressed and identified from analysis of genome data. These were validated by q‐RT‐PCR 
on the different studied tissues (e.g. roots, mature leaves, etc.) of five closely related species (e.g. 

O. gratissimum, O. sacharicum, O. kilmund, Solanum lycopersicum and Vitis vinifera), which showed 

a high extent of urosolic acid‐producing genes in young leaves. The other identified anticancer 
metabolites included eugenol and ursolic acid. As an example, the authors employed sequence 
search algorithms to search for the three enzymes of the three‐step synthetic pathway of ursolic 

acid from squalene in the Tulsi genome. Each of these enzymes in Tulsi (squalene epoxidase, 
α‐amyrin synthase and α‐amyrin 2,8 monoxygenase) were queried from the PlantCyc database, 

starting from their protein sequences. The search for analogous enzymes in the model plants 

O. sativa japonica and A. thaliana, showed sequence identity covering from 50 to 80% of the query 

length. The whole genome and sequence analysis of O. tenuiflorum suggested that small amino 

acid changes at the functional sites of genes involved in metabolite synthesis pathways could 

confer special medicinal (particularly anticancer) properties to this herb.

7.2. Biosynthesis of the anticancer alkaloid noscapine by Papaver somniferum 

(Papaveraceae)

Noscapine (25, PubChem CID: 275196) is an antitumour phthalideisoquinoline alkaloid 
from opium poppy (Papaver somniferum, Papaveraceae). Compound 25 is known to bind 
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 stoichiometrically to tubulin, alters its conformation, affects microtubule assembly (promotes 
microtubule polymerisation), hence arresting metaphase and inducing apoptosis in many 

cell types [101]. It has been demonstrated that the compound has potent antitumour activ‐

ity against solid murine lymphoid tumours (even when the drug was administered orally). 

This drug has also shown potency against human breast, ovarian and bladder tumours 

implanted in nude mice and in dividing human cells [102, 103]. Although the compound 

is water‐soluble and absorbed after oral administration, its chemotherapeutic potential in 

human cancer could not be fully exploited for drug discovery projects because, like most 
SMs, this has been limited by the typically small amounts produced in the slow‐growing 

plant species [104]. The quest to improve production levels of the NP is essential for drug dis‐

covery. However, such would require a proper understanding biological processes under‐

lying the biosynthesis of this SM, known from isotope‐labelling experiments to be derived 
from scoulerine since the 1960s [105]. Winzer et al. have carried out a transcriptomic analysis, 

with the aim of elucidating the biosynthetic pathway of this important metabolite for the 

improvement of its commercial production in both poppy and other systems [106]. The anal‐

ysis of a high noscapine‐producing poppy variety, HN1, showed the exclusive expression 
of 10 genes encoding five distinct enzyme classes, whereas five functionally characterised 
genes (BBE, TNMT, SaIR, SaIAT and T6ODM) were present in all three of the studied poppy 

varieties, respectively, rich in morphine, thebaine and noscapine (HM1, HN1 and HT1). 

The authors analysed the expressed sequence tag (EST) abundance and discovered some 
previously uncharacterised genes expressed in HN1, which were completely absent from 

the other (HM1 and HT1) EST libraries. This led to the identification of the corresponding 

enzymes as three O‐methyltransferases (PSMT1, PSMT2, PSMT3), four cytochrome P450s 

(CYP82X1, CYP82X2, CYP82Y1 and CYP719A21), an acetyltransferase (PSAT1), a carboxyles‐

terase (PSCXE1) and a short‐chain dehydrogenase/reductase (PSSDR1). Further analysis of 

an F2 mapping population, using HN1 and HM1 as parents, indicated that these genes are 

tightly linked in HN1. Moreover, bacterial artificial chromosome sequencing confirmed the 
existence of a complex BGC for plant alkaloids. Based on the knowledge derived from the 
investigation, the authors could make suggestions for the improved production of noscapine 
and related bioactive molecules by the molecular breeding of commercial poppy varieties or 

engineering of new production systems, for example, by virus‐induced gene silencing, which 
resulted in the accumulation of pathway intermediates, thus allowing gene function to be 

linked to noscapine synthesis [104, 106].

7.3. Biosynthesis of vinblastine and vincristine by Catharanthus roseus (Apocynaceae)

Vinblastine (26, PubChem CID: 13342) and vincristine (27, PubChem CID: 5978) are chemo‐

therapy drugs used to treat a number of cancer types. These are among the >120 known ter‐

penoid indole alkaloids from the medicinal plant C. roseus, also known as the Madagascar 
periwinkle [107]. Since these two very important anticancer compounds have only been 

produced in very low amounts in C. roseus, as opposed to the fairly high levels of several 

monomeric alkaloids (e.g. ajmalicine and serpentine) [108], attempts to improve the yields of 
compounds 26 and 27 have led to the genome‐wide transcript profiling of elicited C. roseus 

cell cultures, by cDNA‐amplified fragment‐length polymorphism combined with metabolic 
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profiling [107]. This resulted in the identification of several gene‐to‐gene and gene‐to‐metabo‐

lite networks obtained by an attempt to establish correlations between the expression profiles 
of 417 gene tags and the accumulation profiles of 178 metabolite peaks. The results proved 
that different branches of terpenoid indole alkaloid biosynthesis and various other metabolic 
pathways are affected by differences in hormonal regulation. Thus, the investigations of 
Rischer et al. provided the foundations for a proper understanding of secondary metabolism 

in C. roseus, thereby enhancing the applicability of metabolic engineering of Madagascar peri‐

winkle. This study provided the possibility of exploring a select number of genes (e.g. STR, 

10HGO, T16H and DAT) involved in biosynthesis of terpenoid indole alkaloids [107].

8. The way forward

The case studies show that the detailed computational analysis of the transcriptomic and 

metabolomic data of a plant species could reveal its metabolic capacity and hence help 

identify candidate genes involved in the biosynthesis of the important SMs it contains. 

Thus, modifying the plant genes could represent a premise for improving metabolite 

yield. It should be mentioned that other compounds from some of the aforementioned 

compound classes (Table 3), from both floral and microbial sources, have shown promis‐

ing anticancer activities [109–113], e.g. isolinderanolide B (28, PubChem CID: 53308122) 

(Figure 3), a butanolide from the stems of Cinnamomum subavenium (Lauraceae) had shown 

antiproliferative activity in T24 human bladder cancer cells by blocking cell cycle pro‐

gression and inducing apoptosis [112]. In addition, subamolide B (29, PubChem CID: 

16104907), another butanolide from this same species, is known to induce cytotoxicity in 
human cutaneous squamous cell carcinoma through mitochondrial and CHOP‐dependent 

cell death pathways [113]. Meanwhile, obtusilactone B (30, PubChem CID: 101286261), 

from Machilus thunbergii (Lauraceae), is known to target barrier‐to‐autointegration factor 
to treat cancer [111].

From the African flora, apart from the Lauraceae, Phyllanthaceae and Annonaceae, known 
to be rich in anticancer metabolites, the genus Tacca of the yam family (Dioscoreaceae) is 

known for the abundant presence of taccalonolides, which are microtubule stabilisers with 
clinical potential for cancer treatment [114]. Additionally, the genus Tamarix (e.g. T. aphylla 
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Figure 3. Chemical structures of selected anticancer butanolides from Lauraceae.
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and T. nilotica from Northern Africa), together with the genus Reaumuria (Tamaricaceae) are 

known for the abundant presence of tannins (gallo‐ellagitannin, gallotannins) with remark‐

able cytotoxic effects. The high salt content of the leaves of Tamarix species, rendering them 

useful locally as a fire barrier, and their adaptability to drought and high salinity are of equal 

interest. It therefore becomes urgent to investigate the genomics of some of the aforemen‐

tioned plant species, particularly those from the Cinnamomum sp., Ocotea sp. and Machilus 

sp. (Lauraceae), Tacca sp. (Dioscoreaceae), Cleistanthus sp. (Phyllanthaceae), Cleistochlamys sp. 

(Annonaceae), Tamarix sp. (Tamaricaceae) and so on, and hence further investigate the genes 

or BGCs responsible for secondary metabolism with the view of understanding and better 
exploring the biosynthetic pathways of the anticancer SMs.

9. Conclusions

It has been our intention in this chapter to provide a detailed overview of the important com‐

putational tools and resources for the analysis of plant genomic data and for the prediction 

of biosynthetic pathways in plants. We have taken a few case studies of anticancer SMs to 
illustrate this. Even though it is unclear how widespread plant genes are clusters, genes that 

encode the biosynthesis of several small plant SMs are well known, including the vital genes 
for the production of some highly potent anticancer drugs. With the use of the tools and data‐

bases described, along with the drop in the cost of whole genome sequencing in plant species, 

the future for the discovery of new plant‐based anticancer metabolites would involve the iden‐

tification of one or more genes or BGCs encoding the enzymes in the biosynthetic pathway for 
the target compound(s), followed by the co‐expression analysis, also exploiting the knowledge 
of the chemical structure of the target compound, for the identification of other enzymes that 
might be involved in this pathway. As an example, the exploration of the pathway for podo‐

phyllotoxin biosynthesis by the use transcriptome mining in Podophyllum hexandrum led to the 

identification biosynthetic genes, 29 of which were combinatorially expressed in the tobacco 
plant (Nicotiana benthamiana), leading to the identification of six pathway enzymes, among 
which is oxoglutarate‐dependent dioxygenase responsible for closing the core cyclohexane 
ring of the aryltetralin scaffold [115]. An alternative approach could be, if the metabolic path‐

way and nature of SMs are unknown, then the identified co‐expressed genes encoding the 
enzymes for secondary metabolism could be subjected to untargeted metabolomics for the 

elucidation of unknown pathways and chemical structures. As an example, a single patho‐

gen‐induced P450 enzyme, CYP82C2, with a combination of untargeted metabolomics and 

co‐expression analysis was used to uncover the complete biosynthetic pathway, which leads 
to the metabolite 4‐hydroxyindole‐3‐carbonyl nitrile, previously unknown to Arabidopsis 

sp. This rare and hitherto unprecedented plant metabolite, with a cyanogenic functionality 

revealed a hidden capacity of Arabidopsis sp. for cyanogenic glucoside biosynthesis. This was 

confirmed by expressing 4‐OH‐ICN engineering biosynthetic enzymes in Saccharomyces cere-

visiae and Nicotiana benthamiana, to reconstitute the complete pathway in vitro and in vivo, thus 

validating the functions of the enzymes involved in the pathway [116].
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Abbreviations

AfroCancer African Anticancer Natural Products Database

BGC Biosynthetic gene clusters

EC
50

Half maximal effective concentration, that is, the concentration of a drug, 
antibody or toxicant, which induces a response halfway between the baseline 
and maximum after a specified exposure time

ED
50

The median effective dose, a dose that produces the desired effect in 50% of a 
population

FBA Flux Balance Analysis

GI
50

The growth inhibition of 50%, drug concentration resulting in a 50% reduction 

in the net protein increase.

IC
50

The drug concentration causing 50% inhibition of the desired activity

IMG‐ABC The Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters

NANPDB Northern African Natural Products Database

NP Natural product

NPACT Naturally Occurring Plant‐based Anti‐cancer Compound Activity‐Target 

Database

NRP Nonribosomal peptide

NRPS Nonribosomal peptide synthase

PK Polyketide

PKS Polyketides synthase

PMN Plant Metabolic Network

PRISM PRediction Informatics for Secondary Metabolomes

SM Secondary metabolite
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