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Abstract

In this chapter, we provide an overview on the Lagrangian subspaces of manifolds,
including but not limited to, linear vector spaces, Riemannian manifolds, Finsler mani-
folds, and so on. There are also some new results developed in this chapter, such as finding
the Lagrangians of complex spaces and providing new insights on the formula for mea-
suring length, area, and volume in integral geometry. As an application, the symplectic
structure determined by the Kähler form can be used to determine the symplectic form of
the complex Holmes-Thompson volumes restricted on complex lines in integral geometry
of complex Finsler space. Moreover, we show that the space of oriented lines and the
tangent bundle of unit sphere in Minkowski space are symplectomorphic.

Keywords: Lagrangian subspace, differential geometry

1. Introduction

In differential geometry and differential topology, manifolds are the main objects being studied,

and Lagrangian submanifolds are submanifolds that carry differential forms with special prop-

erty, which are usually called symplectic form in real manifolds and Kahler form in complex

manifolds.

This book chapter is concerned with explicit canonical symplectic form for real and complex

spaces and answer to the questions on the existence of Lagrangian subspace. One can find and

explicitly describe the set of Lagrangian subspaces of R2 with Lp norm, 1 ≤ p < ∞, as a an

example of Finsler spaces. Since Holmes-Thompson volumes, as measures, depend on the

differential structures of the spaces, the symplectic structure determined by the symplectic

form can be used to determine the symplectic form of Holmes-Thompson volumes restricted

on lines in integral geometry of Lp spaces, as an application to integral geometry.

Some ingenuous ideas in physics and engineering actually originated from mathematics. For

example, the relativity theory in physics, to some sense, originated from Riemmanian geometry.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The real Finsler spaces, as generalizations of real Riemannian manifolds, were introduced in Ref.

[1] about a century ago and have been studied by many researchers (see, for instance, Refs. [2–

4]), and Finsler spaces (see, for instance, Refs. [5, 6]) have become an interest of research for the

studies of geometry, including differential geometry and integral geometry, in recent decades. By

the way, there are applications of Finsler geometry in physics and engineering, and in particular,

Finsler geometry can be applied to engineering dynamical systems, on which one can see Ref.

[7]. As a typical Finsler space, Lp space, 1 < p < ∞, has the main features of a Finsler space. As

such, we focus on Lp space, 1 < p < ∞, in this chapter, but some results can be generalized to

general Finsler spaces, on which one can refer to Ref. [8]. The Lp space, 1 < p < ∞, as a general-

ization of Euclidean space, has a rich structure in functional analysis (see, for instance, Refs.

[9, 10]), and particularly in Banach space. Furthermore, it has broad applications in statistics (see,

for instance, Refs. [11, 12]), engineering (see, for instance, Ref. [13, 27]), mechanics (see, for

instance, Ref. [14]), computational science (see, for instance, Ref. [15]), biology (see, for instance,

Ref. [16]), and other areas. Along this direction, Lp, 0 < p ≤ 1, in the sense of conjugacy to the

scenario of Lp, 1 < p < ∞, also has broad applications, in particular, signal processing in engi-

neering, on which one can see Refs. [17–19].

This chapter is structured as follows: In Section 2, we provide a description on Gelfand

transform, which is one of the most fundamental transforms in integral geometry; in Section

3, we introduce density needed for the measure of length of curves; in Section 4, we further

study the Lagrangian subspaces of complex Lp spaces; in Section 5, we work on tangent bundle

of unit sphere in Minkowski space and its symplectic or Lagrangian structure; in Section 6, we

apply the Lagrangian structure to establish the length formula in integral geometry; and in

Section 7, we further apply the Lagrangian structure of a Minkowski space to establish the

formula for the Holmes-Thompson area in integral geometry.

2. Gelfand transform

Given a double fibration:

R
2
←

π1
F!
π2
Gr1ðR

2Þ (1)

where

F ¼
n

ððx;yÞ, lðr;θÞÞ : ðx;yÞ∈R2, lðr;θÞ∈Gr1ðR
2Þ, ðx;yÞ∈ lðr;θÞ

o

≃

n

ðx;y;r;θÞ : x cos ðθÞ þ y sin ðθÞ ¼ r
o

;

π1 and π2 are the natural projections of fibers. The Gelfand transform of a 2-density ϕ ¼

jdr∧dθj is defined as
GTðϕÞ ¼ π1�π

�
2ϕ; (2)

which is a 1-density R2.
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3. 1-Density

Lemma 3.1. For any v ¼ ðα;βÞ∈Tðx;yÞR
2
;

GTðϕÞððx;yÞ, vÞ ¼ 4jvj: (3)

Proof. For v ¼ ðα;βÞ∈Tðx;yÞR
2
; there exists

~v ¼ ðα;β;αcosðθÞ þ βsinðθÞ,θÞ∈Tððx;yÞ, lðr;θÞÞF; (4)

such that dπ1ð~vÞ ¼ v. Therefore, we have

GTðϕÞðvÞ ¼

ð

π−1
1
ððx;yÞÞ

π�
2ϕð~v, ▪Þ

¼

ð

fðx;yÞ, lðp;θÞ: xcosðθÞþysinðθÞ¼rg

jdr∧dθjð~v;▪Þ

¼

ð2π

0

jαcosðθÞ þ βsinðθÞjdθ

¼

ð2π

0

jv � ðcosðθÞ, sinðθÞÞjdθ

¼ jvj

ð2π

0

cosðθ0 þ θÞdθwhere α ¼ jvj cos ðθ0Þ, β ¼ jvj sin ðθ0Þ

¼ 4jvj: (5)

Remark 3.2. By Alvarez’s Gelfand transform for Crofton type formulas, we know that

ð
l∈R2

#ðγ∩lðr;θÞÞdrdθ ¼

ð
γ

GTðϕÞ: (6)

Thus, we have now proved the Crofton formula: Given a differentiable curve γ in R2, the

length of γ can be computed in the following formula:

LengthðγÞ ¼
1

4

ð
l∈R2

#ðγ∩lðr;θÞÞdrdθ: (7)
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4. Lagrangian subspaces of complex spaces

Some of the results have obtained in Ref. [8], but because the Lagrangian subspaces of complex

spaces are essential to establish the generalized volume formula in complex integral geometry,

let us give an expository on the Kahler strut rue of generalized complex spaces.

Theorem 4.1. The set of Lagrangian subspaces of C2 with L1 norm is T2
∪T

1, where

T
2

:¼ fspanððz; 0Þ, ð0;wÞÞ : z;w∈Uð1Þg≅Uð1Þ·Uð1Þ (8)

and

T
1

:¼
�

P : P ¼ fλðz;wÞ : λ∈R;z;w∈Uð1Þ, zw is a constant in Uð1Þg
�

≅Uð1Þ: (9)

Proof. First, we can show that

P ¼ fλðz;wÞ : λ∈R;z;w∈Uð1Þ, zw is a constant in Uð1Þg (10)

is identical to some

P′
:¼ spanððz1;z1e

iθÞ, ðz2;
z21z2

jz1j
2
eiθÞÞ (11)

where z1;z2 ∈C\f0g. For any λðeiϕ;eiψÞ∈P, let z1 ¼ λeiϕ, θ ¼ ψ−ϕ, we have P ¼ spanððz1;z1e
iθÞ,

ðz2;
z2
1
z2

jz1 j
2 eiθÞÞ ¼ P′ where z2 ∈C\f0g.

We can get κ1ðz1; 0Þ, ð0;z2ÞÞ ¼ 0. On the other hand, for any

ðz;wÞ ¼ λ1ðz1;z1Þ þ λ2ðz2;
z21z2

jz1j
2
Þ∈ spanððz1;z1Þ, ðz2;

z21z2

jz1j
2
ÞÞ, (12)

where λ1;λ2 ∈R,

jwj2 ¼ ðλ1z1 þ λ2
z21z2

jz1j
2
Þðλ1z1 þ λ2

z1
2z2

jz1j
2
Þ

¼ λ2
1z1z1 þ λ1λ2z1z2 þ λ2λ1z1z2 þ λ2

2z2z2
¼ ðλ1z1 þ λ2z2Þðλ1z1 þ λ2z2Þ

¼ jzj2;

(13)

that implies jwzj ¼ 1. Therefore, we have

κðz;wÞððz1;z1Þ, ðz2;
z21z2
jz1 j

2 ÞÞ ¼ 3
2 ðImðz2z1Þ þ 3

2 Imðz
2
1z2
jz1j

2 z1ÞÞ

−1
2 Imð zw j

w
z jð

z21z2
jz1 j

2 z1−z1z2ÞÞ

¼ 3
2 ðImðz2z1Þ þ Imðz1z2ÞÞ

¼ 0:

(14)

So κ vanishes on spanððz1;z1Þ, ðz2;
z2
1
z2

jz1 j
2 ÞÞ for any z1;z2 ∈C\f0g, Imðz1z1Þ≠0.
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Conversely, suppose that κ vanishes on a plane P spanned by ðz1;w1Þ and ðz2;w2Þ. We know

that

ð1þ
1

2
j
w

z
jÞImðz2z1Þ þ ð1þ

1

2
j
z

w
jÞImðw2w1Þ þ

1

2
Imð

z

w
j
w

z
jðw2z1−w1z2ÞÞ ¼ 0 (15)

holds for any ðz;wÞ∈ spanððz1;w1Þ, ðz2;w2ÞÞ. In the following argument, we divide it into three

cases to discuss in terms of jw
z
j and w

z
jw
z
j.

The first case is that jw
z
j ¼ λ for some fixed λ > 0. Let ðz;wÞ ¼ λ1ðz1;w1Þ þ λ2ðz2;w2Þ for any

λ1;λ2 ∈R, then jλ1w1 þ λ2w2j ¼ λjλ1z1 þ λ2z2j, that implies jw1j ¼ λjz1j, jw2j ¼ λjz2j and

Reðw1w2Þ ¼ λ
2
Reðz1z2Þ. It follows that w1 ¼ λe

iθ
z1, w2 ¼ λe

iθ
z2, or w1 ¼ λe

iθ
z1, w2 ¼ λe

iθ z
2
1z2
jz1 j

2

for some θ∈ ½0; 2πÞ.

In the sub-case of w1 ¼ λe
iθ
z1, w2 ¼ λe

iθ
z2 for some θ∈ ½0; 2πÞ, by Eq. (15) we have

ð1þ
λ

2
ÞImðz2z1Þ þ ð1þ

1

2λ
Þλ2

Imðz2z1Þ þ λImðz2z1Þ ¼ ð1þ λÞ2Imðz2z1Þ ¼ 0; (16)

which implies Imðz2z1Þ ¼ 0 and furthermore Imðw2w1Þ ¼ 0. That means ðz1;w1Þ and ðz2;w2Þ are

colinear. So this case cannot occur.

However, for the other sub-case of w1 ¼ λe
iθ
z1, w2 ¼ λe

iθz
2
1
z2

jz1 j
2 for some θ∈ ½0; 2πÞ, by Eq. (15) we

have

ð1þ
λ

2
ÞImðz2z1Þ þ ð1þ

1

2λ
Þλ2

Imðz1z2Þ ¼ ð1−λ2ÞImðz2z1Þ ¼ 0: (17)

Then λ ¼ 1 or Imðz2z1Þ ¼ 0, but ðz1;w1Þ and ðz2;w2Þ cannot be colinear. So, we have λ ¼ 1

which gives

P ¼ spanððz1;z1e
iθÞ, ðz2;

z
2
1z2

jz1j
2
e
iθÞÞ, (18)

where z1;z2 ∈C\f0g and Imðz1z2Þ≠0 for some θ∈ ½0; 2πÞ. This finishes the first case.

The second case is w

z
jw
z
j ¼ e

iθ for some fixed θ∈ ½0; 2πÞ. Let w1 ¼ λ1e
iθ
z1;w2 ¼ λ2e

iθ
z2 for some

λ1;λ2 > 0. Then it follows from (15) that

ð1þ λ1

2 ÞImðz2z1Þ þ ð1þ 1
2λ1

Þλ1λ2Imðz2z1Þ þ 1
2 ðλ1 þ λ2ÞImðz2z1Þ

¼ ð1þ λ2

2 ÞImðz2z1Þ þ ð1þ 1
2λ2

Þλ1λ2Imðz2z1Þ þ 1
2 ðλ1 þ λ2ÞImðz2z1Þ

¼ ð1þ λ1Þð1þ λ2ÞImðz2z1Þ
¼ 0

(19)

at the points ðz1;w1Þ and ðz2;w2Þ, which implies Imðz2z1Þ ¼ 0 and furthermore Imðw2w1Þ ¼ 0.

Thus, z1 and z2, w1, and w2 are colinear, which implies that P equals a plane spanned by one

vector from fðz1; 0Þ, ðz2; 0Þg and the other from fð0;w1Þ, ð0;w2Þg. Thus P∈T
2.

The last case is the negative to the first one and the second one. It gives Imðz2z1Þ ¼ Imðw2w1Þ

¼ 0 and w2z1−w1z2 ¼ 0 because of the linear independence, but the former implies the latter by
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linear transformation, so it is brought down to Imðz2z1Þ ¼ Imðw2w1Þ ¼ 0. Thus, we have P∈T
2

by the second case, and that concludes the proof.

5. Tangent bundle of uni-sphere in Minkowski space and symplectic or

Lagrangian structure

In this section, we show that the space of oriented lines and the tangent bundle of unit sphere

in Minkowski space are symplectomorphic.

Let us consider a Minkowski plane ðR2
;FÞ first, where F is a Finsler metric. The natural

symplectic form on T�
R

2 is dx∧dξþ dy∧dη, and then the natural symplectic form on TR2

induce by the Finsler metric F is

ω :¼ dx ∧d
∂F

∂ξ
þ dy∧d

∂F

∂η

¼
∂2F

∂ξ2
dx ∧dξþ

∂2F

∂ξ∂η
ðdx∧dηþ dy∧dξÞ þ

∂2F

∂η2
dy∧dη:

(20)

Define a projection π : TR2 ! Gr1ðR
2Þ by

πððx;yÞ; ðξ;ηÞÞ ¼ ððx;yÞ−dFðξ;ηÞððx;yÞÞðξ;ηÞ; ðξ;ηÞÞ: (21)

Let SF be the unit circle in the Minkowski plane and TSF be its tangent bundle. It is a fact that

TSF≅Gr1ðR
2Þ. On the other hand, since TSF is embedded in TR2, it inherits a natural symplectic

form ω0 :¼ ωjTSF from TR2.

Theorem 5.1. π�ω0 ¼ ωjS�R2 :

Proof. Applying the equality

∂F

∂ξ
dξþ

∂F

∂η
dη ¼ 0; (22)

we obtain

π�ω0 ¼
∂
2F

∂ξ2
dðx−dFðξ;ηÞððx;yÞÞξÞ∧dξþ

∂
2F

∂ξ∂η
ðdðx−dFðξ;ηÞððx;yÞÞξÞ∧dη

þ dðy−dFðξ;ηÞððx;yÞÞηÞ∧dξÞ þ
∂
2F

∂η2
dðy−dFðξ;ηÞððx;yÞÞηÞ∧dη

¼
∂
2F

∂ξ2
dx∧dξþ

∂
2F

∂ξ∂η
ðdx∧dηþ dy∧dξÞ þ

∂
2F

∂η2
dy∧dη

−dðdFðξ;ηÞððx;yÞÞÞ∧ð
∂
2F

∂ξ2
ξdξþ

∂
2F

∂η2
ηdηþ

∂
2F

∂ξ∂η
ðξdηþ ηdξÞÞ:

(23)

Lagrangian Mechanics34



By the positive homogeneity of F, one can get the useful fact that Fðξ;ηÞ ¼ ξ∂F
∂ξ þ η∂F

∂η. Therefore,

ξ
∂F

∂ξ
þ η

∂F

∂η
¼ 1: (24)

By differentiating (24), we get

∂
2F

∂ξ2
ξdξþ

∂
2F

∂η2
ηdηþ

∂
2F

∂ξ∂η
ðξdηþ ηdξÞ þ

∂F

∂ξ
dξþ

∂F

∂η
dη ¼ 0: (25)

Applying (22) again, we have

∂2F

∂ξ2
ξdξþ

∂2F

∂η2
ηdηþ

∂2F

∂ξ∂η
ðξdηþ ηdξÞ ¼ 0: (26)

Thus, the claim follows.

Remark 5.2. For a n-dimensional Minkowski space ðRn
;FÞ, we just need to add more indices,

then the theorem above is also true for ðRn
;FÞ.

Therefore, letting F be a Finsler metric on Rn and SF be the unit sphere in the Minkowski space

ðRn
;FÞ, we obtain the following general theorem:

Theorem 5.3. The symplectic form on the space of lines in a Minkowski space ðRn
;FÞ is the canonical

symplectic form on the tangent bundle TSF as imbedded in TRn.

We have the following remarks:

Remark 5.4. Theorem 5.3 provides a perspective that we can transform calculus on Gr1ðR
2Þ to

ones on TSF.

and

Remark 5.5. We can analyze the differential structure of the Minkowski space by considering

its symplectic form or Lagrangian structure. The Lagrangian structure of tangent spaces of

Minkowski space gives the symplectic structure of the space of geodesics in the Minkowski

space, and in general, the measures on a space or manifold in integral geometry depend on the

differential structures of the space or manifold. Holmes-Thompson volumes are defined based

on Lagrangian structure (see, for instance, Refs. [12, 20]), so, as an application, the symplectic

structure determined by the symplectic form can be used to determine the symplectic form of

the Holmes-Thompson volumes restricted on lines in integral geometry of Minkowski space,

about which one can see Refs. [21–23].

Another remark from the proof of Theorem 5.1 is that

Remark 5.6. A combination of (26) and Gelfand transform (see Ref. [6]) may be used to provide

a short proof of the general Crofton formula for Minkowski space.
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6. Application to generalized length and related

For any rectifiable curve γ in the Euclidean plane, the classic Crofton formula is

LengthðγÞ ¼
1

4

ð

∞

0

ð2π

0

#ðγ∩lðr;θÞÞdθdr; (27)

where θ is the angle from the x-axis to the normal of the oriented line l and r is the distance

form the origin to l. Let us denote the affine l-Grassmannians consisting of lines in R2 by

Gr1ðR
2Þ.

As for Minkowski plane, it is a normed two dimensional space with a norm Fð�Þ ¼ jj � jj, in

which the unit disk is convex and F has some smoothness.

Two significant and useful tools that are used to obtain the Crofton formula for Minkowski

plane are the cosine transform and Gelfand transform. Let us explain them one by one first and

see the connections between them later. A important fact or result from spherical harmonics

about cosine transform is that there is some even function on S1 such that

Fð�Þ ¼

ð

S1
j〈ξ; � 〉jgðθÞdθ; (28)

if F is an even C4 function on S1. A great reference for this would be [24] by Groemer. As for

Gelfand transform, it is the transform of differential forms and densities on double fibrations,

for instance, R2
←

π1
I!

π2
Gr1ðR

2Þ, where I :¼
n

ðx;lÞ∈R2
·Gr1ðR

2Þ : x∈ l
o

is the incidence rela-

tions and π1 and π2 are projections. A formula one can take as an example of the fundamental

theorem of Gelfand transform is the following:

ð

γ

π1�π
�
2jΩj ¼

ð

l∈Gr1ðR
2Þ
#ðγ∩lÞjΩj, (29)

whereΩ :¼ gðθÞdθ∧dr. However, here we provide a direct proof for this fundamental theorem

of Gelfand transform.

Proof. First, consider the case of Ω ¼ dθ∧dr. For any v∈Txγ, since there is some v′
∈Tx′I , such

that π1�ðv
′Þ ¼ v, then

ðπ1�π
�
2jΩjÞxðvÞ ¼ ð

ð

π−1
1
ðxÞ

π�
2jΩjÞxðvÞ

¼

ð

x′
∈π−1

1
ðxÞ

ðπ�
2jΩjÞx′ðv′Þ

¼

ð

S1
ðπ�

2jdθ∧drjÞðv
′Þ

¼

ð

S1
jdrðπ2�ðv

′ÞÞjdθ

¼

ð

S1
j〈v;θ〉jdθ

¼ 4jvj:

(30)
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Thus, we have

ð
γ

π1�π
�
2jΩj ¼ 4LengthðγÞ ¼

ð
l∈Gr1ðR

2Þ
#ðγ∩lÞjΩj (31)

by using the classic Crofton formula.

For the general case of Ω ¼ f ðθÞdθ∧dr, we just need to substitute dθ by gðθÞdθ in the equali-

ties in the first case.

Furthermore, we can also see, from the above proof and eq:exist, that

ð
γ

π1�π
�
2jΩj ¼

ðb
a

ðπ1�π
�
2jΩjÞðγ′ðtÞÞdt ¼

ðb
a

4Fðγ′ðtÞÞdt ¼ 4LengthðγÞ, (32)

for any curve γðtÞ : ½a;b� ! R
2 differentiable almost everywhere in the Minkowski space.

Therefore, by using (29), we obtain that

LengthðγÞ ¼
1

4

ð
l∈Gr1ðR

2Þ
#ðγ∩lÞjgðθÞdθ∧drj (33)

for Minkowski plane.

The Holmes-Thompson area HT2ðUÞ of a measurable set U in a Minkowski plane is defined as

HT2ðUÞ :¼ 1
π

ð
D�U

jω0j
2, where ω0 is the natural symplectic form on the cotangent bundle of R2

and D�U :¼ fðx;ξÞ∈T�
R

2
: F�ðξÞ ≤ 1g. To study it from the perspective of integral geometry,

we need to introduce a symplectic form ω to the space of affine lines Gr1ðR
2Þ and construct an

invariant measure based on ω.

7. Application to HT area and related

Now let us see the Crofton formula for Minkowski plane, which is

LengthðγÞ ¼
1

4

ð
Gr1ðR

2Þ
#ðγ∩lÞjωj: (34)

To prove this, it is sufficient to show that it holds for any straight line segment

L : ½0;jjp2−p2jj� ! R
2
; LðtÞ ¼ p1 þ

p2−p1
jjp2−p1jj

t; (35)

starting at p1 and ending at p2 in R
2. First, using the diffeomorphism between the circle bundle

and co-circle bundle, which is
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ϕF : SR2 ! S�R2

ϕFðx;ξÞ ¼ ðx;dFξÞ,
(36)

we can obtain a fact that
ð
L· { p2−p1

jjp2−p1 jj
}
ϕ�
Fα0 ¼

ð
ϕFðL · {

p2−p1
jjp2−p1 jj

}Þ
α0

¼

ðjjp2−p1jj
0

α0dF p2−p1
jjp2−p1 jj

ðð
p2−p1

jjp2−p1jj
, 0ÞÞdt

¼

ðjjp2−p1 jj
0

dF p2−p1
jjp2−p1 jj

ð
p2−p1

jjp2−p1jj
Þdt; (37)

where α0 is the tautological one-form, precisely α0ξðXÞ :¼ ξðπ0�XÞ for any X∈TξT
�
R

2, and

dα0 ¼ ω0. Applying the basic equality that dFξðξÞ ¼ 1, which is derived from the positive

homogeneity of F, for all ξ∈ SR2, the above quantity becomes

ðjjp2−p1jj
0

1dt, which equals jjp2−p1jj.

Let R :¼ fξx ∈S�R2
: x∈ p1p2g and T ¼ fl∈Gr1ðR

2Þ : l∩p1p2≠Øg, and p′ is the projection (com-

position) from S�R2 to Gr1ðR
2Þ.

Apply the above fact and p′
�
ω ¼ ω0,

ð
T

jωj ¼

ð
p′ðRÞ

jωj ¼

ð
R

jp′
�
ωj ¼

ð
R

jω0j

¼ j

ð
Rþ
ω0j þ j

ð
R−

ω0j

¼ j

ð
∂Rþ

α0j þ j

ð
∂R−

α0j

¼ 4jjp2−p1jj:

(38)

Thus, we have shown the Crofton formula for Minkowski plane.

Furthermore, combining with (33), we have

1

4

ð
l∈Gr1ðR

2Þ
#ðγ∩lÞjΩj ¼

1

4

ð
Gr1ðR

2Þ
#ðγ∩lÞjωj, (39)

where Ω ¼ gðθÞdθ∧dr. Then, by the injectivity of cosine transform in Ref. [24], jΩj ¼ jωj.

To obtain the HT area, one can define a map

π : Gr1ðR
2Þ ·Gr1ðR

2Þ\Δ ! R
2

πðl;l′Þ ¼ l∩l′;
(40)

extended from Alvarez’s construction of taking intersections. The following theorem can be

obtained.

Lagrangian Mechanics38



Theorem 7.1. For any bounded measurable subset U of a Minkowski plane, we have

HT2ðUÞ ¼
1

2π

ð

x∈R
2
χðx∩UÞjπ�Ω

2j: (41)

Proof. On the one hand,

1

π

ð

D�U

ω2
0 ¼

1

π

ð

∂D�U

ω2
0 ¼

1

π

ð

S�U

α0∧ω0: (42)

On the other hand,

1
π

ð

x∈R
2
χðx∩UÞπ�Ω

2 ¼ 1
π

ð

n

ðl;l′Þ∈Gr1ðR
2Þ ·Gr1ðR

2Þ\Δ:l∩l′ ∈U

oΩ2

¼ 1
π

ð

fðl;l′Þ∈Gr1ðR
2Þ ·Gr1ðR

2Þ\Δ:l∩l′ ∈Ug

ω2

¼ 1
π

ð

T
�U\fðx;ξ;ξÞ:ξ∈S�xUg

p′�ω2

¼ 1
π

ð

T
�U\fðx;ξ;ξÞ:ξ∈S�xUg

ω2
0

¼ 2
π

ð

fðx;ξ;ξÞ:ξ∈S�xUg

α0∧ω0

¼ 2
π

ð

S�U

α0∧ω0;

(43)

where

T
�U :¼

n

ðx;ξ;ξ′Þ : ξ;ξ′
∈S�xU

o

: (44)

So the claim follows.

Remark 7.2. Lagrangian structure provides the underlying differential structure needed to

measure the Holme-Thompson area in integral geometry and therefore is essential and

doundamental in integral geometry. For Finsler manifolds, real or complex, it is necessary to

analyze the Lagrangian structure of the Finsler manifolds, in the forms of symplectic structure

and Kahler structure, and many Finsler manifolds may not have a Lagrangian structure, about

which one can refer to Ref. [25]. However, for smooth projective Finsler spaces, the integral

geometry formulas have been studied in Ref. [26], for instance.

Acknowledgements

The author would like to thank his family for their constant support for his academic career

since his doctoral study in the USA, for the partial support by the National Science Founda-

tion, and for the partial support by Air Force Office of Scientific Research under Grant AFOSR

9550-12-1-0455, and the author would also like to give thanks to Dr. P. Dang. Besides, the

author would like to thank the reviewer for his or her helpful comments.

Lagrangian Subspaces of Manifolds
http://dx.doi.org/ 10.5772/67290

39



Author details

Yang Liu1,2

Address all correspondence to: yliu@msu.edu

1 Department of Mathematics, Michigan State University, East Lansing, MI, USA

2 School of Mathematics, Sun Yat-sen University, Guangdong, P.R. China

References

[1] Elie Cartan. Les espaces de finsler. Bulletin of the American Mathematical Society. 40:521–

522, 1934. DOI: 10.1090/S0002-9904-1934-05891-9 PII.

[2] Hanno Rund. The Differential Geometry of Finsler Spaces. Springer, 1959.

[3] Zhong Chunping and Zhong Tongde. Horizontal laplace operator in real finsler vector

bundles. Acta Mathematica Scientia, 28(1):128–140, 2008.

[4] Shiing-Shen Chern and Zhongmin Shen. Riemann-Finsler Geometry. World Scientific, 2005.

[5] Gheorghe Munteanu. Complex finsler spaces. In Complex Spaces in Finsler, Lagrange and

Hamilton Geometries, pages 55–90. Springer, 2004.

[6] Tadashi Aikou. On complex finsler manifolds. Reports of Kagoshima University, 24:9–25,

1991.

[7] T Kawaguchi. On the application of finsler geometry to engineering dynamical systems.

Periodica Mathematica Hungarica, 8(3–4):281–289, 1977.

[8] Yang Liu. On the lagrangian subspaces of complex minkowski space. Journal of Mathe-

matical Sciences: Advances and Applications, 7(2):87–93, 2011.

[9] Erwin Kreyszig. Introductory Functional Analysis with Applications, volume 81. Wiley New

York, 1989.

[10] Eberhard Zeidler. Nonlinear Functional Analysis and Its Applications, volume 2. Springer

Science & Business Media, 1989.

[11] Herbert Weisberg. Central Tendency and Variability. Number 83. Sage, 1992.

[12] Yang Liu. On explicit holmes-thompson area formula in integral geometry. International

Mathematical Forum, 2011. Accepted for publication. arXiv:1009.5057.

[13] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward

splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

Lagrangian Mechanics40



[14] JD Clayton. On finsler geometry and applications in mechanics: Review and new per-

spectives. Advances in Mathematical Physics, 2015, 2015.

[15] Yu Xia. Newton’s method for the ellipsoidal lp norm facility location problem. In Compu-

tational Science–ICCS 2006, volume 3991, pages 8–15, 2006.

[16] Peter L Antonelli and Radu Miron. Lagrange and Finsler Geometry: Applications to Physics

and Biology, volume 76. Springer Science & Business Media, 2013.

[17] Simon Foucart and Ming-Jun Lai. Sparsest solutions of underdetermined linear systems

via q-minimization for 0< q<=1. Applied and Computational Harmonic Analysis, 26(3):395–

407, 2009.

[18] Ming-Jun Lai and Yang Liu. The null space property for sparse recovery from multiple

measurement vectors. Applied and Computational Harmonic Analysis, 30(3):402–406, 2011.

[19] Ming-Jun Lai and Yang Liu. The probabilistic estimates on the largest and smallest

q-singular values of random matrices. Mathematics of Computation, 2014. doi:10.1090/S0025-

5718-2014-02895-0

[20] David Dai-Wai Bao. A Sampler of Riemann-Finsler Geometry, volume 50. Cambridge Uni-

versity Press, 2004.

[21] Luis A Santaló. Integral geometry in hermitian spaces. American Journal of Mathematics,

74(2):423–434, April, 1952.

[22] Andreas Bernig and Joseph HG Fu. Hermitian integral geometry. Annals of Mathematics,

173(2):907–945, 2011.

[23] Yang Liu. On the range of cosine transform of distributions for torus-invariant complex

minkowski spaces. Far East Journal of Mathematical Sciences, 39(2):733–753, 2010.

[24] Helmut Groemer. Geometric Applications of Fourier Series and Spherical Harmonics, volume

61. Cambridge University Press, 1996.

[25] Yang Liu. On the kähler form of complex l^{p} space and its lagrangian subspaces. Journal

of Pseudo-Differential Operators and Applications, 6(2):265–277, 2015.

[26] Israel M Gelfand, James Lepowsky, and Mikhail Smirnov. The Gelfand Mathematical Sem-

inars, 1993–1995. Springer Science & Business Media, 2012.

[27] Yang Liu. Probabilistic estimates of the largest strictly convex singular values of pregaussian

randommatrices. Journal of Mathematics and Statistics, 11(1):7–15, 2015.

Lagrangian Subspaces of Manifolds
http://dx.doi.org/ 10.5772/67290

41




