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Abstract

Good layout plan leads to in improve machine utilization, part demand quality, efficient
setup time, less work-in-process inventory and material handling cost. Cellular
Manufacturing (CM) is an application of GTCM is the combination of job shop and/or
flow shop. Facility Layout Problem (FLP) for CMS includes both inter-cell layout and
intra-cell layout. A bi-level mixed-integer non-linear programming continuous model
has been formulated to fully define the problem and the relationship between intra-cell
and inter-cell layout design. Facilities are assumed unequal size; operation sequences,
part demands, overlap elimination, aisle are considered. The problem is NP-hard; hence,
a simulated annealing meta-heuristic employing a novel constructive radial-based heu-
ristic for initialization have been designed and implemented. For the first time, a novel
heuristic algorithm has been designed to allocate and displace facilities in radial direc-
tion. In order to improve the search efficiency of the developed SA algorithm, the cell
size used in the initialization heuristic algorithm is assumed twice as that of the original
size of the cells. A real case study from the metal cutting inserts industry has been used.
Results demonstrate the superiority of the developed SA algorithm against rival compa-
rable meta-heuristics and algorithms from the literature.

Keywords: facility layout problem, cellular manufacturing, mathematical modelling,
simulated annealing, aisle constraint
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1. Introduction

Facility layout problem (FLP) is the arrangement of a given number of non-equal-sized facili-

ties within the given space. Good layout plan leads to improve machine utilization, part

demand quality, efficient setup time, less work-in-process inventory and material handling

cost. Generally speaking, efficient layout design provides two main advantages: (1) Reduction

of between 30% to 70% in the total material handling cost (MHC) and (2) designing layout is

the long term-plan, hence, any changes in layout impose some expenditure such as shutting

down production or service line, losing process time and so on. Thus, designing proper facility

layout plan would prevent lots of costs [1].

Several algorithms have been developed for FLP problem. The traditional approach to FLP

called discrete representation often addressed by quadratic assignment problem (QAP)

with the objective of minimizing a given function cost. There are two main assumptions in

QAP: firstly, all facilities are equal size and shape; secondly, the location of facilities is

known in a priori. However, these kinds of assumptions are not applicable in real-world

case studies. This approach to FLP is not suited to represent the exact location of facilities

and cannot formulate FLP especially when facilities are unequal size and shape or if there

are different clearances between the facilities. The more suitable approach to such a kind of

cases is continuous representation rather than discrete. There are two ways to solve this

problem. Chronologically, the first one attempts was to divide each facility into smaller size

unit blocks, where the total area of those blocks is approximately equal to the area of the

facility. There are two drawbacks to this method: firstly, the problem size is growing as the

total number of blocks increase, and secondly, the exact shapes of facilities are ignored.

The second approach to continuous problem assumes the exact shape and dimensions of

the facilities (Table 1).

The design of a cellular manufacturing system (CMS) includes: (1) cell formation (CF), (2)

group layout, (3) group scheduling and (4) resource allocation. FLP to CMS is focusing on the

second step of design of CMS which by itself is twofold: inter-cell and intra-cell layouts. The

main objective of group layout is minimizing material handling cost (MHC) by arranging

facilities in their corresponding cells and cells in floor. In this chapter, both demand and

operation sequencing have been considered in optimizing the layout both at inter- and intra-

cellular levels. However, this was not the case with the literature; there is a dearth of papers

that happened to take a discrete approach which really did address those factors. Moreover, in

this chapter, a continuous approach has been adopted.

Approach Plant site Distance Facilities

Mathematical

formulation

Discrete Divided in rectangular blocks with same size

and shape; i.e., predetermined locations

Parameters

Meller et al., [2]

Equal-sized QAP

Continuous No predetermined location, i.e., no blocks Variable Unequal-sized MIP

Table 1. FLP discrete approach versus FLP continuous approach.
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Here, a bi-level mixed-integer non-linear programming continuous model has been devel-

oped for both intra-cell and inter-cell layout design sequentially. The problem is to arrange

facilities that are machine tools in the leader problem and cells in the follower problem on

the continual planar site. The objective function of leader and follower problems is minimiz-

ing the material handling cost at intra- and inter-cellular levels, respectively. The developed

mathematical model has some main novelties. Firstly, a continuous approach has been

adopted; i.e., facilities take unequal size and their locations are not predetermined. Secondly,

operation sequences and part demands are taken into consideration. Thirdly, the model has

the ability to consider certain restrictions or preferences for cells and floors such as aisle.

Finally, CMS design of disjoint cells is considered; hence, the overlapping elimination con-

straint is presented. Since the model is NP-hard, a novel heuristic has been developed to

solve the problem at two different levels (intra- and inter-cellular) in a similar fashion to that

used for developing the mathematical model. The developed heuristic is very different from

its counterparts in the literature in the sense that it places the facilities radially, while

dividing the production floor area into four quadrants. A real case study from the metal

cutting industry has been used, where multiple families of inserts have been formed, each

with its distinguished master plan.

2. Literature review

The block facility layout problem that was originally formulated by Armour and Buffa [3] is

concerned with finding the most efficient arrangement of m indivisible departments with

unequal area requirements within a facility [4]. As defined in the literature, the objective of

the block layout design problem is to minimize the material handling costs by considering the

following two sets of constraints: (a) department and floor area requirements; i.e. departments

cannot overlap, must be placed within the facility, and some must be fixed to a location or

cannot be placed in specific regions; see Refs. [1, 3, 5, 6].

Cellular layout is considered as one of the special cases of the general FLP. There is an

increasing interest in solving the block layout problem by taking a continuous approach [6].

Alfa et al., [9] have developed a model to simultaneously solve group formation and intra-cell.

The objective function is the summation of both inter-cell and intra-cell flow times based on

distance. They develop SA/heuristic algorithm to solve their model. SA has been used to find

the initial solution, and then a heuristic approach based on the penalty model developed to

improve the solution. The main limitation of this model is that the cell locations are

predetermined.

Bazargan-Lari and Kaebernick published few papers about design of cellular manufacturing

[10–13]. Bazargan-Lari and Kaebernick [11] present a continuous plane approach where

different constraints such as cell boundaries, non-overlapping, closeness relationships, loca-

tion restrictions/preferences, orientation constraints and travelling distances have been con-

sidered. They develop a hybrid method which combined a non-linear goal programming

(NLGP) and simulated annealing for machine layout problem. They have combined all

constraints as goals using goal programming (GP) formulas. Generally speaking, GP divides
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those constraints into two main categories such as absolute or hard and goal or soft con-

straints. Hard constraints are those that have to be satisfied absolutely. It means that viola-

tion of any of them would yield to infeasibility. However, soft constraints can be

compromised and be offset from desired set goals. Those constraints are considered as three

separate sets of objectives. The first priority level includes all set of absolute or hard objec-

tives which have to be absolutely satisfied such as non-overlapped and cell boundary

constraints. The second and third priority levels are preferences. The second priority is

devoted to minimizing the area of the cells/shop floor, satisfying closeness relationship and

orientation. Finally, the third priority is to minimize the total travelling cost. Overall, the

approach of Bazargan-Lari and Kaebernick is a combination of the NLGP and SA. They use

the pattern search to solve their NLGP based on those three priorities. Since a pattern search

is finding the local minimum, then they have been using SA to exit from the trap of local

minimum. The core of their model is that they are generating alternative layout design by

changing the order of priority levels 2 and 3 in each outer loop of SA algorithm. In other

words, the starting point of new outer loop of SA is generated by the patter search algorithm.

By changing the goal priority levels, huge pools of efficient solutions are generating. To solve

this issue, they used what they called the filtering process to choose which sets of solutions

have more different with the other ones. The logic behind this is giving decision-makers the

chance to consider how changing preferences’ priorities would impact the solutions.

The other important piece of research was written by Imam and Mir [14, 15]. Imam and Mir [14]

introduce a heuristic algorithm to place unequal-sized rectangular facilities in continuous plane

by introducing the new concept of ‘controlled coverage’ by using ‘envelop blocks'. In the initial

solution, facilities are randomly placed in plane in the envelop block the size of which is much

larger than the actual size of facility and is calculated by multiplying magnification factor with

the facilities’ actual dimensions. Afterwards, during the heuristic iterations, the sizes of envelop

blocks are gradually decreased by decreasing the magnification factor until the dimensions of

envelopes will became equal to the dimensions of their corresponding facilities. By this

approach, they were controlling the coverage of facilities together. The improvement iteration is

based on the univariate search method. In this method, only one of the 2n design variables where

n is the number of facilities is changing at time. This change means moving facility horizontally

or vertically along the x-axis or y-axis, respectively. There are three drawbacks to their method.

Firstly, each iteration cycle is repeated 2n times, n times to move facilities horizontally and then

another n more times to move them vertically. The other drawback is that facilities are just

allowed to move horizontally or vertically, there is no diagonal movement. Thirdly, there are no

borders for the assumed continuous plane. However, in real world, there is no plane without

borders. The last drawback is related to magnification factor, they have not specified how large

this factor has to be originally and by which fraction it has to be reduced in each iteration cycle.

Mir and Imam [15] have mentioned the second drawback above is addressed and try to

improve their primary procedure. They develop a hybrid model by using SA for gaining the

sub-optimal initial feasible solution and then they improved it using a steepest descent

approach. As they also noted that the number of optimization iterations depends of the

magnification factor by which the size of the envelope blocks reduces when the magnification
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factor was being reduced. The algorithm stopped when the magnification factor is equal to

one. So it is obvious that the computational cost and time are quite dependent on magnifica-

tion factor.

On the other hand, there are various papers that considered alternative as a discrete approach.

QAP is an NP-complete problem, which means that when the size of the problem is increasing

it cannot be solved by exact algorithm [16]. Hence, lots of efforts have been made to develop

and apply heuristic and meta-heuristic algorithm for this kind of problem. Wilhelm and Ward

[16] have applied simulated annealing (SA) to solve QAP. Their results have been compared

with the computerized relative allocation of facilities technique (CRAFT), biased sampling and

revised Hillier problem and showed better quality solutions.

Baykasoğlu and Gindy [17] have applied SA for dynamic layout problem, discrete approach.

They claim their proposed algorithm finds better solution. They compared their proposed

algorithm to the three works done [18–20]. In the first comparison, their SA approach found

optimum solution and revealed better solution than dynamic programming algorithm of

Rosenblatt [18]. The second comparison has two experiments: first one carried out with no

shifting cost and the SA algorithm found optimum solution and outperforms that Conway

and Venkataramanan [19] genetic algorithm. In this experiment, relocation costs are included.

The optimum solution was not found; however, the results of SA showed a slight improve-

ment over that of Rosenblatt [18]. Finally, in the third comparison the data set obtained from

Balakrishnan and Cheng [20]. They develop non-linear genetic algorithm (NLGA). The com-

parison between the SA-based approach and NLGA reveals the superiority of SA algorithm

when the size of the problems is large. Since they have taken discrete approach to FLP, the

only operator has been used in neighbourhood generation algorithm is the swap operator.

Tavakkoli-Moghaddam et al., [21] are developed a non-linear mathematical modelling to solve

the cell formation in dynamic environment in which demand varies in each time horizon. The

strength point of their model is that it is a multi-objective model, i.e. considering more than one

objective such as machine cost, operating cost, inter-cell material handling cost and machine

relocation cost. Three meta-heuristic models, such as genetic algorithm (GA), simulated

annealing (SA) and tabu search (TS), have been used to solve this problem. The results show

SA outperforms compare to the two meta-heuristics.

Safaei et al., [22] have developed a mixed integer programming which tries to minimize machine

constant and variable costs, inter- and intra-material handling cost and reconfiguration costs.

They present a hybrid model called mean field annealing and simulated annealing (MFA-SA) to

solve the problem. MFA stands for mean field annealing which used to find the feasible initial

solution for SA. Most of the developed heuristics in the literature have taken a discrete approach

to FLP than a continuous one. Developing heuristics for the discrete problem is easier, because

locations are predetermineda priori; hence, the only operator that is usually used is the swap

operator, to shuffle the different facilities locations. Moreover, in the discrete approach no

overlap would happen between facilities. On the other hand, it is harder to design heuristics for

the continuous formulation of FLP since overlap takes place. It is usually the case that repeated

repairs and checks of validity of the generated solutions have to take place.
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3. Mathematical modelling

The problem is to arrange facilities that are cells in the leader problem and machine tools in the

follower problem in their respective space. The site has a rectangular shape with specified length

(L) and width (W). Moreover, there is a horizontal aisle in the site by the same length as of site,

however, with two different vertical dimensions YVALU and YVALL. Aisle divides the site into two

sections, upper and lower. No facilities are allocated to the aisles. The objective is to minimize the

total travel-flow cost by considering shape, size and geometric characteristic of the different

facilities. Facilities have a rectangular shape. The position of each facility is determined by the

coordinates of its centroid as well as its predetermined length and width. Facilities are not

allowed to overlap each other and have to be assigned in their related boundary areas, which is

the overall site's boundaries for the follower problem and that of the cell for the leader problem.

The traditional Cartesian coordinate system, shown in Figure 1, represents the scheme used

in this chapter. The following model has represented by Allahyari and Azab [7, 8] and Allahayri

[7]. The problem is formulated under the following assumptions [6]:

The problem is formulated under the following assumptions:

1. CF is known in advanced.

2. Machines are not in the same size.

3. Machines must be located within a given area.

4. Machines are not allowed to overlap each other.

5. Cell's dimensions and orientation are predetermined.

Figure 1. Scheme of shop.
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6. Each part type has a number of operations that must be processed based on its operation

sequence readily available from the route sheet of parts. It should be noted that the

process sequence of each part is different.

7. The demand for each part type in known and is constant.

8. Material handling devices moving the one part between machines.

9. Inter- and intra-cell movements related to the part types have different costs that are

related to the distance travelled. We assume the rectangular distance between each pair

of machines’ centroid.

10. In determining machine size and dimensions, the workspace required for operator

usage and that needed to enforce between the different machines have been taken into

account.

The mathematical formulation represented as below

Sets:

P ¼ {1, 2, 3,…,P} Index set of part types

M ¼ {1, 2, 3,…,M} Index set of machine types

C ¼ {1, 2, 3,…,C} Index set of cell types

Op ¼ {1, 2, 3,…,Op} Index set of operations indices for part p

Parameters:

L Horizontal dimension of shop floor

W Vertical dimension of shop floor

YVALU Vertical dimension of upper side of aisle

YVALL Vertical dimension of lower side of aisle

XHALLF Horizontal dimension of left side of aisle

XHALRT Horizontal dimension of right side of aisle

li Length of machine i

wi Width of machine i

lc Length of cell c

wc Width of cell c

CAj Intra-cellular transfer unit cost for part j

CEj Inter-cellular transfer unit cost for part j

Dj Demand quantity for part j

Ujoi 1, if operation o of part j is done by machine i, otherwise 0

Facility Layout Problem for Cellular Manufacturing Systems
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U0
joi 1, if operation o of part j is done by machine i which is located in cell c, otherwise 0

Qic 1, if machine i is assigned in cell c

Decision variables:

xi Horizontal distance between centre of machine i and vertical reference line

yi Vertical distance between centre of machine i and horizontal reference line

x0c Horizontal distance between centre of cell c and vertical reference line

y0c Vertical distance between centre of cell c and horizontal reference line

Ziu 1, if machine u is arranged in the same horizontal level as machine i, and 0 otherwise

Wcc0 1, if cell c is arranged in the same horizontal level as cell c0 and 0 otherwise

Zc 1, if cell c is arranged in out of aisle horizontal boundaries and 0 otherwise

Wc 1, if cell c is arranged in out of aisle vertical boundaries and 0 otherwise

The continuous bi-level programming problem is defined as: the intra-cell layout mathematical

formulation to layout the different machines (machines here are the facilities) of every cell c at a

time is as follows:

Min

XP

j¼1

Xop�1

o¼1

XM

i, u ¼ 1
i 6¼ u

Ujoi Ujoþ1uðjxi � xuj þ jyi � yujÞ CAjDj (1)

s.t.

xi þ
li
2
≤ lC i ¼ 1, ::,M (2)

xi �
li
2

≥ 0 i ¼ 1, ::,M (3)

yi þ
wi

2
≤ wc i ¼ 1, ::,M (4)

yi �
wi

2
≥ 0 i ¼ 1, ::,M (5)

jxi � xuj ≥Ziuðli þ luÞ=2 i, u ¼ 1, ::,M (6)

jyi � yuj ≥ ð1� ZiuÞðwi þ wuÞ=2 i, u ¼ 1, ::,M (7)

xi, yi ≥ 0,Ziu are binary i,u ¼ 1, ::,M (8)

Equation (1) declares the objective function of leader problem, which is minimizes the total

intra-cell transportation cost of parts. Equations (2)–(5) are within site constraints that ensure

each machine tool is assigned within the boundaries of its corresponding cell. Equations (6)
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and (7) force the overlap elimination for machine tools. Equation (8) represents the nature of

the decision variables which are binary and non-negative.

Finally, the inter-cell layout problem tries to layout the different cells (cells here are the

facilities) of the entire shop floor is as follows:

Min
XP

j¼1

Xop�1

o¼1

XC

c, c0 ¼ 1
c 6¼ c0

U0
joc U

0
joþ1c0 ðjx

0
c � x0c0 j þ jy0c � y0c0 jÞCEjDj (9)

s.t

x0c þ
l0c
2

≤ L c ¼ 1, ::,C (10)

x0c �
l0c
2

≥ 0 c ¼ 1, ::,C (11)

y0c þ
w0

c

2
≤W c ¼ 1, ::,C (12)

y0c �
w0

c

2
≥ 0 c ¼ 1, ::,C (13)

jx0c � x0c0 j ≥Wcc0ðl
0
c þ l0c0Þ=2 c, c0 ¼ 1, ::,C (14)

jy0c � y0c0 j ≥ ð1�Wcc0Þðw
0
c þ w0

c0Þ=2 c, c0 ¼ 1, ::,C (15)

Aisle constraints:

Horizontal aisle:

ðy0c þw0
c=2Þ � YVALL ≤ M Zc (16)

YVALU � ðy0c �w0
c=2Þ ≤M ð1� ZcÞ (17)

Vertical aisle:

ðx0c � l0c=2Þ � XHALRT ≤MWc (18)

XHALLF � ðx0c þ l0c=2Þ ≤ M ð1�WcÞ (19)

x0c, y
0
c ≥ 0,Wcc0 ,Zc,Wc are binary c ¼ 1, ::,C (20)

Equation (9) represents the objective function of follower program. The objective function

minimizes the inter-cell transportation cost of parts. The within-site constraints are enforced

by the set of constraints 10–13; i.e. these constraints ensure that cells are assigned within the

boundaries of shop floor. Moreover, overlap elimination constraints are defined by constraints

(14) and (15) which enforce the overlap elimination among cells. Equations (16) and (19) in the

follower problem ensure that no cells would be assigned in the aisle boundaries. Finally,

Eq. (20) specifies that the decision variables are binary and positive.
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4. Simulated annealing

Simulated annealing is a stochastic neighbourhood search technique, which was initially

developed by Metropolis and applied to combinatorial problems by Kirkpatrich et al. [25] for

the first time.

To begin with, the basic of SA is based on statistical mechanics and comes from the similarity

between the annealing of solids process and the solving method of combinatorial problem. If

each feasible solution to the combinatorial optimization problem as a configuration of atoms

and the objective function value of corresponding feasible solution as the energy of the system,

then the optimal solution of combinatorial optimization problem is as like as the lowest energy

state of the physical system [23]. The core of heuristic algorithms for solving the combinatorial

problem is based on continual improvement, moving from one solution to another one in order

to decrease the objective function from one iteration to next one. The same procedure is taking

in quenching the system from high to low temperature in order to reach the required quality.

4.1. The elements of an SA algorithm

The core of SA algorithm is Metropolis algorithm, which allows uphill moves sometimes.

Metropolis algorithm has four main elements [24, 25]. Figure 2 represents the simulated

annealing steps.

1. Initial solution and description of system configuration

It is the starting point of SA algorithm. There are two main approaches for generating initial

solution. One is generating initial solution randomly; by taking this approach feasibility of

initial solution has to be considered. The second approach is getting feasible initial solution

by adapting greedy algorithms or another heuristic algorithm. It has to be noted that initial

solution should not be too good because escaping from its local optimum is hard.

2. Configuration changes

By moving from one configuration to another one, new neighbourhood solution is gener-

ated. These changes occurred by defining some operators which are responsible to make

changes in the current solution.

3. Objective function that represent the quantitative measurement of goodness of a system

After finding any neighbour, the difference between objective value of new solution (Enþ1)

and of the current solution ðEnÞ is calculated. If ð∆E < 0Þ, it means that the objective value

of neighbourhood solution is showing improvement in comparison to the objective value

of the current solution found so far ð∆E < 0Þ. Hence, the current one will be accepted

as the new best solution. On the other hand, if ð∆E ≥ 0Þ the new solution is accepted with a

certain probability. Using this approach, SA tries to exit from the local optima region in

which it trap. The probability is based on the so-called Boltzmann probability distribution

Probð∆EÞ
e
expð�∆E=kbTÞ (21)
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where T is the parameter and kb is the Boltzmann's constant which is not required when

Metropolis algorithm is applying to combinatorial problems [16]. The acceptance probability

of new solution depends on two factors, one is how large is this difference. The bigger the

difference, the lesser the chance of accepting this new solution. The second criterion is a control

parameter (temperature). It should be noted if the initial temperature is not large enough or it

decreases dramatically the chances that the algorithm traps at local optima is high.

4. Annealing schedule/cooling schedule

Figure 2. Flowchart of simulated annealing.
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The annealing schedule determines four rules:

1. Initial temperature: Since the annealing of solids is the basic of the SA approach, initial

temperature is the melting point of SA algorithm and it should be defined in such a way that

the solutions generated by high acceptance probability approximately close to one. Kirkpatrick

et al. [25] noted that the initial temperature has to be large enough that 80% of generated

solutions are accepted. Kia et al., [26] and Baykasoğlu and Gindy [17] defined initial solution

high enough in such a way that 95% of generated candidates can be accepted using the

following equation:

T0 ¼
Objvj �Objvi

lnð0:95Þ
(22)

Objvj and Objvi are the objective values of two random solution i and j, respectively. It should

be noted initial solution T0 is generated once at the beginning of SA algorithm.

2. Temperature length

3. Termination: There are different approaches for stopping criteria such as

• A specific number of iteration

• Exact final temperature

• No improvement for a number of iteration

Based on the literature review, there are different approaches for choosing SA parameters as

explained briefly in Table 2.

Author

Initial temperature

(T0) Cooling rate (α)

Temperature

reduction

Loop length

Inner Outer

Bazargan-Lari and

Kaebernick [11]

10 0.9 ti ¼ 10ð0:9Þi�1 N0
·n K

Baykasoğlu and Gindy [17] Tin ¼
fmin�fmax

lnPc¼lnð0:95Þ ∝ ¼ lnPc

lnPf

� �1 ðeLmax
�1Þ= Telþ1 ¼ αTe1 IL>LMC elmax calculated

Heragu and Alfa [27] 999 0.90 T ¼ rT Epoch concept

N0
·n

K

Wilhelm and Ward [16] 10 0.9 ti ¼ 10ð0:9Þi�1 Epoch concept

N0
·n

K

Epoch: Predetermined specific number of successful pairwise interchanges at each temperature.

N0
: Predetermined integer.

n : Total number of facilities.

K : Predetermined integer- the total number of temperature steps.

Table 2. SA parameters.
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4.2. Developed simulated annealing for FLP

4.2.1. Initialization

A unique heuristic is used to generate a feasible initial solution for SA algorithm [7, 8]. The

explanation of the developed heuristic is provided in Section 4.2.1.1.

4.2.1.1. Initialization heuristic

The mechanics of the developed algorithm are very different than any of the available heuris-

tics in the literature. The whole idea behind our algorithm is to place facilities radially along

vectors rf
!

that are originated from the centroid of the space considered, where all facilities are

to be placed as shown in Figure 3. The radial vectors along which all facilities are to be placed

are distant radially by an angle θ ¼ 3600

M .

At the start of the heuristic method, at first the given area is first divided into four equal size

quadrants; i.e. Q1, Q2, Q3, and Q4. Afterwards, all facilities are placed on top of each other in

the middle of the given area. The developed heuristic algorithm consists of the two nested loops.

4.2.1.1.1. Outer loop

For each iteration of the outer loop, one random facility (called target facility) f G is chosen and

located radially along the radius ðrf Þ, which is making an angle θ0 with the abscissa, as shown

in Figure 3.
�θ ¼ i ·θ i ¼ 1, 2,…,M (23)

Facilities are permitted to be placed within the boundaries of the given area. In order to satisfy this

constraint, vector a
!
, which is a vector of random magnitude along vector's rf

!
direction, is taken,

Figure 3. The mechanics of developed heuristics.
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and facility, f G, is placed at the end of this vector. The length of vector a
!

is a random number

between ½0, j rf
!

j � r�, where r is the length of the diagonal of facility f G. The next step is checking

the possibilities for overlap between all facilities. If any overlap occurs between the target facility

f G and the given area's boundaries or between target facility f G and the previously placed facilities,

the inner loop is triggered. It should be noted that the facility coordinates for each is calculated

based on an origin that is located at the bottom-left corner of the site as shown in Figure 3.

4.2.1.1.2. Inner loop

Different repair functions based on the type of overlap are being developed to eliminate

overlap. Repair functions guarantee the elimination of overlap between facilities and allocation

of the facility within the boundaries of its corresponding quadrant. However, if the

corresponding quadrant is too congested, the overlapped facility can be placed partially in a

different quadrant. Nevertheless, no facilities are allowed to violate the given area boundaries.

The inner loop has two main steps: in the first step, the overlap between facility f G and the

overlapped facility f j is repaired. Afterwards, overlap checking is performed for all facilities

starting from the last placed facility to the first one to see if repair done in previous step has

caused further overlaps or not. If no overlap takes place, the inner loop is ended and algorithm

goes back to the outer loop to place another facility, given a facility is still left to be placed.

However, if overlap is detected when checking for overlap between all the facilities, the second

step of the inner loop is enacted.

The second step of the inner loop consists of few iterations. In each iteration, as explained one

facility f i is selected as target facility, and then the possibility of overlap between the target

facility and rest of previously placed facilities is checked. If there is overlap between the target

facility f i and facility f j , overlap elimination algorithms are enacted. The overlap has two main

projections: one in the x-direction, ∆x, and another in the y-direction, ∆y. ∆x represents the

horizontal overlap between the two facilities f i and f j. In a similar fashion, ∆y shows the

vertical overlap between the two overlapped facilities as demonstrated in Figure 4. If ∆x ≤∆y,

Figure 4. Scheme of overlap between two facilities f i and f j.
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the overlap is fixed by removing overlap in the x-projection direction; otherwise, it does that in

the y-direction. The repair mechanism starts by moving target facility f i by the overlap dis-

tance ∆ in appropriate direction.

Since no facility is allowed to violate the given area's boundaries, there is a need to know how

much distance left between facility f i and cell/floor (or quarter) boundaries. If the distance left

is less than overlap ∆, then overlap elimination is carried out for the facility f j. Moreover, if the

distance left between the facility f j and site (or quarter) boundaries is not less than overlap ∆,

the overlap distance ∆ should be applied to both facilities f i and f j. At the end of each iteration,

the overlap is checked once again to tackle any possibility of newly occurred overlap. This loop

is repeated until all overlap and intersection between facilities are repaired. The summary of

the developed initialization heuristic is represented in Figure 5.

Figure 5. Summary of developed initialization heuristic algorithm.

Facility Layout Problem for Cellular Manufacturing Systems
http://dx.doi.org/10.5772/67313

113



4.2.2. Neighbourhood solution scheme

In order to generate new neighbourhood solution, two main operators, namely, move operator

and swap operator, have been developed. The move operator tries to make facilities close to

each other and also the swap operator switches the location of the two facilities. The details

about these two operators explained below.

4.2.2.1. Move operator

The developed move operator tries to reduce distances between the facilities. The logic behind

this algorithm is decreasing the distance between one facility called in-context facility, which is

chosen randomly and the closest facility towards that. By moving the in-context facility

towards its closest facility, the possibility of overlap between in-context facility and the rest of

facilities is decreased. Main point here is that how much the maximum_movable_ distance is.

Maximum_movable_ distance is the maximum length which if in-context facility moved

towards its closest facility no overlap will happen between them. The steps of move operator

algorithm are explained below:

1. Randomly choose one facility, called in-context facility f G.

2. The Euclidean distance between the centroid of in-context facility f G and the rest of

facilities is calculated.

DisGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXG � XiÞ
2 � ðYG � YiÞ

2
q

∀ i ¼ 1, 2,…,M and i 6¼ G (24)

3. Facilities are sorted based on the distances found in step 2 in the descending order. The

first one among the above set would be the closest facility f C to the in-context facility f G.

4. Divide the in-context facility f G into four equal-sized quadrants by the origin of its

centroid.

5. Find in which quadrant of in-context facility f G the closest facility f C is located.

6. At this point the maximum _movable_ distance j CC0 j
�!

is calculated. For finding this

distance, two points C and C0 have to be found. C is the conjunction of vector r0
!

and the

closest boundary of in-context facility f G to the closest facility f C; and C0 is the conjunction

of vector r
0 0
!

and the closest boundary of closest facility to in-context facility. To do this,

these concepts are defined:

O0O
0 0

���!

: Vector between centroids of in-context facility f G and closest facility f C.

j CC0 j
�!

: Maximum_movable_distance

θ1: The angle between vector O0O
0 0

���!

and horizontal line
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θ2: The angle between vector O0O
0 0

���!

and vertical line

r0 :

!
Vector from centroid of in-context facility O0 to the closest boundary of in-context

facility f G towards the closet facility f C:

r
0 0

:

!

Vector from centroid of the closest facility O
0 0

to the closet boundary of the closest

facility f C toward the in-context facility f G.

θ1 ¼ tan�1 jOpposite sidej

jAdjacent sidej
¼ tan�1 jYG � YCj

jXG � XCj
(25)

θ2 ¼ tan�1 jOpposite sidej

jAdjacent sidej
¼ tan�1 jXG � XCj

jYG � YCj
(26)

Also: θ2 ¼ 90� θ1

where XG and YG are vertical and horizontal coordinates of centroid of in-context facility f G,

respectively. Similarly, XC and YC are vertical and horizontal coordinates of centroid of in-

context facility f C, respectively.

It has to be noted, the length of both vectors r
0

!

and r
00
!

depends on their corresponding angles θ1

and θ2. Figures 6 and 7 illustrate this topic.

j r0
!

j ¼

Adjacent side

Cosθ1
¼

LG=2

Cosθ1
if 0 ≤θ1 ≤ 45

0

Opposite side

Sinθ1
¼

WG=2
Sinθ1

if 450 ≤θ1 ≤ 90
0

8

>
>
<

>
>
:

(27)

j r00
!

j ¼

Adjacent side

Cosθ2
¼

WC=2

Cosθ1
if 0 ≤θ2 ≤ 45

0

Opposite side

Sinθ2
¼

LC=2
Sinθ1

if 450 ≤θ2 ≤ 90
0

8

>
>
<

>
>
:

(28)

where LG andWG are length and width of in-context facility f G, respectively. Similarly, LC and

WC are length and width of in-context facility f C, respectively.

Based on in which quadrant closing facility is located, C and C0 coordinates are calculating by

equations shown in Table 3.

Hence, the length of vector j CC0
�!

j is

j CC0
�!

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXC � XC0Þ2 � ðYC � YC0Þ2
q

(29)

7. At this point the length of the movement, called ml is the random number in interval

ð0, j CC0
�!

j�: Furthermore, the direction of movement is along the vector CC0
�!

.
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Figure 6. Angle calculation in move operator (I).

Figure 7. Concept of angle in move operator (II).
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8. If the closest facility is adjacent to the facility f G, find the other closest facility and go to step

5, otherwise go to step 9.

9. Finally, new coordinates of in-context facility f G are calculated and shown in Table 4.

4.2.2.2. Swap operator

The second operator of the developed SA is the swap operator which is switching positions of

two facilities. The point here is how swap two facilities together that with the minimum

possibility of overlap. To do that, the new concepts called free zone is defined. To apply this

concept, a random facility called f G is chosen and the available free space around this facility

called FZG is determined by applying the maximum_movable_distance concept introduced in

move operator. It has to be noted the centroid of free zone FZG is the same as centroid of the

facility f G. If there is any facility whose area is greater than the area of the facility f G and less

than the area of free zone FZG then that facility is qualified for swapping. By swapping this

facility with facility f G the possibility of occurrence of overlap is minimized. Moreover, if there

is more than one facility which are qualified to swap with the facility f G , one facility is chosen

randomly. Figure 8 shows the scheme of free zone concept. The algorithm below explained

swap operator's steps in detail:

1. One facility is chosen randomly, called facility f G.

Coordinates

Quadrant c c0

1 ðXG þ r0Cosθ1, YG þ r0Sinθ1Þ ðXi � r
0 0
Cosθ2, Yi � r

0 0
Sinθ2Þ

2 ðXG � r0Cosθ1, YG þ r0Sinθ1Þ ðXi þ r
0 0
Cosθ2, Yi � r

0 0
Sinθ2Þ

3 ðXG � r0Cosθ1, YG � r0Sinθ1Þ ðXi þ r
0 0
Cosθ2, Yi þ r

0 0
Sinθ2Þ

4 ðXG þ r0Cosθ1, YG � r0Sinθ1Þ ðXi � r
0 0
Cosθ2, Yi þ r

0 0
Sinθ2Þ

Table 3. C and C0 coordinates.

New coordinates of target facility

Direction XG YG

Quadrant 1 XG þml � Cosθ1 YG þml � Sinθ1

Quadrant 2 XG �ml � Cosθ1 YG þml � Sinθ1

Quadrant 3 XG �ml � Cosθ1 YG �ml � Sinθ1

Quadrant 4 XG þml � Cosθ1 YG �ml � Sinθ1

Table 4. New coordinate of f G after move.
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2. The closest facility to the f G is determined-details mentioned in move operator.

3. Maximum_movable_distance is calculated.

4. Free zone FZG of facility f G is determined.

5. Areas of facility f G and FZG are calculated.

6. Among the rest of facilities those ones whose areas are greater than the area of facility f G
and less than the area of free zone FZG are found.

7. Randomly one facility among those facilities is found in step 6 is chosen, call it f i.

8. Swap facility f G to the facility f i.

9. Calculated the new coordinates of both f G and f i.

10. End

Figure 8. Free zone concept.
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Assume:

LG: Length of the f G

WG: Width of the f G

ml: Maximum movable distance

LFZ: Length of the FZ

WFZ: Width of the FZ

AFZ: Area of FZ

AC ¼ min XG � LG=2ðð Þ,ml ·Cosθ1Þ (30)

AC0 ¼ min YG � WG=2ðð Þ,ml · Sinθ1Þ (31)

LFZ ¼ LG þ 2AC (32)

WFZ ¼ WG þ 2AC0 (33)

AFZ ¼ LFZ·WFZ (34)

4.2.3. Aisle constraints

In case of aisle, the operators move and swap vary. The details are presented in the below

section.

4.2.3.1. Move operator

The move operator has the same procedure as the move operator developed in case of no aisle.

Hence, in case of aisle one facility is chosen randomly f G and moves to its closest facility f C.

Afterwards, the possibility of overlap between aisle and new position of facility f G called f´G is

considering. If any overlap happened, it has to be fixed. To do that, two repair functions have

been developed.

4.2.3.2. Before-aisle repair function

The idea behind this function is if there is any overlap between f´G and aisle happens, the

facility f´G moves back exactly before the aisle. To illustrate, f´G backs to the back of boundary of

aisle which it passed over. Figures 9 and 10 represent the overlap conditions in both cases of

vertical and horizontal aisle.

The steps of the move operator with aisle constraints are explained as follows:

Step 1.Move facility f G towards its closest facility. Calculate new coordinates of facility f G and

call it facility f´G.

Step 2. Check overlaps possibility between f´G and aisle.
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Step 3. If there is any overlap, take appropriate repair function.

Step 4. Find the coordinates of f´G- —details are shown in Tables 5 and 6.

Step 5. End

Repair function-horizontal aisle

• Facility f G is lower side of the aisle is

Rep ¼ ýGþWG =2ðð Þ� YA�wA =2ð ÞÞ=Sinθ (35)

• Facility f G is upper side of the aisle:

Rep ¼ YAþWA =2ðð Þ� ýG�wG =2ð ÞÞ=Sinθ (36)

Repair function-vertical aisle

• Facility f G is in the left side of the aisle:

Rep ¼ x´
G
þlG =2ðð Þ� XA�LA =2ð ÞÞ=Cosθ (37)

• Facility f G is in the right side of the aisle:

Rep ¼ XAþLA =2ðð Þ� x´
G
�lG =2ð ÞÞ=Cosθ (38)

Figure 9. Before-aisle move operator for horizontal aisle.
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Figure 10. Before-aisle move operator for vertical aisle.
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4.2.4. Developed SA algorithm

In this chapter, the parameters taken by Bazargan-Lari and Kaebernick [10] have been used in

the developed SA algorithm:

1. Initial temperature: 10

2. Cooling rate: 0.9

3. Temperature reduction: ti ¼ 10ð0:9Þi�1

4. Outer loop: 25

5. Inner loop: 100·M, M is the total number of facilities

5. Case study

Carbide Tool Inc. manufactures and distributes metalworking tools. The company is dedicated

to developing specialized carbide, polycrystalline diamond (PCD) and cubic boron nitride

(CBN) inserts, as well as multi-task tooling for the aerospace, automotive and mould-die

industries. The company currently has a process layout configuration. Five different kinds of

family cutting insert tools are produced. Each part has specific monthly demand. There are

different kinds of unequal sized grinding machine tools. Some of the machine tools have

identical copies on the shop floor to increase productivity. Therefore, the demand is being

Horizontal

Aisle xfG < xf´G
xfG ≥ xf´G

yfG
< YL xf´G

¼ xf´G
� Rep · cosθ

xf´G
¼ xf´G

� Rep · sinθ

xf´G
¼ xf´G

þ Rep · cosθ

xf´G
¼ xf´G

� Rep · sinθ

yfG
> YL xf´G

¼ xf´G
� Rep · cosθ

xf´G
¼ xf´G

þ Rep · sinθ

xf´G
¼ xf´G

þ Rep · cosθ

xf´G
¼ xf´G

þ Rep · sinθ

Table 5. Revised coordinate based on before-aisle repair function-horizontal aisle.

Vertical Aisle yfG
< yf´G

yfG
≥ yf´G

xfG < XL xf´G
¼ xf´G

� Rep · cosθ

xf´G
¼ xf´G

� Rep · sinθ

xf´G
¼ xf´G

� Rep · cosθ

xf´G
¼ xf´G

þ Rep · sinθ

xfG > XL xf´G
¼ xf´G

þ Rep · cosθ

xf´G
¼ xf´G

� Rep · sinθ

xf´G
¼ xf´G

þ Rep · cosθ

xf´G
¼ xf´G

þ Rep · sinθ

Table 6. Revised coordinate based on before-aisle repair function-vertical aisle.
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shared among the different copies of those machine tools. Different operations are performed

on inserts with different sequences. The list of operations of each insert and the machine tools

used for those operations are shown in Table 7.

The company's shop floor has a rectangular shape. There is no special material handling device

for transforming unfinished products among machine tools. As demonstrated in Table 7, it is

obvious that the number of operations performed on each part insert tool is large enough;

hence, the amount of travel taking place every day on the production floor is quite significant.

Additionally, as per their original layout, all the raw materials are transported from the back

side of the shop to the front to start operation. This causes extra unnecessary travel, and hence

extra material handling cost. The inspection and shipping stations which are two of the last

steps as per the sequence of operations are not properly positioned in the current layout,

because they are located in front of the floor. Since the current layout is process layout, similar

machine tools are grouped together and located on one side of the floor. The original layout is

ID Machine

Dimension Cutting insert tools

Length Width

Dog

bone

S

Shape Triangular

Top

notch

Diamond

type 1

Diamond

type 2

Diamond

type 3

M1 Double disk (1) 12.67 5 O1 O2

M2 Blanchard (2) 6 9.07 O1 O1 O1 O1

M3 Wendt (3) 8.5

6.8

6.1

9.45

O1 O2 O4 O2 O2 O2

M4 Polish (1) 6 5 O3

M5 EWAG (1) 4.3 7.3 O7 O3

M6 Surface grinding (2) 7 6 O4 O5 O5 O3

M7 Surface grinding (1) 6 7.54 O3 O3

M8 Swing fixture (1) 8 6 O2 O3

M9 V-bottom (1) 7 6 O3 O4

M10 Wire cutting (2) 7.8

7.4

6.7

5.7

O4 O4

M11 Laser M/C (1) 7.6 9.74 O6

M12 Brazing (1) 4 1.8 O6 O5 O1

M13 ETCH (1) 3 4 O5 O5 O6 O4 O8 O7 O3

ST1 Inspection (1) 4 3 O6 O6 O7 O5 O9 O8 O4

ST2 Wash (1) 5 3 O7 O7 O8 O6 O10 O9 O5

ST3 Packing (1) 16 8 O8 O8 O9 O7 O11 O10 O6

Part demand 1200 900 500 500 600 600 200

Table 7. Machine tool characterizations and parts’ operations sequence.
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causing too much traffic, since it is not taking into account the sequence of processing of parts.

For an example, the primary operations of all insert tools are performed by the combination of

three machine tools: Double Disk, Blanchard and Wendt. All Wendt machines are located in

upper side of hall, while Blanchard and Double Disk machines are arranged in the lower side.

Therefore, it could be concluded that there are too much back and forth travel being done

between the two sides of the floor just for performing the first couple of operations.

After having several meetings with the plant manager and executive board of the company,

cellular layout was chosen as the best layout plan. Group formation was performed by the plant

manager. Four cells with specific types of machine tools were designed as given in Table 8. The

problem was solved using both the developed mathematical model and heuristic [7].

5.1. Mathematical model

5.1.1. Intra-cellular layout

For the leader problem the layout of the different machine tools and work stations in their

respective cells are being solved. The intra-cellular travel cost per unit distance per one unit of

each respective part are ¢10, ¢10, ¢15, ¢12 and ¢20, respectively for Dog Bone, S Shape,

Triangular, Top Notch and all types of Diamond. The results for intra-cellular layout are

summarized in Table 9.

5.1.2. Inter-cellular layout

In the follower problem, the four cells with exact dimensions are located on the 90” · 60” shop

floor. The inter-cellular travel cost per unit distance for each unit of Dog Bone, S shape,

Cell name Machine tools/work station

Primary M1 (1) M2 (2) M4 (1) M3 (3)

Grinding M6 (2) M8 (2) M9 (1)

Diamond M10 (2) M7 (1) M5 (1) M12 (1) M11 (1)

Final M13 (1) ST1 (1) ST2 (1) ST3 (1)

Table 8. GF results.

Cells Dimension Centroid MHC (material handling cost)

Length Width X Y

Primary 35 25 42.5 13.5 $1191.550

Grinding 26 20 74 50 $520.588

Diamond 30 20 45 59.22 $764.580

Final 30 20 75 8 $1056.350

Aisle 90 60 45 32.5

Table 9. Intra-cell material handling costs and inter-cell dimensions of cells.
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Triangular, Top Notch, and Diamond are ¢12, ¢12, ¢18, ¢15, and ¢20, respectively. Material

handling cost for the inter-cellular layout is $7520.42. Table 11 shows the coordinates of cells

based on inter-cellular layout plan. The final sketch of inter-cellular and intra-cellular layout is

shown in Figure 11.

5.2. Heuristic

The heuristic is applied to solve the intra-cellular layout problems for each respective cell. The

results obtained are provided in Table 10 and plotted in Figure 12. The material handling cost

for the inter-cellular layout is $6134.50 [6].

5.3. Simulated annealing (SA)

5.3.1. To validate the proof of the efficiency of the developed SA algorithm, the developed SA was applied

for 10 runs for each cells [8]

5.4. Discussion

The comparison between the solutions provided non-linear, linear model and simulated

annealing is represented in Table 11. The linear model gives the exact optimum solution,

however simulated annealing provides near optimum solution. The results also prove this

fact. In both leader and follower problem, i.e. intra- and inter-cell, respectively, the total

Figure 11. Inter-cell and intra-cell layout plan.
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material handling cost is less than costs provided by non-linear mixed integer programming

and simulated annealing.

The follower problem solved by simulated annealing has just assumed aisle.

Generally speaking, the linearized model obviously has yielded exact optimal results which

proved to be better than those obtained by both the simulated annealing and the original non-

Cell Machine Coordinates

X Y

Primary Blanchard 14.5 18.30

Blanchard 21.27 17.16

Polish 14.5 5.98

Wendt 6.58 7.64

Wendt 23.34 4.45

Double Disc 23.83 10

Wendt 7.25 17.72

MHC $734.581

Grinding Surface grinding 16.79 4

Surface grinding 21.05 16

Swing fixture 18.97 10

Swing fixture 5.72 15.26

V-bottom 8.55 6.76

MHC $669.480

Diamond Wire cutting 10.39 3.8

Wire cutting 5.50 10

Surface grinding 18 5.64

Brazing 26 10

Ewag 11.53 16.31

Laser M/c 18.8 14.87

MHC $808.640

Final ETCH 26.19 9

Wash 15 12.42

Inspection 4.89 9

Packing 15 5

MHC $2410.760

Table 10. Machine coordinates based on heuristic.
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linear model. This was quite expected; in most cases simulated annealing resulted in better

solutions than the non-linear model; however, there were cases where the non-linear model

results were slightly better than those obtained by simulated annealing. The exception was for

grinding cell and diamond cell where the non-linear model outperformed slightly than simu-

lated annealing.

Table 12 summarizes the results from both leader and follower problems. Both mean and SDV

from the performed 10 runs are being provided. Standard deviation is good except for inter-

cell layout problem. For inter-cell, we believe the algorithm is yet to be improved, and variance

as shown in Table 12 is relatively high.

Figure 12. Heuristic results showing layout presented at intra-cell level for different cells (note: quadrant have been

plotted demonstrating how facilities were spread around the different quadrants as per the working of the algorithm).

Method

Leader problem Follower problem

Primary cell Grinding cell Diamond cell Final cell Shop

NLMIP $ 1191.550 $520.588 $764.580 $1056.350 $7520.420

LMIP $503.024 $399.750 $360.800 $685.200 $2838.6

SA $701.592 $526.004 $787.940 $856.508 $6167.6

Table 11. Comparisons between mathematical modelling and simulate annealing.
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6. Conclusion

Cellular manufacturing system (CMS) layout has recently begun to receive heightened atten-

tion worldwide. The design of a CMS includes: (1) cell formation (CF), (2) group layout, (3)

group and (4) resource allocation. An effective CMS implementation help any company

improve machine utilization and quality; it also makes reduction in setup time, work-in-process

inventory, material handling cost, part makespan and expediting costs.

There are two main approaches to FLP such as the discrete and continuous approaches. The

discrete approach holds two main assumptions: one is all facilities are equal size and shape;

the other one is predetermined locations of facilities. However, these kinds of assumptions are

not realistic. The discrete approach is not suited to represent the exact locations of facilities.

Moreover, this approach is not applicable for FLP with unequal size and shape facilities. The

appropriate approach to this kind of FLP is continuous representation.

Generally speaking, the design of layout cannot be efficient if manufacturing attributes are not

being considered in it. To illustrate, operation sequencing and parts’ demand are the two

factors that have significant impacts on the flow rate which minimizes the main objective of

FLP. The majority of literature studies have not considered these factors in the design of layout

plan. Besides those manufacturing attributes, the available area of the shop that can be used for

locating facilities is the other factor that has to be considered.

The facility layout problem for cellular manufacturing system in both inter- and intra-

cellular levels is considered in this chapter. The problem is to arrange facilities that are cells

in the leader problem and machine tools in the follower problem in the continual planar site.

Operation sequence and parts’ demand are the two main manufacturing attributes consid-

ered in the developed model. The MIP has been presented for both leader and follower

problems. The novel aisle constraints have been presented in the mathematical formulation.

Since the model is non-linear, the linearized model has been developed. Additionally, a novel

mathematical modelling has been developed for considering block constraints such as fixed

departments and facilities. Since the FLP is an NP-hard problem, novel heuristics presented

in this chapter.

A novel heuristic model developed for finding feasible initial solution for designed meta-

heuristic algorithm, simulated annealing. The initial solution is based on the radial movement.

Cell Average SDV

Primary $633.86 $11.19

Grinding $492.44 $15.63

Diamond $759.790 $22.315

Final $902.62 $32.23

Inter-cell $5474.61 $423.97

Table 12. Mean and standard deviation of SA solutions.
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In other words, the algorithm placed facilities along the specific radius with certain angle

within site. The algorithm starts with dividing site into four equal-sized quadrants, start

placing facilities into first quadrant to the fourth one. After placing any new facility, the over-

lap's possibility between facilities and between facility and site boundaries is being checked.

The different repair functions have been designed for different cases.

The SA algorithm developed for both inter- and intra-cellular problem. The results of heuristic

have used to initialize the developed SA algorithm. However, in order to have more efficient SA,

the cell size used in heuristic algorithm is assumed two times of the original size of the cells. The

two main operators used are move and swap operators. The move operator decreases the

distance between facilities by moving the target facility towards the closest facility to it. Further-

more, the swap operator developed by defining the concept of the free zone.

Author details

Maral Zafar Allahyari1 and Ahmed Azab2*

*Address all correspondence to: azab@uwindsor.ca

1 Industrial Engineering, University of Windsor, Windsor, Ontario, Canada

2 Production & Operations Management Research Lab, Faculty of Engineering, University of

Windsor, Ontario, Canada

References

[1] Yaman R, Gethin DT, Clarke MJ. An effective sorting method for facility layout construc-

tion. International Journal of Production Research. 1993;31(2):413–427.

[2] Meller RD, Narayanan V, Pamela HV, Optimal facility layout design, 1999; 23:117–127.

[3] Armour Gordon C, Buffa Elwood S. A heuristic algorithm and simulation approach to

relative location of facilities. Management Science. 1963;9(2):294–309.

[4] Russell DM, Kai-Yin G. The facility layout problem: recent and emerging trends and

perspectives. Journal of Manufacturing Systems. 1996;15(5):351–366.

[5] Kusiak A, Heragu SS. The facility layout problem. European Journal of Operational

Research. 1987;29(3):229–251.

[6] Chiang W-C. Visual facility layout design system. International Journal of Production

Research. 2001;39(9):1811–1836.

[7] Zafar A M, Ahmed A. Improved Bi-Level Mathematical Programming and Heuristics for

the Cellular Manufacturing Facility Layout Problem. In: ASME 2015.

Facility Layout Problem for Cellular Manufacturing Systems
http://dx.doi.org/10.5772/67313

129



[8] Zafar AM. Bi-Level Mathematical Programming and Heuristics for the Cellular

Manufacturing Facility Layout Problem. MASc Thesis, University of Windsor, 2014.

[9] Alfa Sule A, Mingyuan C, Sunderesh SH. Integrating the grouping and layout problems in

Cellular manufacturing systems. Computers & Industrial Engineering. 1992;23(1):55–58.

[10] Kaebernick H, Bazargan-Lari M, Arndt G. An integrated approach to the design of

cellular manufacturing. CIRPAnnals—Manufacturing Technology. 1996;45(1):421–425.

[11] Bazargan-lari M, Kaebernick H. An approachto the machine layout problem in a cellular

manufacturing environment. Production Planning & Control. 1997;8(1):41–55.

[12] Bazargan-Lari M. Layout designs in cellular manufacturing. European Journal of Opera-

tional Research. 1999;112(2):258–272.

[13] Bazargan-Lari M, Kaebernick H, Harraf A. Cell formation and layout designs in a cellular

manufacturing environment a case study. International Journal of Production Research.

2000;38(7): 1689–1709.

[14] Imam M H, Mir M. Automated layout of facilities of unequal areas. Computers &

Industrial Engineering. 1993;24(355–366):0360–8352.

[15] Mir M, Imam M H. A hybrid optimization approach for layout design of unequal-area

facilities. Computers & Industrial Engineering. 2001;39(1–2):49–63.

[16] Wilhelm M R,Ward T L. Solving quadratic assignment problems by ‘simulated

annealing’. IIE Transactions. 1987;19(1):107–119.

[17] Baykasoğlu A, Gindy NNZ. A simulated annealing algorithm for dynamic layout prob-

lem. Computers & Operations Research. 2001;28(14):1403–1426.

[18] Rosenblatt M J. The dynamics of plant layout. Management Science. 1986;32(1):76–86.

[19] Conway D G, Venkataramanan MA. Genetic search and the dynamic facility layout

problem. Computers & Operations Research. 1994;21(8):955–960.

[20] Balakrishnan J, Cheng C H. Genetic search and the dynamic layout problem. Computers

& Operations Research. 2000;27(6):587–593.

[21] Tavakkoli-Moghaddam R., Aryanezhad M B, Safaei N, Azaron A. Solving a dynamic cell

formation problem using metaheuristics. Applied Mathematics and Computation.

2005;170(2):761–780.

[22] Safaei N, Saidi-Mehrabad M, Jabal-Ameli M S. A hybrid simulated annealing for solving

an extended model of dynamic cellular manufacturing system. European Journal of

Operational Research. 2008;185(2):563–592.

[23] Golden, B L, Skiscim, CH. Using simulated annealing to solve routing and location

problems. Naval, Research Logistics Qaurtely. 1986;33 (2):261–279.

[24] Press W, Teukolsky S A, Vetterling W T, Flanner B P 2007. Numerical Recipes. The Art of

Scientific Computing. WH Press. pp. 549–555.

Computational Optimization in Engineering - Paradigms and Applications130



[25] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science.

1983;220:671–680.

[26] Kia R, Baboli A, Javadian N, Tavakkoli-Moghaddam R, Kazemi M, Khorrami J. Solving a

group layout design model of a dynamic cellular manufacturing system with alternative

process routing, lot splitting and flexible reconfiguration by simulated annealing. Com-

puters and operations research, 2012;39:2642–2658.

[27] Heragu S, Alfa AS, 1992. Experimental analysis of simulated annealing based algorithms

for the layout problem, European Journal of Operational Research, 57:190–202.

Facility Layout Problem for Cellular Manufacturing Systems
http://dx.doi.org/10.5772/67313

131




