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Abstract

Dealing with industrial applications, the implementation of condition monitoring
schemes must overcome a critical limitation, that is, the lack of a priori information
about fault patterns of the system under analysis. Indeed, classical diagnosis schemes,
in general, outdo the membership probability of a measure in regard to predefined
operating scenarios. However, dealing with noncharacterized systems, the knowledge
about faulty operating scenarios is limited and, consequently, the diagnosis performance
is insufficient. In this context, the novelty detection framework plays an essential role for
monitoring systems in which the information about different operating scenarios is
initially unavailable or restricted. The novelty detection approach begins with the
assumption that only data corresponding to the healthy operation of the system under
analysis is available. Thus, the challenge is to detect and learn additional scenarios
during the operation of the system in order to complement the information obtained by
the diagnosis scheme. This work has two main objectives: first, the presentation of
novelty detection as the current trend toward the new paradigm of industrial condition
monitoring and, second, the introduction to its applicability by means of analyses of
different novelty detection strategies over a real industrial system based on rotatory
machinery.
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© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Currently, condition monitoring plays a key role in the reliability and safety strategies of

most of the industrial applications [1]. Classical industrial condition monitoring methodolo-

gies imply the estimation of numerical features and their posterior processing in order to

characterize the available physical magnitudes acquired during the operation of the system

under analysis. Such numerical feature vectors are, then, presented to a classification algo-

rithm in order to obtain a diagnosis outcome [2]. In this procedure, the algorithm of classifi-

cation is previously trained with available data representative of different system conditions.

Thus, during the regular operation of the condition monitoring scheme, each measurement

acquired from the system will be transformed to a vector of numerical features, and its

similarities with previous patterns will be evaluated in order to obtain the related probabil-

ity. During the last decades, a great deal of studies has been done around different aspects of

the electromechanical condition monitoring, that is, the potentiality of different physical

magnitudes for fault detection, the analysis of time, frequency and time-frequency domains

for numerical features’ estimation, the effect of feature reduction techniques for patterns’

characterization and dealing with data-based approaches and multiple classification strate-

gies for diagnosis improvement [3, 4]. All of these works are, with no doubt, a major step

forward to the study, research and development of enhanced condition monitoring schemes

to be applied to electromechanical systems. However, currently, the scientific and industrial

communities are working together toward more demanding industrial challenges in the

frameworks of Industry 4.0 [5] and Zero-defect manufacturing [6]. Indeed, further capabili-

ties are expected from the condition monitoring developments in order to face questions

about their practical implementations, questions such as: How must condition monitoring be

managed in front of new operating scenarios not previously considered?,How to detect new operating

scenarios?, Which numerical features should be used for unknown patterns’ detection?, How to

preserve the diagnosis reliability in the presence of new patterns?, Is it possible to automate these

considerations or is the aid of an expert required? In order to find answers to such questions,

specific research is being gathered around the so-called novelty detection topic, which can be

defined as the task of recognizing that the data under analysis differ, in some respect, from

the initial available data.

Indeed, a priori characteristic fault patterns of specific rotatory machinery are not usually

available and highly difficult to estimate through theoretical approaches. Thus, condition

monitoring strategies capable of detecting novel operating conditions, alongside the classifica-

tion of known conditions, represent the most convenient solutions [7]. This approach is known

as the open set recognition problem, where only a reduced set of known operating scenarios

are included in the initial dataset and used during the training stage, and, then, novel

(unknown) scenarios may appear during the online diagnosis stage. In general terms, in order

to deploy a novel detection strategy, a model must be trained with all the available data

describing the initial-known scenarios of the machinery under monitoring. Thus, the model

generates a threshold system that allows to discriminate between known scenarios and mea-

surements corresponding to new cases, novelties. Different approaches differ in the way that

the threshold system is generated [8].
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In this chapter, first, a more comprehensive description of the novelty detection topic, includ-

ing different approaches and their dependencies, is introduced. Later, the practical application

of novelty detection applied over an industrial electromechanical system is described. The

performances obtained with different novelty detection strategies, including the effect of

feature reduction, are discussed finally.

2. Novelty detection

The introduction of novelty detection into the classical monitoring chain represents a previous

condition to the diagnosis assessment. The classical step flow to implement novelty detection

is shown in Figure 1. The procedure begins with the off-line processing of the available

information (generally, the healthy behavior of the electromechanical chain). Such processing,

in regard to the raw data acquired (stator currents, temperatures, etc.), consists of the defini-

tion of the same blocks as in classical diagnosis procedures, that is, feature estimation (calcu-

lation of a set of numerical features) and feature reduction (feature vector transformation for

improved characterization). Once the available data is characterized by vectors of D features,

the configuration of the novelty detection model follows. This part depends entirely on the

nature of the novelty model (different approaches can be applied); however, the objective is the

Figure 1. Implementation scheme of novelty detection, including the offline initialization for knowledge delimitation and

the online monitoring for novelty evaluation.
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delimitation of the available knowledge defining a set of mathematical descriptions in the

D-dimensional feature space in which the available database is projected [9].

Thus, during the online monitoring, the novelty detection model will analyze the new acquisi-

tions and will determine if the new data correspond to known operating scenarios previously

learned or present different characteristics and can be considered novel representations. In case

of known operating scenarios, the diagnosis follows. It must be noted that the diagnosis

procedure could include different feature estimation and feature reduction stages because its

objective is completely different. In this sense, the novelty detection does not require different

labels since all data belongs to the class knowledge or normal. The diagnosis, however, requires

to maintain different labels in order to allow the identification of the different operating

scenarios. In case of unknown operating scenarios, the diagnosis cannot be carried out since

the diagnosis reliability would be affected. In this case, the presence of novel data is reported

and, after the supervision of an expert, the measurements are stored in order to upgrade the

known operating scenarios, which will imply the retraining of the novelty model [10].

In order to illustrate the novelty detection operation, an example is shown in Figure 2. A

D = 2-dimensional feature space is considered, in which a set of measurements representing

the available data has led to the definition of the boundaries corresponding to the known

conditions. When new measurements are acquired, the novelty model analyzes them and

determines, in this example by means of their position in the 2-dimensional feature space, if

they represent novelty or if the behavior is still considered known. If a significant amount of

novel acquisitions with the same characteristics are detected, then, a novel operation mode is

detected and, if validated, the data will be included as known behaviors.

Indeed, the detection of novel events is an important ability of any condition monitoring

scheme. Considering the fact that it cannot be trained within a machine learning system with

all possible systems’ variability, it becomes important to include the differentiation capability

between known and unknown object information during the system's monitoring. However, it

has been considered in practice by several studies that the novelty detection is an extremely

Figure 2. Example of a novelty detection basic operation, including available data, Δ, mathematical description of the

available data, --, novel behaviors detected as outliers, □ and novel behaviors detected as the novel operating scenario, Ο.
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challenging task. It is for this reason that there exist different approaches of novelty detection

that have been demonstrated to perform well under different applications [11, 12]. Unfortu-

nately, it is clearly evident that there is no single best model for novelty detection, and the

success depends not only on the type of the method used but also on the statistical properties

of the available data. Next, the three basic novelty detection approaches are described, includ-

ing probabilistic, domain-based and distance-based methods.

2.1. Probabilistic methods

Probabilistic approaches to novelty detection are based on estimating the probability density

function (PDF) of the available data. The resulting distribution may then be thresholded to

define the boundaries of normality in the feature space and assess whether a new measurement

belongs to the same distribution or not. The training data is assumed to be generated from

some underlying probability distribution. This estimation usually represents the novelty

model, and a novelty threshold can be set over such estimation. The estimation of the under-

lying data density from a multivariate training dataset is a well-established topic [10].

Probabilistic methods are divided in parametric and nonparametric approaches. Parametric

approaches impose a restrictive model on the data, which results in a large bias when the

model does not fit the data. Nonparametric approaches set up a very flexible model by

making fewer assumptions over the data: The model grows in size to accommodate the

complexity of the data, but it requires a large sample size for a reliable fit out of all the free

parameters. The opinion in the scientific literature is divided as to whether various tech-

niques should be classified as parametric or nonparametric. For the purposes of providing

probabilistic estimators, Gaussian Mixture Model (GMM) and Kernel Density Estimator

(KDE) have proven popular. The GMM is typically classified as a parametric technique [11]

because of the assumption that the data is generated from a weighted mixture of Gaussian

distributions. The KDE is typically classified as a nonparametric technique [13] as it is closely

related to histogram methods, one of the earliest forms of nonparametric density estimation

approaches.

2.1.1. Gaussian-mixture model

The GMM is a parametric probability density function represented as a weighted sum of

Gaussian component densities. The GMM parameters are estimated from the available train-

ing data using, for example, the iterative expectation-maximization algorithm or the maximum

a posteriori estimation. Thus, a GMM is a weighted sum of M component Gaussian densities,

mathematically described as,

pðxjλÞ ¼
X

M

i¼1

wi g xjμi,
X

i
� �

(1)

where x is a D-dimensional vector, wi, i=1,..M are the mixture weights and gðxjui,
X

iÞ, i=1,..,M

are the component Gaussian densities. Each component density is a D-variate Gaussian func-

tion of the form,
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gðxjμi,
X

iÞ ¼
1

ð2πÞD=2j
X

ij1=2
exp �

1

2
ðx� μiÞ

0
X

�1

i

ðx� μiÞ

( )

(2)

with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint that
XM

i¼1
wi ¼ 1. The complete Gaussian mixture model is parameterized by the mean vectors,

covariance matrices and mixture weights from all component densities. These parameters are

collectively represented by the notation λ ¼ fwi,μi,Σig, i ¼ 1, ::,M. There are several variants

on the GMM. The covariance matrices, Σi, can be in full rank or constrained to be diagonal.

Additionally, parameters can be shared, or tied, among the Gaussian components, such as

having a common covariance matrix for all components. The choice of model configuration is

often determined by the amount of data available for estimating the GMM parameters and

how the GMM is used in a particular application [14]. In fact, GMM can suffer from the

requirement of large numbers of training examples to estimate model parameters. A further

limitation of parametric techniques is that the chosen functional form for the data distribution

may not be a good model of the distribution that generates the data.

One of the major issues in novelty detection is the selection of a suitable novelty threshold.

Within a probabilistic approach, novelty scores can be defined using the unconditional proba-

bility distribution zðxÞ ¼ pðxÞ and a typical approach to setting a novelty threshold k is to

threshold this value, that is, pðxÞ ¼ k. However, because pðxÞ is a probability density function,

a threshold on pðxÞ has no direct probabilistic interpretation. Some studies have interpreted the

model output pðxÞ probabilistically, by considering the cumulative probability P associated

with pðxÞ, that is, determining the probability mass obtained by numerically estimating the

integral of pðxÞ over a region R for which the value of pðxÞ is above the novelty threshold k [15].

For unimodal distributions, one can integrate from the mode of the probability density func-

tion to the probability contour defined by the novelty threshold pðxÞ ¼ k, which can be

achieved in a closed form for most regular distributions.

2.1.2. Kernel density estimator

Nonparametric approaches do not assume that the structure of a model is fixed, that is, the

model grows in size necessary to fit the data and accommodates the complexity of the data.

The simplest nonparametric statistical technique is the use of histograms. The algorithm

typically defines a distance measure between a new test data point and the histogram-based

model of normality to determine if it is an outlier or not [10]. For multivariate data, attribute-

wise histograms are constructed and an overall novelty score for a test data point is obtained

by aggregating the novelty scores from each attribute. However, when a histogram is defined,

it is necessary to consider the width of the bins (equal subintervals in which the whole data

interval is divided) and the end points of the bins (where each of the bins starts). In conse-

quence, the histograms present a nonsmooth behavior. In order to alleviate this deficiency, the

kernel estimators were proposed.

It must be considered that observations are being drawn from some unknown probability

density function pðxÞ in a Euclidian D-dimensional feature space. Thus, considering a region

R containing the D-dimensional measurement x, the probability mass associated with this
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region is given by P ¼

ð

R

pðxÞdx. Taking into account a dataset comprising N observations

drawn from pðxÞ, each data point has a probability P of falling within R, and the total number

K of points that lie inside R will be distributed according to the binomial distribution

BinðKjN,PÞ ¼ N!

K!ðN�KÞ!P
Kð1� PÞ1�k. The mean fraction of points falling inside the region is

E½KjN� ¼ P, and the variance around this mean is var½KjN� ¼ Pð1� PÞ=N. For large N, this

distribution will sharply peak around the mean and so K ffi NP. If, however, it is assumed that

the region R is sufficiently small that the probability density pðxÞ is roughly constant over the

region, then P ffi pðxÞV, where V is the volume of R. Thus, density estimate is obtained in the

form,

PðxÞ ¼
K

NV
(3)

Note that the validity of Eq. (3) depends on two contradictory assumptions, namely that the

region R is sufficiently small that the density is approximately constant over the region and yet

sufficiently large (in relation to the value of that density) that the number K of points falling

inside the region is sufficient for the binomial distribution to sharply peak. The resultant Eq. (3)

can be exploited in two different ways. Either it can be fixed K and the value of V can be

determined from the data, which gives rise to the K-nearest-neighbor technique that will be

presented later, or it can be fixed V and K can be determined from the data, giving rise to the

kernel approach. It can be shown that both the K-nearest-neighbor density estimator and the

kernel density estimator converge to the true probability density in the limit N ! ∞, provided

V shrinks suitably with N, and K grows with N [13]. Thus, considering the region R as a small

hypercube centered on the point x at which is desired to determine the probability density, the

number K of points falling within region is defined as follows,

KðuÞ ¼ 1, juij ≤
1

2
, i ¼ 1, ::,D

0, otherwise

(

(4)

which represents a unit cube centered on the origin. The function KðuÞ is an example of a

kernel function and in this context is also called a Parzen window. From Eq. (4), the quantity

K x�xi
h

� �

will be one if the data point xi lies inside a cube of side h centered on x and zero

otherwise. The total number of data points lying inside this cube will therefore be

K ¼
XN

i¼1
k x�xi

h

� �

. Substituting this expression in Eq. (3) gives the following result for the

estimated density at x,

pðxÞ ¼
1

N

X

N

i¼1

1

hD
k

x� xi
h

� �

(5)

where V ¼ hD for the volume of a hypercube of side h in D dimensions. Eq. (5) represents the

kernel density estimator [16]. Even though Gaussian kernels are the most often used, there are

various choices among kernels that can be found in the literature [17].
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2.2. Domain-based method

Domain-based method requires a boundary to be created based on the structure of the training

dataset. These methods are typically insensitive to the specific sampling and the density of the

target class because they describe the target class boundary, or the domain, and not the class

density. Class membership of unknown data is then determined by their location with respect

to the boundary. Domain-based novelty detection is approached with the two-class problem in

terms of Support Vector Machine (SVM), where the location of the novelty boundary is

determined using only those data that lie closest to it (in a kernel-based transformed space),

by means of the support vectors. All other data from the training set (those that are not support

vectors) are not considered when setting the novelty boundary. Hence, the distribution of data

in the training set is not considered, which is seen as an easy novelty detection approach [7].

The original SVM is a network that is ideally suited for binary pattern classification of data that

are linearly separable. Indeed, the SVM defines a hyperplane that maximizes the separating

margin between two classes. Since the introduction of the original idea, several modifications

and improvements have been made.

2.2.1. Support vector data description

A data domain description method, inspired by the support vector machine approach, called

the Support Vector Data Description (SVDD), is used for novelty or outlier detection. The

objective is the definition of a spherically shaped decision boundary around a set of measure-

ments by a set of support vectors describing the hypersphere boundary. The method allows the

possibility of transforming the data to new feature spaces, where the SVDD can obtain more

flexible and more accurate data descriptions. The minimizing problem to delimitate the radius

of the hypersphere is expressed as the Lagrangian, L ¼
X

i
αiðxi�xiÞ �

X
i, j αiαjðxi�xjÞ, under

the constraints of 0 ≤αi ≤C and
X

i
αi ¼ 1, where αi, j are the Lagrange multipliers, xi, j are the

data training points, the variable C gives the trade-off between simplicity (or volume of the

sphere) and the number of errors (number of target objects rejected). For those objects the

coefficients αi, j will be nonzero and are called the support objects. In order to determine

whether a new measurement is within the hypersphere, the distance to the center of the sphere

has to be calculated. A new measurement z is considered known when this distance is smaller

than the radius,

ðz�zÞ � 2
X

i

αiðz�xiÞ þ
X

i, j
αiαjðxi�xjÞ ≤ r

2 (6)

where a is the center of the sphere and r is the radius [18]. Kernels could be applied to soften

the margins of the sphere, being applied over the measures and data descriptors.

2.2.2. One-class support vector machine

The One-Class SVM, OC-SVM, is based on the definition of the novelty boundary in the

feature space corresponding to a kernel, by separating the transformed training data from the

origin in the feature space, with the maximum margin. This approach requires fixing a priori

Fault Diagnosis and Detection138



the percentage of positive data allowed to fall outside the description of the normal class. This

makes the OC-SVM more tolerant to outliers in the normal training data. However, setting this

parameter strongly influences the performance of this approach. The shape of the domain

delimiting the boundaries depends on the kernel selected. Thus, the development of the

algorithm is the classic SVM approach. The difference with the other domain-based method

approach is that OC-SVM does not consider a specific structure (e.g., a hypersphere) to delimit

the domain and therefore does not automatically optimize the model parameters by using

artificially generated unlabeled data which are uniformly distributed. The detection of novelty

is therefore delimited by,

f ðxÞ ¼
X

N

i¼1

αiKðxi, xÞ � p (7)

where p is an offset. The famous kernel trick is the procedure of using a kernel function in

input space, Kðxi, xÞ, to replace the inner product of two vectors into a huge, or even infinite,

dimensional feature space. Some drawbacks of these methods are found in literature reviews

[7], and it turns out to be surprisingly sensitive to specific choices of representations and

kernels in ways which are not very transparent. In addition, the proper choice of a kernel is

dependent on the number of features in the binary vector. Since the difference in performance

is very dramatic based on these choices, this means that the method is not robust without a

deeper understanding of these representation issues.

2.3. Distance-based method

Distance-based methods represent a novelty detection approach similar to that of estimating

the PDF of data. Distance-based methods such as nearest neighbors or clustering are based on

well-defined distance metrics to compute distance, as the similarity criterion, among data

points.

2.3.1. Nearest neighbor

The main idea that rears this technique is that the normal data is projected near their neighbor-

hoods, while novelties will be projected far from their neighbors. That is, considering an

unknown data point x, this point is accepted as normal if the distance to its nearest neighbor

y, in the training set, is less than or equal to the distance from y to the nearest neighbor of y in

the training set. Otherwise, x is considered as novelty. Euclidian distance is the most popular

choice for univariate and multivariate continuous attributes,

‖x� y‖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD

i¼1
ðxi � yiÞ

2

r

(8)

Several well-defined distance metrics to compute the distance (or the similarity measure)

between two data points can be used, which can broadly be divided into distance-based

methods, such as the distance to the kth nearest neighbor and local density-based methods in

which the distance to the average of the k's nearest neighbors is considered [11].
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In conclusion, novelty detection approaches differ on the assumptions made about the nature

of the available data. Each approach exhibits its own advantages and disadvantages and faces

different challenges for complex datasets. Table 1 collects the main characteristics of the

considered methods. Thus, probabilistic methods make use of the distribution of the training

data to determine the location of the novelty boundary. Domain-based methods determine the

location of the novelty boundary using only those data that lie closest to it and do not make

any assumptions about the data distribution. Distance-based methods require the definition of

an appropriate distance measure for the given data.

3. Case study

In order to illustrate the practical implementation of novelty detection in an industrial appli-

cation, an interesting case study is proposed next. Indeed, as it has been mentioned, currently,

due to the worldwide market situation, the industrial sector is being subjected to a high degree

of competitiveness. Critical sectors as the automotive industry are investing in higher levels of

quality and safety assessment procedures in order to reduce costs without compromising the

attributes of their mechanical manufactured assets. In regard to the automotive rotatory

mechanical components, such as the electrical-assisted power steering columns (EPS), end-of-

line tests (EOLs) are carried out to analyze their performances. The EPS column is rotated by a

test machine in order to quantify the required torque to perform a complete revolution of the

EPS column without the influence of any external load. Thus, if the recorded torque is com-

pared with a reference pattern for decision support purposes, then, the EOL test is complete.

However, the condition monitoring of the EOL machines, as the represented in Figure 3, has

Method Advantages Disadvantages

Domain-

based

i.e. One-class

SVM

Robust to labeled outliers in training by forcing

them to lie outside the description.

Robust to unlabeled outliers in training.

Several configuration parameters.

Sensitive to the scaling of the feature values.

Requires a minimum number of training.

Probabilistic

parametric

i.e. Gaussian

mixture models

Great advantage when a good probability

distribution is assumed.

Provides a more flexible density method.

Requires a large number of training samples to

overcome the curse of dimensionality.

The distribution of the data is assumed.

Unlabeled outliers in training affect the estimation

of the covariance matrix.

Probabilistic

nonparametric

i.e. Kernel

density

estimator

Flexible density model.

Possible configuration of the kernel width h on

each feature direction.

Low computational cost for training.

The density estimation is only influenced locally.

Requires a large number of training samples to

overcome the curse of dimensionality.

Expensive computational cost for testing.

Limited applicability of the method when there is a

large dataset in high-dimensional feature spaces.

Distance-

based

i.e. k-NN

Rejects parts of the feature space which are within

the target distribution.

Lack of configuration parameters, besides k;

therefore, it relies completely on the training

samples.

Scale sensitive due to the use of distances in the

evaluation of test objects.

Performance affected when unlabeled outliers are

presented in training.

Sensitive to noise.

Table 1. Summary of the main characteristics of the novelty detection approaches.
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not being attended classically. The maintenance program is limited to a preventive approach,

leading to torque response deviations due to EOL machine degradation that are not detected

by the machine operator until an evident malfunction. In this regard, the detection and

identification of EOL malfunctions during its operation becomes an impactful contribution to

the sector and is considered a challenging condition-based monitoring scenario.

In this work, a specific end-of-line test machinery is analyzed. The system under monitoring is

based on an electrical drive, where a 1.48 kW at 3000 rpm servomotor connected to a 60:1

reduction gearbox emulates the input torque of the steering wheel to perform a 180� turn in

order to evaluate the mechanical performances of power-assisted steering systems. The

Figure 3. End-of-test machine, composed by a servomotor, a gearbox, an encoder, a torque transducer and a pneumatic

clamp to hold the intermediate shaft of the EPS column.
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measurement equipment is focused on the acquisition of the torque signal and the rotatory

shaft position from the encoder. Data acquisition is done at 1 kHz of sampling frequency by

means of a NI cDAQ-9188, composed by the modules NI-9411 and NI 9215.

The torque induced by the drive is expected to follow a specific predefined set point pattern.

However, these test systems present two main limitations: first, if the test machine does not

generate the input of the torque set point correctly, an inaccurate result is obtained during the

assessment of the power-assisted steering system, leading to the nonvalidation of the compo-

nents under test and second, the lack of malfunctions’ characterization over the testing machine,

since the faults’ variability and appearance in the torque generation test are unpredictable. Thus,

this work presents an electromechanical system novelty detection approach, based on the tem-

poral torque signal characterization by statistical time features and the evaluation of different

novelty detection algorithms (probabilistic, domain-based and distance-based), for novelty

assessment.

In order to analyze the performance of the proposed methodology, some faulty conditions

have been induced in the machine to provoke different severity degrees of a common fault

scenario. Three operating scenarios are considered, that is, healthy, H, a coupling low wear,

CLW, and a coupling high wear, CHW. The coupling wear fault is emulated by employing two

different intermediate elastomers in the torque limiter coupling, each one with different

dynamic torsional stiffness (DTS). The values of the DTS of the pieces under test are all lower

than the standard used in the machine in order to emulate classical wear, thus, 2580 Nm/rad

corresponds to CLW and 2540 Nm/rad to CHW.

3.1. Method

During the test, the assisting motor of the EPS is not powered. The test starts smoothly in a

clockwise direction for the first 45� until a speed set point is reached. The acceleration time

depends on the drive capability. During the next 360�, the speed is fixed at the set point, in this

case 15 rpm. The last additional 45� is for a mild brake of the EPS column under test. Then, the

same procedure is employed to return to the original start point in the opposite direction. The

drive is applied to the steering shaft of the EPS. Then, the torque signal analysis is carried out

during the stationary speed set point corresponding to a 360� turn of the EPS column. It is

expected that malfunctions and anomalies could appear during segments of the revolution of

the EPS column; therefore, the segmentation represents a viable strategy to gain resolution

during the characterization. That is, the 4-second torque signal (time taken to perform the 360�

turn) is segmented in four parts of 1 second. A set of five statistical time-domain features is

calculated from each segment of the torque signal. The proposed features are listed in Table 2.

These features have been successfully employed in different studies for electromechanical

systems’ fault detection [19]. Therefore, a total of 20 features are calculated from each torque

signal measurement.

High-dimensional datasets complicate the learning task of novelty detection as well as multiclass

classification methods, because of the possible presence of nonsignificant and redundant infor-

mation in the data, compromising the proper convergence of the algorithms. Indeed, the empty

space phenomenon states that to cover the whole space, it needs a number of samples that grows
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exponentially with dimensionality. Thus, the curse of dimensionality implies that in order to

learn successfully, it needs a number of training examples that also grows exponentially with the

dimensionality. The “concentration of measure” phenomenon seems to render distance measures

not relevant to whatever concept is to be learned as the dimension of the data increased. For

these reasons, there is a necessity to apply dimensionality reduction techniques in condition

monitoring applications. Thus, in order to analyze the performance of different novelty detection

approaches, two main dimensionality reduction approaches are applied over the 20-dimensional

vectors, that is, Principal Component Analysis, PCA, and Laplacian Score, LS.

Indeed, the dimensionality reduction strategies differ in the criteria applied over the data in

order to reach a reduced feature space. PCA is one of the most commonly used techniques for

unsupervised dimensionality reduction. It aims to find the linear projections that best capture

the variability of the data [13]. Another well-known technique is the LS, where the merit of

each feature is measured according to its locality preservation power. A nearest neighbor-

based graph is constructed from the training set and analyzed to rank each feature individu-

ally according to a weighting approach selected for the graph's edges. To rank each feature, its

LS is computed, which is a measure of the extent to which the analyzed feature preserves the

structure present in the graph divided by the variance of the feature. For a feature to be

selected, it must have a low LS, which implies high variance and locality [20].

Finally, the necessity of evaluating the novelty detection performance is critical. The use of a

particular score depends on multiple interests, and then, the analysis of complementary scores

represents the most interesting solution. Next, the most useful and common scores in a discrete

scenario are described in order to be used later during the analysis of the experimental results.

• Accuracy and classification error (1-accuracy): One of the most frequent scores used to

evaluate discrete classification in electromechanical diagnosis is accuracy. This score is

indicative of the classification error committed while evaluating, in our case, two classes,

Accuracy ¼
FPþ FN

N
(9)

where FP is the number of false positives, FN is the number of false negatives and N, the

total number of analyzed measures. Two novelty detection approaches could exhibit the

same accuracy but provide a different novelty ratio for each class (normal data and

novelty data).

Root mean square (RMS)
ffiffiffiffiffiffiffiffiffiffi

1
n

X

q n

k¼1
ðxkÞ

2 Variance σ
2

Shape factor RMS

1
n

Xn

k¼1
jxk j

Skewness
Xn

k¼1

ðxk�xÞ3

nσ3

Crest factor (CF) maxðxÞ
RMS

Kurtosis
Xn

k¼1

ðxk�xÞ4

nσ4

Table 2. Statistical time-domain features used for torque signal characterization.
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• True positive rate (recall or sensitivity): This measure provides a proportion of one kind of

sample that was correctly assessed. But it only evaluates the positive cases,

Recall ¼
TP

TPþ FN
(10)

where TP is the number of true positives.

• Precision: This performance metric evaluates the correct classification of the positive class,

Precision ¼
TP

TPþ FP
(11)

• F-measure: This score can help to solve any contradiction that may appear between

precision and recall scores. F-measure leaves out the TN performance. Several versions

exist. The most common expression is,

F1 ¼
2½Precision � Recall�

½2 � Precisionþ Recall�
(12)

3.2. Experimental results

In order to expose the novelty detection performances, the outline of the experimental results

is presented as follows: The initial database is characterized by the proposed set of features,

then both feature reduction approaches are applied and, finally, over each reduced set of

features, the three novelty detection approaches are applied. The application of the novelty

detection is done sequentially, that is, first, the data corresponding to the healthy, H, operating

scenario is characterized by the novelty model. Second, the first fault operating scenario, CLW,

is presented as well as additional measures of the H operating scenarios. At this point, the

performance of the novelty detection model is analyzed. Third, the novel data identified is

included in the upgraded version of the novelty model by retraining, and over this updated

novelty model, the second fault operating scenario, CHW, is presented as well as the additional

measures of the CLW and H operating scenarios. At this point, the performance of the novelty

detection models is analyzed again. Finally, the novel data identified is included in an

upgraded version of the novelty model by a new retraining.

Three novelty detection methods have been implemented, that is, the mixture of Gaussians as

the probabilistic approach, one-class support vector machines as the domain-based novelty

detection approach and, finally, k-nearest neighbors as the distance-based novelty detection

approach. Next, the PCA variant of the novelty detection methodology is shown in Figure 4.

The proposed scores during the assessment of the novelty detection models in front of a new

set of measurements are shown next. Thus, in Table 3, the scores in regard to the PCA feature

reduction and the novelty detection models ‘performance, dealing with the projection of new

measurements corresponding to H and CLW operating scenarios over the novelty models
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trained with the H operating scenario, can be seen. It should be noted that, in regard to all the

scores shown in the next tables, a 10-fold cross validation strategy has been considered, in

which the mean and the dispersion ratio of the obtained scores is shown.

Figure 4. Performance of the three novelty detection models in a PCA-based 2-dimensional feature space. MG mixture of

Gaussian, OC-SVM, one-class support vector machine and k-NN, k-nearest neighbor. (a) Novelty models’ boundaries

during the characterization of the H operating scenario. (b) Projection of new measurements corresponding to H and CLW

operating scenarios over the novelty models trained with the H operating scenario. (c) Novelty model boundaries’ update

by the incorporation of the H and CLW operating scenarios’ measures detected as novelties and the projection of new

measurements corresponding to H, CLW and CHW operating scenarios over the novelty models. (d) Novelty model

boundaries’ update by the incorporation of the H, CLW and CHW operating scenarios’ measures detected as novelties.

MG OC-SVM k-NN

Accuracy 0.912 (�0.033) 0.952 (�0.025) 0.950 (�0.034)

Recall 1.000 (�0.000) 1.000 (�0.000) 1.000 (�0.000)

Precision 0.898 (�0.035) 0.942 (�0.029) 0.949 (�0.038)

F1 score 0.946 (�0.019) 0.970 (�0.015) 0.974 (�0.02)

Table 3. Associated scores to the PCA and novelty detection performance dealing with the class H as normal and CLW as

novelty.
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Also, in Table 4, the scores in regard to the PCA feature reduction and the novelty detection

models’ performance, dealing with the projection of new measurements corresponding to H,

CLW and CHW operating scenarios over the novelty models trained with the H and CLW operat-

ing scenarios, can be seen.

Similarly, next, the LS variant of the novelty detection methodology is shown in Figure 5.

The proposed scores during the assessment of this variant of novelty detection models in front

of a new set of measurements are also shown next. Thus, in Table 5, the scores in regard to the

LS feature reduction and novelty detection models’ performance, dealing with the projection

of new measurements corresponding to H and CLW operating scenarios over the novelty

models trained with the H operating scenario can be seen.

Also, in Table 6, the scores in regard to the LS feature reduction and novelty detection models’

performance, dealing with the projection of new measurements corresponding to H, CLW and

CHW operating scenarios over the novelty models trained with the H and CLW operating

scenarios can be seen.

MG OC-SVM k-NN

Accuracy 0.930 (�0.025) 0.863 (�0.014) 0.966 (�0.014)

Recall 0.997 (�0.005) 0.995 (�0.006) 0.985 (�0.005)

Precision 0.902 (�0.033) 0.822 (�0.013) 0.962 (�0.022)

F1 score 0.947 (�0.018) 0.901 (�0.01) 0.973 (�0.010)

Table 4. Associated scores to the PCA and novelty detection performance dealing with the H and CLW as known

operating scenarios and CHW as novelty.

MG OC-SVM k-NN

Accuracy 0.956 (�0.021) 0.971 (�0.026) 0.967 (�0.028)

Recall 1.000 (�0.000) 1.000 (�0.000) 1.000 (�0.000)

Precision 0.940 (�0.023) 0.965 (�0.031) 0.960 (�0.033)

F1 score 0.969 (�0.012) 0.982 (�0.016) 0.980 (�0.017)

Table 5. Associated scores to the LS and novelty detection performance dealing with the class H as normal and CLW as

novelty.

MG OC-SVM k-NN

Accuracy 0.910 (�0.016) 0.841 (�0.032) 0.890 (�0.014)

Recall 0.955 (�0.017) 0.925 (�0.021) 0.865 (�0.044)

Precision 0.922 (�0.027) 0.840 (�0.044) 0.940 (�0.030)

F1 score 0.938 (�0.012) 0.879 (�0.021) 0.899 (�0.014)

Table 6. Associated scores to the LS and novelty detection performance dealing with the H and CLW as known operating

scenarios and CHW as novelty.
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In regard to the feature reduction effect over the novelty detection performance, it has been

taken into account that both methods, PCA and LS, represent linear approaches to the reduc-

tion of the initial 20-dimensional feature set. This premise is not a limitation to the analysis of

the novelty detection models considered; however, the feature space could be further

improved in order to maximize the obtained results for the specific application.

Independently of the novelty detection model, the first test stage, that is, the assessment of new

measurements corresponding to H and CLW operating scenarios over the novelty models

trained with the H operating scenario, shows a clear superiority of the LS approach. The

accuracy obtained with the LS approach reaches till 97% and is, in all cases, better than using

PCA that reaches a maximum of 92%. However, the second test stage, that is, the assessment of

new measurements corresponding to H, CLW and CHW operating scenarios over the novelty

models trained with the H and CLW operating scenarios, shows a clear superiority of the PCA

approach. The accuracy obtained with the PCA approach reaches till 96% and is, in most of the

cases, better than using LS that reaches a maximum of 91%.

Figure 5. Performance of the three novelty detection models in a LS based 2-dimensional feature space. MG mixture of

Gaussian, OC-SVM, one class support vector machine, and k-NN, k-nearest neighbor. (a) Novelty models boundaries

during the characterization of the H operating scenario. (b) Projection of new measurements corresponding to H and CLW

operating scenarios over the novelty model trained with the H operating scenario. (c) Novelty model boundaries update

by the incorporation of the H and CLW operating scenarios measures detected as novelties, and projection of new

measurements corresponding to H, CLW and CHW operating scenarios over the novelty models. (d) Novelty model

boundaries update by the incorporation of the H, CLW and CHW operating scenarios measures detected as novelties.
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This effect is reasonable in dealing with the available data because the LS approach allows a

better representation in terms of novelty detection. That is, considering that all the available

data corresponds to the unique class normal or known, the performance of the novelty detection

model will be enhanced if less data dispersion is presented. In this sense, the LS feature space

shows a more compact projection of the data, at least during the first test stage, a fact that

facilitates the definition of the novelty detection boundaries and the posterior accuracy. How-

ever, dealing with the second test stage, the maximization of the variance by means of the PCA

avoids false negatives. In fact, the dispersion of data is desired when complexity of data is

considered, since new operating scenarios could be assessed as known measurements. This

performance of the feature reduction techniques over the novelty detection performance is a

critical aspect during the condition monitoring configuration, since a trade-off between feature

space complexity and data dispersion must be reached. Nevertheless, in this case study, the

proposed novelty detection methodology including both the feature reduction techniques

exhibits high ratios of performances.

In regard to the novelty detection models, independently of the feature reduction technique,

the first test stage, that is, the assessment of new measurements corresponding to H and CLW

operating scenarios over the novelty models trained with the H operating scenario, shows a

clear superiority of the OC-SVM and k-NN approaches in terms of accuracy, precision and

F1-score, considering that the recall is maximum in all three cases. However, the second test

stage, that is, the assessment of new measurements corresponding to H, CLW and CHW operat-

ing scenarios over the novelty models trained with the H and CLW operating scenarios, shows a

superiority, of the k-NN approach, mainly in terms of accuracy and precision, although the MG

shows also good behavior in terms of recall.

In fact, as it has been mentioned, the probabilistic novelty detection approach, represented by

the MG technique, assumes a data dispersion that, dealing with unknown operating scenarios,

cannot be the optimum. This fact is smoothened when the data density increases, since more

information is available in order to infer a proper PDF. In case of OC-SVM and k-NN, both

techniques showwide novelty detection boundaries, which allow a better characterization of the

data distribution by means of good generalizations. However, it must be taken into account that,

qualitatively, a more complex partition of the feature space is reached by the k-NN, and

although, as it has been explained, this can be controlled by the value of k, such tuning is not

trivial and, then, OC-SVM represents a more simple solution.

4. Conclusions

A condition monitoring scheme for novelty detection is applied to an industrial end-of-line test

machinery of electrical-assisted power steering columns, where the healthy data is the initial

available information. The fault conditions considered consist of two severities of one com-

monly presented fault in the mechanical parts of the electrical drive of the test machine,

coupling wear. The fault condition is presented in two stages, in order to analyze the detection

and learning capabilities of the considered approaches. These fault severities represent a

challenge for the data analysis due to the similitudes between the torque signals characterizing

each fault.
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Six variants of the methodology are proposed and analyzed. Thus, two feature reduction
approaches by means of PCA and LS are considered in order to emphasize the information
contained in the 20-dimensional vectors of statistical time-based features in which each torque
measurement is characterized. Later, three novelty detection modelling approaches are intro-
duced and implemented, that is, the probabilistic method by means of the mixture of Gaussians,
domain-based methods by means of one-class support vector machine and distance-based
methods, by means of k-nearest neighbors. A comparison and analysis between the novelty
models and the feature reduction procedures is performed to analyze the proper selection of
novelty models for these scenarios. The results have shown that the combination of PCA as
feature reduction and k-NN as the novelty detection model reaches, in general, the best-consid-
ered scores, mainly the accuracy, 96 and 90%, and precision, 96 and 94%. However, the OC-SVM
alternative must also be considered due to its simpler configuration requirements and good
performances.
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