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Abstract

This chapter describes plasmonic responses in In
2
O

3
:Sn nanoparticles (ITO NPs) and 

their assembled ITO NP sheets in the infrared (IR) range. ITO NPs clearly provide reso-
nance peaks related to local surface plasmon resonances (LSPRs) in the near-IR range, 
which are dependent on electron density in the NPs. In particular, electron-impurity 
scattering plays an important role in determining carrier-dependent plasmon damping, 
which is needed for the design of plasmonic materials based on ITO. ITO NPs are mainly 
dominated by light absorption. However, a high light reflection is observed in the near- 
and mid-IR range when using assembled NP sheets. This phenomenon is due to the fact 
that the introduction of surface modifications to the NPs can facilitate the production of 
electric-field (E-field) coupling between the NPs. The three-dimensional (3D) E-field cou-
pling allows for resonant splitting of plasmon excitations to the quadrupole and dipole 
modes, thereby obtaining selective high reflections in the IR range. The high reflective 
performances from the assembled NP sheets were attributed to the plasmon interactions 
at the internanoparticle gaps. This work provides important insights for harnessing IR 
optical responses based on plasmonic technology toward the fabrications of IR solar 
thermal-shielding applications.

Keywords: oxide semiconductor, surface plasmon, infrared and energy-saving

1. Introduction

Plasmonic nanomaterials based on transparent oxide semiconductors (TOSs, such as In
2
O

3
, 

ZnO and SnO
2
) have received much attention as new optical phenomena with potential 

applications. In particular, oxide semiconductors with metallic conductivity by doping with 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



intrinsic and/or extrinsic impurities show surface plasmon resonances (SPRs) in the infrared 
(IR) range [1–5]. Unlike noble metals (silver and gold), SPRs can be controlled by tuning the 

physical characters of a material [6–8], which provides new possibilities for optical manipula-

tion of light. Studies of nanoplasmonics based on TOSs can break new ground in the areas 

of oxide semiconductors. A characteristic property cleared by these studies is that the optical 
nature of TOSs shows a low-loss plasmonic material even up to near-IR wavelengths because 

of IR transparency outside the reststrahlen band. The band structures on TOSs are simply 

composed of s- and p-orbitals [9], indicating no inter band transition-related d-orbitals such 

as those exhibited by the noble metals [10]. TOS materials with metallic conductivity have 

mainly applied to transparent electrodes [11, 12]. Therefore, SPRs on TOSs provide new 

insight for alternative plasmonic applications in the IR range.

SPR excitations on TOSs have been reported on different structures such as nanorods and 
nanowires [13–15]. In particular, nanoparticles (NPs) of In

2
O

3
:Sn and ZnO:Al produce local-

ized surface plasmon resonances (LSPRs), which are strongly generated when confining the 
collective excitations of carriers into NPs [16, 17]. This makes use of localization of large elec-

tric fields in the vicinity of NP surfaces. Thus far, the majority of investigations concerning 
LSPRs have demonstrated on the noble metal NPs, which have been tailored for use in optical 

areas as diverse as waveguides and biochemical sensing [18–20]. Recently, In
2
O

3
:Sn NPs have 

launched as nanoplamonic materials. The careful choice of impurity dopants can show clear 

LSPR peaks in the near-IR range. The assembled films of In
2
O

3
:Sn NPs have shown optical 

enhancements of near-IR luminescence and absorption [21, 22]. These behaviours make use 

of the electric-fields (E-fields) excited on the NP film surfaces [23].

Assembled films of the noble metals have been utilized in surface-enhanced Raman and fluores-

cence spectroscopies, which are based on high E-fields derived from plasmon coupling between 
the NPs. When metal NPs are located near one another, coupling LSPR induces in a gap between 

NPs [24]. The strength of LSPR enhances with the magnitude due to interparticle coupling. This 

optical phenomenon has been utilized in enhanced light emissions, for example, hybrid layers 
of silver NPs and InGaN/GaN quantum wells [25]. However, assembled films of metal NPs have 
been limited in the visible range. The use of TOSs extends to longer wavelengths in the IR range.

Plasmonic properties of TOS materials have attracted attention for thermal-shielding applica-

tions in order to solar and radiant heat in the near- and mid-IR range, respectively [26]. To date, 

the composites and films of oxide semiconductor NPs have been studied regard to transmis-

sion and extinction spectra in the IR range because optical properties are dominated by absor-

bance [27–30]. The present thermal-shielding applications have strongly been desired to cut IR 

radiation not by absorption but through reflection. However, no previous paper has reported 
reflective performance on doped oxide semiconductor NPs. In addition, plasmonic applica-

tions exhibiting a thermal-shielding ability have not been previously studied in detail. The pur-

pose of this chapter is to apply the plasmonic properties for satisfying recent industry demands 

for a material with thermal-shielding ability. These social requirements include the fabrication 
of flexible sheets with high heat-ray reflections, as well as visible and microwave transmissions. 
We use assembled NPs of In

2
O

3
:Sn as a concrete example. Plasmonic responses are dependent 

on electronic structure. For example, In
2
O

3
, ZnO and WO

3 
have similar band structures with 
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conduction and valence levels consisting of s- and p-orbitals. This indicates that the plasmonic 

properties of these materials can be well manipulated through same optical mechanism.

This chapter is organized as follows. In Section 2, we give a description of structural and 

optical properties of In
2
O

3
:Sn (ITO) NPs in the IR range from the viewpoint of local structural 

analyses. In Section 3, we focus plasmonic responses of ITO NPs from theoretical and experi-
mental approaches, which is not as readily available in the noble metal NPs. To investigate 

mechanism of plasmonic excitations in ITO, NPs is valuable information for oxide-based plas-

monics. Section 4 is devoted to discussion of thermal-shielding based on assembled films of 
ITO NPs for industrial applications. Above all, we describe plasmonic responses related to 
the 3D E-field coupling along the out-of-plane and in-plane directions. This has a key factor 
in producing selective high reflections in the IR Range, which provides important insights 
for harnessing IR optical properties towards the fabrications of solar-thermal shielding. In 

Section 5, we shortly provide electromagnetic (EM) responses of assembled ITO NP films in 
the microwave region. Finally, some concluding remakes are given in Section 6.

2. Fabrications and structures of ITO NPs

2.1. Fabrications of ITO NPs

In
2
O

3
:Sn nanoparticles (ITO NPs) were fabricated using a metal organic decomposi-

tion method. Various initial ratios of the metal precursor complexes of (C
9
H

22
CO

2
)

3
In and 

(C
9
H

22
CO

2
)

4
Sn were prepared as starting materials. Indium and tin carboxylates were heated 

with a chemical ratio of 95:5 in a flask supported by a mantle heater to 350°C. The temper-

ature was maintained for 4 hours, and then the mixture was cooled to room temperature 
around 30°C. The obtain solutions produced a pale blue suspension, to which excess ethanol 
was introduced to cause precipitation. Centrifugation and repeated washing processes were 
carried out several times using ethanol, producing dried powders of ITO NPs with a pale 

blue colour. As a final step, the NP samples were dispersed in a nonpolar solvent of toluene. 
A zeta-potential measurement revealed that the NPs showed non-aggregated states in the 
solvent due to an electrostatic repulsion. The Sn concentration in the NPs in this chapter was 

measured by X-ray florescence spectroscopy.

2.2. Structural properties of ITO NPs

X-ray diffraction (XRD) measurements clarified that the NPs showed broad peaks characteristic 
of a colloidal sample with a crystal structure [Figure 1(a)] [31]. The a-axis length increased from 
10.087 to 10.152 Å as a consequence of incorporations of Sn atoms in the host. Furthermore, 
local structures of the NPs were evaluated by transmission electron microscopy (TEM) [inset 

of Figure 1(a)]. The electron diffraction (ED) analyses revealed that the lattice interval (d
222

) 

along the [222] direction at the centre region (d
222

 = 0.301 nm) was close to that at the edge 

region in the NP (d
222

 = 0.302 nm) [inset of Figure 1(b)]. In addition, the experimental results of 
energy- disperse X-ray microscopy showed that the Sn concentration [Sn] at the centre region, 
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[Sn] = 5.4%, was similar to that at the edge region, [Sn] = 5.2%, which indicated that Sn atoms in 

the NP were spatially homogeneous [Figure 1(b)]. The NP diameter was around 20 nm, as con-

firmed using TEM and dynamic light-scattering methods. However, crystalline sizes derived 
from Scherer’s equation from the (222) diffraction peak of XRD patterns were calculated as 1.58 
and 2.20 nm for un-doped and doped NPs, respectively. Broadenings of the line-widths of the 

XRD patterns are attributed to structural imperfections such as defects and strains [22].

We further investigated structural properties by scanning-TEM (STEM) combined with 

electron-energy loss spectroscopy (EELS) [32]. A STEM-EELS technique can easily detect 
plasmonic response in a single NP. High-angle annular dark field (HAADF) images in 
Figure 2(a)–(c) cleared that Indium and Sn atoms in the NP were distributed homogeneously, 

which were consisted with the results of XRD. The EELS spectra at an edge and vacuum 

Figure 1. (a) XRD patterns of ITO NPs with Sn contents of 0 and 5%. Inset shows low-resolution (left) and high-resolution 
(right) TEM images of an ITO NP with a Sn content of 5%. (b) EDX spectra at the centre and edge regions in the NP. Inset 
represents ED patterns of the (222) plane at the centre and edge (Figure 1 of Ref. [22]). Copyright 2014 by the American 
Institute of Physics.
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region on the STEM-acquired particle image showed a slight spectral difference in energy-
loss regions from 1.0 to 0.5 eV [Figure 2(d)]. In Figure 2(e), a differential EELS spectrum had a 
maximum peak at 0.7 eV that was similar to the optical absorption in the near-IR, which was 
direct evidence of a LSP excitation on the NP surface as consequence of spatially homoge-

neous doping of Sn atoms in the NP.

3. Localized surface plasmons in ITO NPs

3.1. Theoretical calculations of optical properties

The absorption and scattering cross sections of a single ITO NP with a diameter (R) of 20 nm 

were theoretically estimated according to Mie theory on the basis of dielectric constants of a 

NP and a surrounding medium. A numerically analytical solution to Maxwell’s equations 
describes the extinction (σ

sca
) and scattering (σ

scat
) of light by a perfect spherical particle struc-

ture as follows [34].

   σ  
sca

   =   
2ρ

 ____ 
 |  k   |     2 

    ∑ 
L=1

  ∞    (2L + 1 ) ( |    a  
L
     |     2  +  |    b  

L
     |     2  )   (1)

   σ  
ext

   =   
2ρ

 ____ 
  |  k |     2 

    ∑ 
L=1

  ∞    (2L + 1 ) [ Re( a  
L
   +  b  

L
   ) ]  (2)

Figure 2. (a) Aberration-corrected STEM image, and HAADF images of In (b) and Sn atoms (c) in the ITO NP with a Sn 
concentration of 5%. (d) EELS spectra taken in the electron Probe position at vacuum (dotted line) and edge (solid line) 
regions, and a STEM-acquired particle image (inset). (e) Differential EELS spectrum (dotted line) and optical spectrum 
of ITO NP taken in the near-IR (solid line) (Figure 3 of Ref. [33]). Copyright 2014 by the American Institute of Physics.
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where k is the incoming wave vector and L comprises integers representing the dipole, quad-

rupole, and high multipoles. a
L
 and b

L
 are represented by the following parameters, composed 

of the Riccati-Bessel equations of ϕ
L
 and δ

L
:

   a  
L
   =   

m  φ  
L
  (mx )   φ   ′   

L
  (x ) −   φ   ′   

L
  (mx )  φ  

L
  (x )
   ______________________   

m  φ  
L
  (mx )   δ   ′   

L
  (x ) −   φ   ′   

L
  (mx )  δ  

L
  (x )    (3)

   b  
L
   =   

 φ  
L
  (mx )   φ   ′   

L
  (x ) − m   φ   ′   

L
  (mx )  φ  

L
  (x )
   ______________________   

 φ  
L
  (mx )   δ   ′   

L
  (x ) − m   φ   ′   

L
  (mx )  δ  

L
  (x )    (4)

where, m = (n
R
 + in

I
)/n

m
 is the complex refractive index of the metal, and n

m
 is the refractive index 

of the surrounding medium. In addition, x = k
m
r (r: is the radius of the particle).  k

m
 = 2π/λ

m
 is 

defined as the wavenumber in the medium. λ
m

 is the wavelength in the medium. Figure 3(a) 

shows absorption and scattering cross sections of an ITO NP with an R value of 20 nm. A peak 
position of LSP was located at around 1.8 μm. A spectral line-shape was a symmetric feature. A 
value of σ

abs
 was remarkably larger by three orders of magnitudes compared to σ

scat
. The ratio 

of σ
abs

/σ
scat

 was not less than one for the particle diameter range above 200 nm [Figure 3(b)]. 

Therefore, it is considered that an ITO NP is dominated by light absorption in the near-IR region, 

indicating that it is not capable of light scattering an incident light in the near-IR range. Herein, 
we note that Full Mie theory in Eqs. (1)–(4) only has two functions of a dielectric constant and 
a particle diameter. The optical factors such as surface and radiation damping are excluded on 
the calculated spectra.

3.2. Experimental optical properties

An optical absorption of an ITO NP solution (Sn concentration of 5%) was typically examined 
[Figure 4(a)]. Optical measurements in the IR-range were made at room temperature using 

a FT-IR spectrometer equipped with a liquid cooled HgCdTe (MCT) detector. An ITO NP 
solution was confined in an IR-transparent CaF

2
 holder with an optical thickness of 25 μm, 

showing that a single absorption peak was located at 1.86 μm because of LSP excitations of 

Figure 3. (a) Light absorption (σ
abs

) and scattering (σ
scat

) cross-sections of an ITO NP with an R value of 20 nm. (b) A value 
of σ

abs
/σ

scat
 ratio as a function of particle diameter.
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ITO NPs. This result was close to the theoretical data. We studied optical quality in plasmon 
resonances of ITO NPs using Mie theory as follows.

The absorption spectrum was fitted using the classical Mie theory with plasmon damping γ 
because of ionized impurity scattering derived from Sn impurities in the NPs. The theoreti-
cal fitting of an optical absorption (σ) to the experimental data in the quasi-static limit was 
employed [34]:

  σ = 4πk  R   3  Im  {    
 ε  

p
  (ω ) −  ε  

H
  
 _ 

 ε  
p
  (ω ) +2  ε  

H
  
   }     (5)

where, k = 2 π(εH)1/2 ω/c with c representing the speed of light, ε
p
(ω) is the particle dielectric 

function, R is the particle radius, and ε
H
 indicates the host dielectric constants of toluene. 

The effective dielectric function (εeff) was used to obtain real nanoparticle dispersion by the 

Maxwell-Garnett effective medium approximation [35]:

    
 ε  

eff 
 (ω ) −  ε  

H
  
 _________ 

 ε  
eff 

 (ω ) +2  ε  
H
  
   =  f  

v
     

 ε  
p
  (ω ) −  ε  

H
  
 ________ 

 ε  
p
  (ω ) +2  ε  

H
  
    (6)

where, f
v
 is the particle volume fraction in the order of 10−5. ε

p
(ω) used the free-electron Drude 

term with a damping constant (γ) because ITO consists of free electrons due to the absence of 

interband transitions:

   ε  
p
  (ω ) = 1 −   

 ω  
p
  2 
 _______ ω(ω + iγ )    (7)

The plasma frequency (ω
p
) is defined to ω

p
 = n

e
/ε∞ε0

m*, where ε∞ is the high-energy dielectric 

constant, and m* is the effective electron mass. The fitted absorption was used with param-

eter values of ε
H
 = 2.23, m* = 0.3m

0
 and ε∞ = 3.8 to determine ε

p
(ω). In Figure 4(a), the experi-

mental absorption spectrum of the ITO NP solution could not be fitted to Mie theory based 
on Eqs. (1)–(3).

Figure 4. Experimental absorption spectrum of an ITO NP solution (Sn concentration of 5%) fitted to the classical (a) 
and modified Mie theory (b). Experimental and calculated spectra were indicated by open circles and dotted lines. 
(c) Absorption intensity of solution with ITO NPs with different electron density (black dots). Comparative data 
(black line) was extracted from the calculated absorption.
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In general, plasmon damping γ of metallic NPs has been defined as a constant value. That is, γ 

is independent on frequency. However, plasmon damping of oxide semiconductors have been 
strongly dependent on frequency due to presence of electron-impurity scattering in a host. This is 
an interesting feature of the plasmonic response in doped oxide semiconductor NPs. Elucidation 
of the carrier-dependent damping mechanism is required for the design of plasmonic materials 
on TOSs. Therefore, frequency-dependent γ(ω) is introduced into the Drude term [36]. This is 

treated as the modified Mie theory for applying to doped oxide semiconductors.

  γ(ω ) = f(ω )  γ  
L
   + [ 1 − f(ω ) ] γ  

H
    (    ω _  γ  

H
     )     (8)

  f(ω ) =   1 __________  
1 + exp  (    

ω −  γ  
X
  
 _ σ   )   

    (9)

Above all, γ
L
 has information concerning electron-impurity scattering, resulting in an asymmet-

ric spectral feature followed by spectral broadening in the long wavelength region [Figure 4(b)]. 

That is, it is considered that ionized impurity scattering attributed to Sn impurities in the NPs 
provided the asymmetric LSP response. In addition, strength in plasmon absorption remark-

ably increased with Sn concentration, as supported from experimental and theoretical aspects 
[Figure 4(c)]. LSPRs of ITO NPs were observed in electron density region above 3 × 1019 cm−3, 

which was close to Mott critical density (N
c
 = 9 × 1018 cm−3) of ITO. Above the N

c
 of ITO, the Fermi 

energy is determined by the highest occupied states in the conduction band. That is, LSP excita-

tions are required to realize metallic states in the NPs, and became very strong at high electron 
densities above 1021 cm−3.

4. Fabrications and structures of ITO NP sheets

4.1. Fabrications

Assembled NP sheets were deposited on IR transparent CaF
2
 substrates by a spin-coating 

technique. Thick NP sheets were fabricated by way of multiple overglaze of a thin NP film 
obtained by a NP concentration of 0.2% in toluene. The spin-coating conditions were carried 

out using the following processes: 800 rpm (5 seconds) → 1200 rpm (10 seconds) → 2400 rpm 

(30 seconds) → 800 rpm (10 seconds). Fabricated sheet samples were heat-treated at above 

150°C in air in order to evaporate the solvent. NP sheets with various thicknesses were 
obtained by repetition of the above coating sequences.

4.2. Structural evaluations

The assembled sheets of the NPs were evaluated by small-angle X-ray scattering (SAXS), provid-

ing an interesting insight into the scattering vector (q) of the SAXS intensity. A maximum SAXS 
peak (qmax) includes structural information about spatial ordering of nanoparticles estimated using 

l = 2 π/qmax with a spatial period (l). The SAXS pattern showed a maximum peak at q = 0.33 nm−1 

followed with weak interferences [Figure 5(a)]. This resulted in an l value of 20 nm being close 

to the edge-to-edge between NPs, which was confirmed from in-plane surface scanning micros-

copy (SEM). A SEM image showed a close-packed structure because spin-coating produces 
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 self-organizations of colloidal NPs into a hexagonally close-packed (HCP) structure based on 
shear and capillary forces on substrates [37, 38] [Figure 5(b)]. In addition, a cross-section SEM 

image also provided a close-packed structure [Figure 5(c)]. However, a particle-alignment is 

disordered packing feature between NPs, as indicated from a fast-Fourier transform (FFT) pat-

tern of the SEM image [inset in Figure 5(c)]. This local structure is related to the broadened 

interferences of SAXS pattern, which gives influences to optical properties of the NP sheets.

5. Infrared optical responses of ITO NP sheets

5.1. Mono-layered NP sheets

The optical properties of a mono-layered ITO NP sheet are shown in Figure 6. Transmittance 
spectra exhibited a resonant peak at 2.64 μm, which revealed the red-shifted resonant wave-

length because of a collective plasmon resonance (CPR) effect compared to those of NPs dis-

persed in toluene [Figure 6(a)] [40]. On the other hand, reflectance at the resonant wavelength 
was very small, indicating that the optical responses were mainly dominated by light absorp-

tion properties. Furthermore, the finite-difference time-domain (FDTD) simulation was carried 
out to evidence the experimental results. The modelled mono-layered NP sheet (R = 20 nm) 

has a HCP structure with an inter-particle length (l) of 2 nm along the X-Y (in-plane) direction. 

The modelled NP sheet was illuminated with light directed in the Z-direction from the air side. 

Periodic boundary conditions were applied to X and Y directions, and the bottom and top of 
the simulated domain in the Z-direction were analysed using perfectly matched layer (PML) 

boundary conditions. The refractive index (n) of the surface ligand between NPs was defined 

Figure 5. (a) SAXS pattern of a 96 nm-thick NP sheet. Inset indicates schematic picture to explain an inter-particle length 
(l). (b) In-plane surface (b) and cross-section SEM image (c) of 96 nm-thick NP sheets. Inset represents a FFT pattern of a 
cross-section SEM image (Figures 5 and 7 of Ref. [39]). Copyright 2014 by the American Chemical Society.
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to 1.437. An ellipsometric measurement of an ITO film was conducted to obtain the complex 
dielectric constants within the visible-IR range. A surface ligand molecular of the NPs was a 
capric fatty acid in this chapter. A resonant peak at 2.45 μm was reproduced in transmittance 
and reflectance spectra, which was compared to the experimental results [Figure 6(b)]. The CPR 
effect was excited due to long-range coherences of E-field interactions between NPs, as sup-

ported from the two-dimensional (2D) image of the E-field distribution [inset of Figure 6(b)].

5.2. Three-dimensional NP sheets

3D-stacked NP sheets showed a remarkable change in optical properties, which were clearly 
found on transmittance and reflectance spectra [Figure 7(a) and (b)]. Transmittance with a 
resonant wavelength at 2.20 μm decreased to a level close to zero with increasing sheet thick-

ness. On the other hand, reflectance was enhanced at a close proximity of 0.6 in terms to the 

Figure 6. (a) Experimental and (b) simulated transmittance and reflectance of a mono-layered NP sheet with a HCP 
structure. Inset in Figure 6(b) shows a model of a mono-layered NP sheet and an E-field distribution when an electric 
field of light is applied along the X-direction (Figure 4 of Ref. [39]). Copyright 2014 by the American Chemical Society.
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sheet thickness [Figure 8(b)]. The single peak of 22 nm-thick NP sheet was gradually sepa-

rated into lower and higher wavelengths with the sheet thickness [Figure 8(a)]. We observed 

two types of resonant peaks (I and II) at 2.13 and 4.02 μm in the near- and mid-IR region on 

the 216 nm-thick NP sheet, respectively. The ratio of (R/A) of reflectance (R) and absorbance 

(A) increased quickly to a large value with increasing sheet thickness, which indicated that the 
assembled NP sheets showed reflectance-dominated optical properties.

FDTD calculations were conducted in order to clear the experimental results. From the cross-
section SEM image, the modelled NP layers are based on a 3D HCP structure with an l value 

Figure 7. (a) Experimental and (b) simulated transmittance spectra of NP sheets with different thicknesses.  
(c) Experimental and (d) reflectance spectra of NP sheets with various NP layers. The modeled NP sheet was illuminated 
with light directed in the Z-direction from the air side. The direction of the E-field was perpendicular to the light and 
parallel to the X-direction (Figure 5 of Ref. [39]). Copyright 2014 by the American Chemical Society.
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of 2 nm in the Z- (out-of-plane) direction. A layer structure along the in-plane (X-Y) direction 

employed the mono-layered NP layer in Section 5.1. The systematic change in the number of NP 

layers from 1 to 20 was capable of reproducing the experimental spectra [Figure 7(c) and (d)]. 

The employed model could describe the optical properties of the NP sheets. The increase in num-

ber of NP layers provided the resonant peaks in transmittance and peak separations in reflec-

tance. These behaviours were similar to the experiment results [Figure 8(a) and (b)]. Herein, the 

reflectance for peak-I was smaller than that for peak-II in the case of calculations, resulting in a 
difference of R/A ratio between experimental and calculation aspects [Figure 8(c)].

5.3. Plasmon hybridization and reflectance mechanism

The resonant origins of reflectance of peak-I and peak-II were theoretically examined as a 
function of interparticle length between NPs. Figure 9(a) exhibits calculated reflectance of 
NP sheets with different l values on the basis of 20 NP layer model, revealing that reflectance 
monotonically enhanced with decreasing l. Peak-II showed a red-shift to longer wavelengths 

when decreasing l from 10 to 1 nm. In contrast, peak-I remained unchanged [Figure 9(b)]. 

These results suggest a difference in the origin of plasmon resonance between peak-I and 
peak-II. In general, the localized E-field from each metal NP usually overlaps when metal 
NPs are closely positioned, and plasmon coupling occurs [41]. In the plasmon hybridization 

process, the plasmon interaction can be categorized into bonding and anti-bonding levels. 

For example, the bonding level shows a red-shift of a resonant wavelength with decreasing 
interparticle length. On the other hand, there is a slight blue-shift a resonant peak is due to 

Figure 8. (a) Resonant wavelengths and (b) reflectance of peak-I and peak-II as a function of sheet thickness (bottom 
horizontal axis) and number of NP layers (upper horizontal axis). Black lines indicate calculated results of FDTD 
simulations. (c) Experimental and calculated ratios of R/A at peak position related to peak-I. R and A represent reflectance 
and absorbance, respectively (Figure 6 of Ref. [39]). Copyright 2014 by the American Chemical Society.
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the anti-boding level. The peak shifts at peak-I and peak-II were similar to the anti-bonding 

and bonding states, respectively. Furthermore, E-field distributions and their charge vectors 
were investigated at peak-I and peak-II [Figure 9(c) and (d)]. We firstly focus on the mid-IR 
reflectance at peak-II. A resonant mode comprised of individual dipolar plasmons oscillating 
in-phase along the direction of incident polarization. The E-fields between the NPs were only 
localized along the in-plane X-direction. On the other hand, field analysis at peak-I exhibited 
that the dipolar plasmons in the NPs oscillate out-of-phase, providing a net dipole moment 

of nearly zero. Their E-fields were coupled with surrounding NPs along the out-of-plane and 
 in-plane directions. The mode splitting of plasmon resonances was related to 3D-stacked 

assemblies of NPs. Accordingly, quadrupole and dipole modes were formed as peak-I and 
peak-II, respectively. These behaviours became pronounced with an increase in sheet thick-

ness. We note that the differences in reflectance between experimental and simulation data 
could be considered in relation of a local structure and plasmon resonance. The NP sheets had 

a disordered structure of NPs from the SEM image. A dipole mode can be strongly observed 
in precise close-packed NP assemblies.

The character of E-field coupling in the NP sheets was further studied from polarized reflec-

tance measurements. Two types of light polarized perpendicular (s-polarized) and parallel 

(p-polarized) to the plane of incidence were introduced the sample at an incident angle of 

75°. Figure 10 shows polarized reflectance spectra for s- and p-polarization configurations 
for a NP sheet. In a case of s-polarization, peak-I and peak-II were simultaneously obtained 

because the electric vector of the radiation produced electron oscillations in NPs parallel to 

the in-plane of the sample. On the other hand, peak-I only found for a p-polarization case. 

These optical properties concerning both polarizations are explained as follows.

The electric vector excites electron oscillations in NPs normal to the plane of the sample, 
and suppresses the E-field coupling along the in-plane direction. These results revealed that 

Figure 9. (a) Calculated reflectance of NP sheets with different interparticle lengths. (b) Resonant peaks of peak-I and 
peak-II as a function of interparticle length. (c) Images of E-field distributions. (d) Images of charge vectors at peak-I and 
peak-II (Figure 6 of Ref. [39]). Copyright 2014 by the American Chemical Society.
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peak-II was excited by the field coupling along the in-plane directions. In contrast, the reflec-

tance at peak-I was essential for E-field coupling along the out-of-plane direction. That is, the 
near- and mid-IR reflectance of the NP sheets was attributed to the 3D field coupling along 
the out-of-plane and in-plane directions. The film thickness-dependent plasmon splitting was 
attributed to the formation of field coupling along the out-of-plane direction, leading to the 
enhanced reflectance in the near-IR range.

5.4. Nanoparticle gap and reflectance of ITO NP sheets

The thermal behaviours of the NP samples were investigated by TG-DTA in an N
2
 atmo-

sphere with a heating rate of 10°C/min. The weight loss up to 250°C might be related to the 
loss of physically or chemically absorbed water. There was an obvious weight loss in the 

temperature range 270–320°C because of the generation of organic species confirmed by m/z 

peaks at 18 (H
2
O) and 44 (CO

2
, C

3
H

8
, C

2
H

4
O etc.) [Figure 11(a) and (b)]. The decomposed 

species were owing to thermal removal of the surface ligands composed of fatty acids on the 
NP surfaces. There phenomena are identified by FT-IR measurements. The relation between 
surface ligand molecules and optical properties in the NP sheets was cleared by the  spectral 

changes after annealing at different temperatures (TA = 150–550°C). Figure 11(c) shows 

 temperature-dependent reflectance spectra taken in an inert atmosphere for a 216 nm-thick NP 
sheet, revealing remarkable spectral changes with increasing temperature. The two resonant 

peaks at 150°C were weakened gradually following the change in spectral shape with increas-

ing temperature. Above all, the near-IR reflection at peak-I shifted to longer wavelengths at 
high temperatures above 300°C corresponding to the removal of the surface ligands. In addi-
tion, the annealing effects of NP sheets were checked by the electrical resistivity in the sheets. 
Electrical resistivity was in the order of 104Ω.cm below annealing temperatures below 250°C 
because the presence of the surfactant layers on NPs seriously impedes carrier transport in 

the NP sheets. The surface ligands act as interparticle insulating layers in NP networks [42]. 

Figure 10. Reflectance spectra of a 216 nm-thick NP sheet for s- and p-polarized lights. Inset indicates the direction of the 
electric vector of incident light in addition to an E-field distribution under a p-polarization.
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However, this was markedly reduced at high temperatures above 350°C due to the removal of 
the surface ligands. Therefore, the removal of surface ligand molecules from the NPs strongly 

affected the whole reflective phenomena, which also clarified the importance of interparticle 
length in obtaining a high reflectance performance.

5.5. Electromagnetic responses in microwave range

EM properties are shortly discussed on a NP sheet in the microwave range 0.5–40 GHz. This 

range is an important frequency range for telecommunications. Transparent solar-thermal 
shielding is effective techniques to prevent room heat in order to realize comfortable environ-

ment in vehicles. However, it is strongly required for vehicles to transmit EM waves in the 
microwave range through windows to carry out radio communications such as an Electronic 

Toll Collection System (ETC) and Information traffic system (ITS). Therefore, it is important to 
measure EM properties of NP sheets in addition to evaluate optical properties in the IR range.

250 nm-thick NP sheet with an A4 size was fabricated on a PET substrate (thickness: 0.2 mm) 
using a roll-coating method [inset of Figure 12(a)]. High reflectance with a close proximity of 0.6 
was also obtained on a flexible PET substrate [Figure 12(a)]. The shielding effectiveness (SE) of the 
flexible NP sheet was almost zero, as different from that of a RF sputtered ITO film [Figure 12(b)]. 

The difference between the two materials related to electrical conductance (σ) in the sheets, which 
was in the order of 10−5 and 10−3 S/cm for the NP sheet and sputtered film, respectively. If the 
shielding material is thin, SE is mainly dominated by EM reflection as follows [43]:

Figure 11. (a) TG-DTA curves of ITO NP samples in an N
2
 atmosphere. (b) TOF-Mass spectroscopy combined with 

TG-DTA. M/z signals at 18 and 44 were detected in the range 27–550°C. (c) Dependence of reflectance spectra on 
annealing temperature for a 216 nm-thick NP sheet.
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  SE = 20log( √ 
__

 2    β  
0
   / 2R )  (10)

where, β
0
2 is μ/ε

0
, and R is the sheet resistivity (=1/σ). The significant obstruction of electron 

carrier transport between NPs produced low electrical conductance because of the presence of 

surface ligands on the NPs, and realized the high microwave transmissions.

ITO NPs were used to obtain assembled NP sheets with small interparticle lengths by the pres-

ence of ligand molecules on the particle surfaces. This situation produced effective E-field cou-

pling along the in-plane and out-of-plane directions. This caused the plasmon hybridization for 

the quadrupole and dipole modes, which played an important role in producing the high reflec-

tance in the near- and mid-IR range. In addition, the E-field enhancements between NPs simulta-

neously caused a remarkable reduction of electrical contacts between the NPs, which contributed 

to the high microwave transmissions. The plasmonic control in assemblies of NPs represents 

promising potential for structural and optical designs used to fabricate a flexible thermal-shield-

ing sheet with a reflection-type based on transparent oxide semiconductors. The knowledge 
gained in this study can be applied to NP sheets utilizing inexpensive ZnO and WO

3
 [44, 45].

6. Summary

Crystallinity and local structures of oxide semiconductor NPs were conducted using ITO NPs 
by XRD and TEM measurements in Section 2. The plasmonic resonances of ITO NPs were 
clearly obtained in the near-IR range from the viewpoints of optical and EELS signals. In par-

ticular, electron-impurity scattering contributed towards plasmon damping as one of a factor 
that is absent in metal NPs on the basis of theoretical and experimental approaches, which 

Figure 12. (a) Reflectance of a NP sheet on a PET film. Inset image represents a photograph of the fabricated sheet 
sample. (b) Shielding effectiveness (SB) in the microwave range 0.5–40 GHz for a NP sheet and RF-sputtered ITO film.
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was discussed in Section 3. In Sections 4 and 5, we described IR plasmonic applications in ITO 

NP sheets for solar-thermal shielding technology. Above all, the E-field coupling between 
NPs produced interesting plasmonic coupling because of the creation of narrow crevices in 

the interparticles. 3D field interactions along the in-plane and out-of-plane directions caused 
high reflectance in the near- and mid-IR regions. Finally, ITO NP sheets could be extended to 
obtain large-size flexible films on PET substrates, which simultaneously showed microwave 
transmittance essential for telecommunications.

The above results provided important insights for basic science and practical applications 

based on plasmonic investigations based on oxide semiconductor NPs. However, plasmonic 
properties and applications are stand still-points at the present time. Hereafter, it will be 

needed to study plasmonic phenomena on oxide semiconductor NPs towards new concepts 
concerning optical manipulations in the IR range.
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