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Abstract

Acute coronary syndrome (ACS) arising from plaque rupture is the leading cause of 
mortality worldwide. Near-infrared spectroscopy (NIRS) combined with intravascular 
ultrasound (NIRS-IVUS) is a novel catheter-based intravascular imaging modality that 
provides a chemogram of the coronary artery wall, which enables the detection of lipid 
core and specific quantification of lipid accumulation measured as the lipid-core burden 
index (LCBI) in patients undergoing coronary angiography. Recent studies have shown 
that NIRS-IVUS can identify vulnerable plaques and vulnerable patients associated with 
increased risk of adverse cardiovascular events, whereas an increased coronary plaque 
LCBI may predict a higher risk of future cardiovascular events and periprocedural 
events. NIRS is a promising tool for the detection of vulnerable plaques in CAD patients, 
 PCI-guidance procedures, and assessment of lipid-lowering therapies. Previous trials 
have evaluated the impact of statin therapy on coronary NIRS defined lipid cores, whereas 
NIRS could further be used as a surrogate end point of future ACS in phase II clinical tri-
als evaluating novel anti-atheromatous drug therapies. Multiple ongoing studies address 
the different potential clinical applications of NIRS-IVUS imaging as a valuable tool for 
 coronary plaque characterization and predictor of future coronary events in CAD patients.

Keywords: near-infrared spectroscopy (NIRS), intravascular ultrasound (IVUS), thin-

cap fibroatheroma (TCFA), acute coronary syndrome (ACS), vulnerable plaque

1. Introduction

Coronary artery disease (CAD) is the leading cause of global mortality and the rupture of an 

unstable atherosclerotic plaque precedes the majority of acute coronary syndromes (ACS) [1, 2]. 

Autopsy studies have shown that the putative substrate for most ACS and many cases of sudden 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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cardiac death (SCD) is the rupture of a thin-cap fibroatheroma (TCFA), the so-called “vulnerable 

plaque,” which is defined by a large lipid-rich necrotic core (NC) infiltrated with abundant mac-

rophages and separated from the bloodstream by a thin fibrous cap [3, 4]. The ability to accu-

rately detect index lesions using intravascular imaging is a potential attractive strategy, although 
it still remains a challenge in daily practice. Conventional coronary angiography (CCA) has been 

and continues to be an invaluable tool for epicardial coronary stenoses assessment and treat-

ment [5]. Since the coronary angiogram provides a limited “luminogram” view of the coronary 

arteries, it cannot assess the properties of the arterial wall and thus tends to underestimate the 

true magnitude of plaque burden, especially in early stages of the disease in which positive 

vascular remodeling leads to a normal lumen caliber appearance on angiography despite sub-

stantial vascular wall plaque [6, 7]. Moreover, angiography provides no information in regard 

to plaque composition and biological activity, whereas intravascular imaging can potentially 

circumvent those limitations [8]. Several intravascular-imaging modalities, such as angioscopy, 

intravascular ultrasound (IVUS), virtual histology (VH), optical coherence tomography (OCT), 
and near-infrared spectroscopy (NIRS), have been developed throughout the quest of vulnerable 

plaque to characterize plaque composition and progression, to optimize patient risk stratification 
and for guiding therapy [9].

Near-infrared spectroscopy (NIRS) is a novel intravascular-imaging modality that pro-

vides chemical assessment related to the presence of cholesterol esters in lipid cores and 

Figure 1. Timeline regarding important steps toward NIRS-IVUS imaging system development and use in clinical 
applications.
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can generate spectra that distinguishes cholesterol from collagen in coronary plaques 

through their unique spectroscopic fingerprints [10]. NIRS was first used in 1993 for the 
detection of lipid content in an experimental animal model [11], followed by subsequent 

ex vivo validation in human cadavers [12]. In 2001, a device prototype for intracoronary 

imaging was developed, which led to multiple case series and clinical studies in the fol-

lowing decade [13–15]. This technology aims to detect vulnerable lipid-rich plaques (LRPs) 
by NIRS chemogram [16], whereas recent literature has demonstrated the association of 

LRP and culprit lesions in ACS [17, 18], as well as with nonculprit lesions in ACS [19], 

in percutaneous coronary intervention (PCI)-related procedural complications [20, 21], 

in plaque  regression with statins therapy [22] and with the occurrence of cardiovascular 

events [23]. NIRS received US Food and Drug Administration (FDA) approval for clinical 
use in 2008 and for  NIRS-IVUS system in 2010, followed by regulatory approval in Europe 

(CE marked) and Japan in 2011 and 2014, respectively (e.g., Figure 1) [24].

2. Near-infrared spectroscopy system

2.1. Principles of diffuse reflectance NIRS

Spectroscopy is based on the analysis of electromagnetic spectra induced by near-infrared 

light and provides direct evaluation of plaque composition, which could yield information 

on plaque vulnerability [13]. Several spectroscopic methods have been investigated for the 

purpose of identifying atherosclerotic plaque composition, although the commercially avail-

able catheter uses diffuse reflectance NIRS [13, 25]. The principle of NIRS relies on the interac-

tion of light in the form of photons with different functional groups of organic molecules in 
a tissue, which results in reflected light in the NIR region from molecular vibrational energy 
in the form of oscillations of atoms within their chemical bonds. Photons can be absorbed or 

scattered by tissue, which determines the amount of light that is detected by the spectrom-

eter. The wavelengths of light in NIRS are approximately in the 800–2500 nm range. Unique 
combinations of carbon-hydrogen (C-H), nitrogen-hydrogen (N-H), and oxygen-hydrogen 

(O-H) bonds are responsible for the major absorption of NIR light, whereas each functional 

group of large complex molecules yields absorption patterns at specific wavelengths, known 
as the spectroscopic chemical fingerprint, that provides qualitative and quantitative information 

on sample recognition and tissue characterization (e.g., Figure 2) [13, 26, 27].

Diffuse reflectance NIR spectroscopy has many features that enable in vivo lipid-core plaques 

(LCP) analysis in coronary arteries. The term “near” indicates the section of infrared that is 
closer to the visible light region with a longer wavelength and hence a lower energy than vis-

ible light. NIR has the ability to identify organic compounds from light penetration through 

blood and tissue, since hemoglobin and water have relatively low absorbance in the NIR 

wavelength, avoiding the need to be in contact with tissue or to clear the field of view with 
saline or contrast flush or by vessel occlusion [13, 26]. Moreover, it can provide simultaneous 

image acquisition and nondestructive chemical analysis of biologic tissue with rapid acquisi-

tion time (<1 s) from an ultrafast laser source, overcoming cardiac motion artifacts. Diffuse 
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NIR spectroscopy has been used to identify multiple plasma constituents, to monitor systemic 

and cerebral oxygenation and also provides a specific chemical measure of LCP [13, 26, 27]. 

Other spectroscopy techniques are currently under research development for intravascular 

applications, including Raman spectroscopy, fluorescence spectroscopy, and magnetic reso-

nance spectroscopy (e.g., Table 1) [13, 25].

2.2. NIRS-IVUS-combined catheter system

Spectroscopy has a strong fundamental basis for compositional measurement and is a highly 

efficient method for the identification of chemical components of unknown organic mole-

cules. A single NIRS modality catheter system, the LipiscanTM (InfraRedx Inc., Burlington, 

MA, USA), was first developed for invasive detection of LCP [26]. In order to obtain anatomi-

cal information on the vessel and optimal plaque characterization, a hybrid technology (TVC 
Imaging SystemTM, InfraRedx Inc.) combining near-infrared spectroscopy(NIRS) and intra-

vascular imaging (IVUS) was further developed, which allows simultaneous, co-registered 

acquisition of structural and compositional data of coronary artery plaques. Thus, combin-

ing the two complementary technologies enables a complete assessment of patient’s arteries, 

including vessel size and structure, plaque volume, area, and composition [26, 35].

Figure 2. Near-infrared spectra detection and analysis of various components of a lipid-core plaque by NIRS-imaging 

system. NIRS intracoronary imaging is performed by the catheter’s optical tip under automated rotating pullback that 

enables to rapidly scan the arterial vessel wall circumferentially and longitudinally. The catheter tip emits and collects 
light that interacts with different functional groups of molecules of the arterial wall and plots the relative absorbance of 
light across the wavelength range, which generates a spectrum. Thousands of NIR spectra are collected and produces a 
unique chemical “fingerprint” of the lipid-core plaque.
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The commercially available NIRS-IVUS imaging system consists of a 3.2-French (F) rapid-
exchange catheter compatible with 6F-guiding catheters, a pullback and rotation device, and 
a console that houses the scanning NIR laser, the computer that processes the spectral signal 

and two monitors [10, 26, 36]. Within the catheter body is a rotating core of optical fibers that 
deliver near-infrared light and measure the proportion of light reflected back over the range 
of optical wavelength (800–2500 nm) in the form of an imaging spectrum. The catheter-imag-

ing core enables to collect data rapidly by rotating at 960 rpm with synchronized pullback 

Raman NIRS Fluorescence 

spectroscopy

Diffuse reflectance 
NIRS

Nuclear magnetic 

resonance (NMR) 
spectroscopy

Principle Raman shift from the 

scattering of a photon 
upon interaction with 

matter, generating 
a near-infrared 

wavelength forming 

the Raman spectra

Absorbance of 

energy from a tissue 

exposed to ultraviolet 

light, which in turns 

releases energy in the 

form of light

Reflected light from 
a tissue detected by 

the spectrometer 

at a wavelength, 

generating a NIR 

spectrum

Chemical shift 

from chemical 

groups exposed 

to an oscillating 

electromagnetic 

field and frequencies 
decoded by the 

Fourier transform 
to generate NMR 

spectrum

Plaque 

characterization

Cholesterol 

esters, collagen, 

phospholipids, 

triglycerides, calcium

Collagen, elastin 

fibers, lipoproteins, 
calcium, 

macrophages, foam 

cells

Lipid-core plaques Unsaturated and 

polyunsaturated fatty 
acids, cholesterol 

esters, phospholipids, 

triglycerides

Validation studies Ex vivo and in vivo 

animal and human 

studies

In vitro and ex vivo 

animal and human 

studies

Ex vivo and in vivo 

animal and human 

studies

13-Carbon NMR used 

in ex vivo and in vivo 

animal studies

Advantages Evaluates the 

chemical composition 

of living tissues

Signal more specific 
but weaker than 

diffuse reflectance 
NIRS (difficult to 
detect signal in vivo)

Strong fluorescence 
in arterial tissue, 

enabling rapid time 

acquisitions

Evaluates the 

chemical composition 

of living tissues, 

NIR light can 

penetrate blood and 

acquire signals from 

structures several 

millimeters deep 

relative to tissue 

surface

Lack of ionizing 

radiation (less 

radioactivity 

with carbon-13), 

noninvasive 

modality, enables 

to study several 

biological processes 

with metabolic, 

physiologic, and 

anatomic data 

combined to imaging

Availability In development—

fiber optics catheter-
based system for PCI 

applications under 

investigation

No in vivo 

applications due 

to fluorescence 
signal distortion by 

hemoglobin

Catheter-based NIRS-

IVUS system used as 

a clinical application

Costly, preclinical 

research

IVUS: intravascular ultrasound, NIRS: near-infrared spectroscopy; NMR: nuclear magnetic resonance; PCI: percutaneous 

coronary intervention [13, 28–34].

Table 1. Summary of different spectroscopic methods.
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at an automated speed of 0.5 mm/s. The system acquires >30,000 spectra per 100 mm. IVUS 
images are simultaneously acquired by a transducer at a frequency of 40 MHz and with an 

axial resolution of 100 μm, together with co-registered NIRS measurements, with a maximum 

imaging length of 12 cm and a depth of 1 mm or less. Thus, the NIRS spectra data are mapped 
and paired with corresponding cross-sectional IVUS frames, presented as a ring around the 

IVUS image [26, 27, 35, 36]. An upgrade version of the TVC catheter Imaging SystemTM was 

released by the company in 2015, which uses an extended bandwidth transducer that gener-

ates IVUS images at frequencies between 30 and 70 MHz, thus increasing the resolution and 

depth-to-field of the images [36].

2.3. Interpretation of NIRS data

Upon completion of the automated pullback scan, spectral data are automatically analyzed by 

a computer-based algorithm that transforms NIR spectra into a probability of LCP presence. 

The probability is mapped to a color pixel that will generate a digital two-dimensional color 
map of the artery called the NIRS chemogram, which represents the probability of the pres-

ence of LCP over the scanned segment of a vessel (Figure 3). On the longitudinal chemogram, 

the x-axis denotes the pullback location (in millimeters) and the y-axis represents the cir-

cumferential position (degrees of catheter rotation, from 0 to 360°). For each pixel of 0.1-mm 
length and 1° angle, the lipid-core probability is calculated from the spectral data collected 

and quantitatively coded on a color scale transitioning from red (0 = low probability of LCP) 

to yellow (high probability of LCP), with a probability of 0.60. The threshold required for the 
detection of LCP of interest was defined in the SPECTACL study according to the high preva-

lence of LCP (58%) detected in scanned segments that met both criteria of spectral adequacy 

and similarity from 60 patients undergoing PCI for stable CAD or ACS [10]. Pixels with inter-

mediate data, including those that interfere with the guidewire, appear black. The block che-

mogram is a semi-quantitative summary metric of the probability that an LCP is present in a 

2-mm NIRS chemogram segment that is computed and is displayed as a false color map, thus 

providing a 1:1 direct comparison of the chemogram with histopathology during validation 

of the lipid prediction algorithm. The blocks correspond to one of four colors (red (P < 0.57), 

orange (0.57 ≤ P < 0.84), tan (0.84 ≤ P < 0.98), and yellow (P ≥ 0.98)), which represents the 90th 

percentile probability of lipid within the 2-mm segment of the pullback [26, 27, 35, 36]. The 
2-mm block chemogram measures were used to compare the NIR spectra to histology in each 

2-mm block in a receiver operating characteristic (ROC) curve analysis of diagnostic accuracy, 

from which LCP probabilities were calculated [10].

Chemometrics is the methodology applied by NIRS technology to analyze lipid content in 

atherosclerotic arteries [37]. The NIRS system was used in an extensive ex vivo study using 

human coronary arteries autopsy specimens to develop an algorithm for LCP detection. NIR 

spectra and histological data, used as gold standard, were collected from human autopsy 

hearts to build a calibration model capable of recognizing the NIR spectral shapes unique 

to LCP (see Section 2.4.2) [38]. Mathematical models constructed from a calibration set of 

samples were used to extract and analyze data from NIRS spectra, as reference values for the 

chemical compounds of interest in the tissue samples were obtained from histopathology 

samples. Models constructed from these calibration samples correlate the NIRS signals with 
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the reference values, allowing the prediction of future samples on the basis of their NIRS 

measurements [39, 40]. The algorithm for LCP detection in humans was then prospectively 
validated in the SPECTACL study, in which chemograms obtained in vivo were similar to 

those obtained in histology controls (see Section 2.4.3) [10].

The lipid-core burden index (LCBI) is a measure of the lipid burden within the scanned region, 
calculated by dividing the number of yellow pixels that exceed an LCP probability of 0.6 per 

million by the total number of valid pixels in the segment, then multiplied by a factor of 1000 

(LCBI range: 0–1000). Other measures can be computed on the chemogram image, such as the 

LCBI of a region of interest (ROI) and the maximum LCBI of the 4-mm region within the high-

est lipid burden within the ROI (maxLCBI
4mm

) [26, 27, 35, 36, 39]. It has been shown that a high 

Figure 3. Example of a near-infrared spectroscopy (NIRS) chemogram. The near-infrared spectroscopy chemogram is 
a digital color-coded map of the arterial wall that is generated from NIR spectra analysis of the arterial wall, which 

indicates the location and intensity of lipid core in the region of interest (ROI). The X-axis represents the pullback 

position (in mm) and the Y-axis indicates the circumferential position of the measurement (in degrees). The block 
chemogram is a vertical summary of the chemogram at 2-mm pullback intervals. IVUS images are simultaneously 

acquired and co-registered with NIRS measurements and displayed as cross-section images superimposed with a 

chemogram.
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LCBI detected in coronary plaques is associated with an increased risk of future cardiovascu-

lar events and periprocedural complications (see Section 2.6), which suggests that LCBI could 

be a useful biomarker for risk assessment and therapeutic efficacy in future clinical trials.

2.4. Validation of the NIRS-imaging system

2.4.1. Preclinical and autopsy studies

Autopsy, animal, and human studies have been carried out to test the utility and safety 

of NIRS for the purpose of eventually bringing this technology to patients in the cathe-

terization laboratory. Cassis and Lodder first demonstrated the ability of NIRS to accu-

rately identify low-density lipoprotein (LDL) ex vivo in the aorta of hypercholesterolemic 

rabbits [11, 41]. Furthermore, Jarros et al. [42] demonstrated that the cholesterol content 

of human aortic samples determined by NIR spectroscopy correlated strongly with that 

measured by reversed-phase, high-pressure liquid chromatography (correlation coeffi-

cient of 0.96). The ability of NIR spectroscopy to detect atherosclerosis in tissue was also 
demonstrated in human carotid and coronary arteries. Dempsey et al. [27] used diffuse 
reflectance NIR spectroscopy for the analysis of human carotid plaques exposed at the time 
of surgery. Transcutaneous NIRS was performed in the operating room during surgical 
endarterectomy and a NIRS algorithm was developed, using gel electrophoresis as a refer-

ence method, to determine lipoprotein composition in carotid specimen from NIR spectra. 

Their results showed significant near-IR correlation between certain lipoproteins present 
in carotid plaques and microscopic findings, including microscopic necrosis and ulcer-

ation, plaque hemorrhage, and thrombosis. Moreover, these proteins were easily detectable 

in patients with a medical history of CAD, coronary artery bypass grafting (CABG), and 

major surgery, and were also correlated with age, sex, and CAD risk factors. Furthermore, 
Wang et al. [12] reported that ex vivo direct measurement of lipid/protein ratios in human 

carotid atherosclerotic specimens from 25 patients correlated with NIRS spectroscopic find-

ings. Thus, the authors concluded that these ratios could further be used to characterize 
advanced lesion types with superficial necrotic cores in vivo with NIR spectroscopy fitted 
with a fiber optic probe.

The first study to test the hypothesis that NIR spectroscopy could identify plaque composition 
and features associated with plaque vulnerability, defined by histology as the presence of lipid 
pool, thin fibrous cap (<65 μm by ocular micrometry), and inflammatory cell infiltration, was 
performed in 199 human aortic samples obtained at the time of autopsy [43]. An algorithm was 

constructed using NIR spectra obtained from 50% of the samples (calibration set) and was then 

tested on unknown samples (validation set) to determine its ability to  identify high-risk  features 

as determined by histology. Spectra associated with each of the three  histological features of 

interest were defined by the results obtained from the calibration set. The main findings of this 
study were that NIRS could identify histology features associated with plaque vulnerability 

in human plaques in vitro, with a sensitivity and specificity of 90% (35 of 39 lesions) and 93% 
(56 of 60 lesions) for lipid pool, 77% (13 of 17 lesions) and 93% (76 of 82 lesions) for thin cap, and 

84% (37 of 44 lesions) and 91% (49 of 55 lesions) for inflammatory cells, respectively. Moreno 
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et al. [44] measured the NIRS spectra of 167 sections of fixed coronary artery samples and vali-
dated an algorithm against histology for the determination of lipid areas > or <0.6 mm2, with a 

sensitivity and a specificity for lipid-rich coronary plaque detection of 83% (5 of 6 lesions) and 

94% (60 of 64 lesions), respectively.

Since the intention of inventers of the NIRS system was to commercialize a catheter-based 

instrument that could assess plaques in coronary arteries in vivo and rapidly perform thou-

sands of measurements through blood, Moreno et al. [45] first demonstrated that NIRS 
could identify lipid-rich plaques in vivo through blood in aorta of rabbits with diet-induced 

atherosclerosis. The catheter NIR spectroscopy was able to identify lipid areas > or <0.75 
mm2 with 78% sensitivity and 75% specificity. Marshik et al. [46] subsequently demon-

strated accurate detection by NIRS spectra of lipid-rich plaques from 26 fresh human aorta 

samples through various amounts of blood up to a depth of 3 mm, with a sensitivity of 88% 

and a specificity of 79%. Moreover, the performance of the system was evaluated against 
histology, with favorable results for the detection of thin-cap fibroatheroma (TCFA) and 
disrupted plaques through blood, thus supporting the development of a NIR catheter for 

in vivo coronary arteries TCFA assessment [47]. To evaluate the performance of the system 
during cardiac motion, a human coronary autopsy specimen was attached at the surface of 
a beating pig’s heart and connected to the porcine circulation [47]. The prototype 3.2-F NIRS 
catheter was positioned inside the coronary segment and was able to correctly identify a 

spectrally distinct target attached to the surface of the graft, despite blood flow and cardiac 
motion [48, 49].

2.4.2. Autopsy calibration and validation studies

The catheter-based system was improved with the addition of an automated pullback 
and rotation device allowing the system to circumferentially scan the length of a vessel. 

Calibration and validation studies of NIRS for the detection of LCP were first performed in 
human autopsy specimens of coronary arteries [16, 35]. The largest ex vivo study, conducted 

by Gardner et al. [38], aimed to evaluate the ability of the NIRS system to detect LCP in 

human coronary arteries from 84 autopsied hearts. Coronary arteries, obtained from a broad 

range of patient characteristics and causes of death, were mounted in a tissue fixture and con-

nected to a blood circulation system with physiologic pressure, temperature, and flow. The 
resulting set of NIRS spectra and corresponding histology data were used to construct and 

validate an LCP detection algorithm. A total of 86 coronary segments from 33 hearts were 

used to calibrate the system algorithm for LCP detection and produced prospectively defined 
end points. The following 51 hearts and 126 segments were used to validate the accuracy of 
NIRS in the detection of LCPs in a double-blind, prospective study. In order to develop and 

validate the algorithm for the identification of LCP in coronary arteries, LCP of interest was 
defined as a fibroatheroma (FA) containing a lipid core of >0.2-mm thick, with a circumferen-

tial span of >60° on cross-section and a mean fibrous cap thickness of <450 μm. Prospective 
validation of the system for the detection of LCP from 51 hearts yielded an area under the 

ROC curve (AUC) of 0.80 (95% confidence interval (CI): 0.76–0.85) for average lumen diam-

eters of up to 3.0 mm. The detection of any-sized fibroatheroma in an artery segment using 
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the LCBI as a measure of lipid burden resulted in an AUC of 0.86 (95% confidence interval 
(CI): 0.81–0.91). However, false-positive scan results were obtained when the NIRS system 

was detecting areas with lipid that did not meet criteria of LCP. Moreover, LCPs with exten-

sive calcifications were not detected by NIRS since the near-infrared light cannot penetrate 
through calcium and other artifacts [22, 38].

2.4.3. Clinical validation studies

The first use of the NIRS system in coronary arteries of living humans was performed in 
six patients undergoing elective PCI for stable angina using an early prototype (2001; Lahey 

Clinic, Burlington, MA) [13, 16, 40]. No device-related adverse events occurred, showing the 

safety and feasibility of the system to distinguish spectra measured through blood. However, 

significant motion artifacts were present due to slow-signal acquisition time (2.5 s). In August 
2005, an improved ultrafast NIR system prototype was developed with a faster scanning laser 

and was later used in a feasibility study of 10 patients in 2006 (Lahey Clinic, Burlington, MA). 

The trial confirmed the safety of the newer improved device and showed its ability to discrim-

inate between signals obtained in the artery and those from blood alone, with no measurable 

artifacts of motion [16, 40].

A subsequent pivotal study, the SPECTACL (SPECTroscopic Assessment of Coronary 
Lipid) clinical study, was performed to validate the accuracy of LCP-detected NIRS signals 

collected in coronary arteries of 106 patients [10]. The study met its primary end point of 
demonstrating that spectral data could be safely acquired in coronary arteries of patients 

with the intravascular NIRS system and that the spectra were equivalent to those gathered 

from autopsy specimens (success rate of 0.83; 95% confidence interval (CI): 0.70–0.93). Thus, 
this study supported the feasibility of LCP detection in living patients. Subsequent studies 

showed intra- and inter-catheter reproducibility of automated interpretation of NIR spectra 

signals [50, 51].

2.5. Comparison with other intravascular imaging modalities for plaque characterization

The most common cause of acute coronary syndromes (ACS) is believed to be coronary artery 
thrombosis due to the rupture of lipid-rich “vulnerable plaques.” Thin-cap fibroatheroma (TCFA) 
plaques, which are characterized by a lipid-laden necrotic core with an overlying thin fibrous 
cap measuring <65 μm, containing few smooth muscle cells but numerous  macrophages, are 

often the substrate for plaque rupture-induced ACS [3, 4]. TCFAs are associated with positive 
remodeling and thus predominantly located in areas of the coronary tree that show mild to 

moderate luminal narrowing [52]. As previously outlined, coronary angiography only detects 

gross stenotic plaques and provides no insight regarding  non-ruptured “vulnerable plaques,” 

which limits plaque burden assessment [6]. Intravascular imaging modalities have been 

developed to fill part of the gap in information provided by coronary angiography and for in 

vivo detection of LCP [35, 53]. In vivo atherosclerotic imaging could enable to detect, predict, 

and prevent plaque rupture, improve PCI treatment of flow limiting target lesions, and could 
identify new therapeutic targets that would prevent future adverse coronary events in CAD 

patients (e.g., Table 2).
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Spatial 
resolution 

(μm)

Depth 
(mm)

Energy source Remodeling Plaque 
composition

Calcium Fibrous  

cap

Lipid core Thrombus Macrophages Neovessels

IVUS 100–150 10 Ultrasound ++ − ++ ± + ± − −

RF-IVUS 100 10 Ultrasound − + ++ + + − − −

OCT 10 2–3 Near-infrared 

light

− + ++ ++ + ++ + +

NIRS 1000 _ Near-infrared 

light

− − − − ++ − − −

NIRS-IVUS 100–150 10 Near-infrared 

light + 

ultrasound

++ − ++ ± ++ ± − −

IVUS: intravascular ultrasound; NIRS: near-infrared spectroscopy; OCT: optical coherence tomography; RF-IVUS: radiofrequency intravascular ultrasound.

Table 2. A comparison of different intravascular imaging modalities.

N
ear-Infrared Spectroscopy (N

IRS): A
 N

ovel Tool for Intravascular Coronary Im
aging

http://dx.doi.org/10.5772/67196
35



2.5.1. Intravascular ultrasound (IVUS) imaging

Intravascular ultrasound imaging (IVUS) produces cross-sectional images of the lumen and 

the artery wall in vivo, enabling visual assessment of plaque echogenicity from axial resolu-

tion of approximately 100 μm using high-frequency detectors (up to 45 MHz) [9]. IVUS is 

very accurate in identifying calcifications (sensitivity and specificity of approximately 90%), 
plaque burden and, unlike coronary angiography, can detect non-protruding plaques as well 

as positive and negative vascular remodeling [9, 54]. Thus, IVUS is currently the gold stan-

dard for atherosclerotic imaging of the coronary arteries in progression/regression plaque 

trials [9, 55–57]. In addition to its use as a research tool, IVUS has shown to be of clinical value 

for the assessment of ambiguous lesions and facilitates optimal PCI procedures by providing 

reference vessel diameter [9, 58]. A previous study from Lee et al. [59] showed that attenu-

ated lesions on IVUS were more common in ACS patients and were associated with more 

severe and complex plaque morphology, plaque burden, and higher frequency of no-reflow 
phenomenon during PCI procedures. Conventional grayscale IVUS has a high sensitivity for 

detecting lipid deposits (78–95%), visualized as echolucent zones, but a low specificity (30%) 
[54]. Another limitation of IVUS imaging is the low-axial resolution that does not allow to 

precisely define thin-cap fibroatheroma (TFCA), whose thickness is usually less than 65 μm in 
unstable plaques, and thus cannot identify plaques prone to rupture [54].

2.5.2. Virtual histology (VH) imaging

As compared to conventional invasive ultrasound techniques, radiofrequency (RF) IVUS pro-

vides additional information on plaque composition and morphology by spectral analysis of 

ultrasound backscatter [60]. A color-coded map allows the distinction of different components 
of atherosclerotic plaques, such as calcification (white), lipid/fibrofatty (light-green), fibrous 
(green) tissue, and necrotic core (red) [61]. Virtual histology (VH)-IVUS spectral analysis 

correlates with histopathology studies of plaques and can identify the four plaque compo-

nents with sensitivity, specificity, and predictive accuracy ranging from 80 to 92% [54, 62, 63]. 

VH-IVUS detection of LCPs has been associated with higher incidence of clinical events [64, 

65] and periprocedural complications during PCI [66–68]. Prospective assessment of vulner-

able plaques was performed in the PROSPECT (Providing Regional Observations to Study 
Predictors of Events in the Coronary Tree) trial, a multicenter multimodality study that pro-

spectively analyzed by IVUS and IVUS-VH imaging the coronary arteries of 697 ACS patients 

[64]. Their findings suggested that the presence of TCFA defined by VH-IVUS (hazard ratio 
(HR), 3.35; 95% CI, 1.77–6.36; P < 0.001), a minimal lumen area of ≤4 mm2 (HR, 3.21; 95% CI, 

1.61–6.42; P =0.001), and a large plaque burden of ≥70% (HR, 5.03; 95% CI, 2.51–10.11; P < 0.001) 

were independent predictors of major adverse cardiovascular events (MACEs) in nonculprit 

lesions at 3.4 years follow-up. However, the positive-predictive value was only 18–23%, reflect-
ing MACE’s low prevalence. Although this study validated the concept of vulnerable plaque, 

the lack of specificity and difficulties in image interpretation/measurements prevented these 
results from changing clinical practice. The VIVA study [65], as well as the PREDICTION [69] 

and ATHEROREMO-IVUS [70] studies, subsequently reported similar findings, despite differ-

ences with the PROSPECT study regarding inclusion criteria, follow-up duration, definitions 
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of TCFA and MACE. Although RF-IVUS is a validated and promising tool to identify patients 
and lesions at risk of future ACS, there are limitations regarding axial resolution, accuracy of 

necrotic core determination, and proper data acquisition and analysis [54, 64, 65].

2.5.3. Optical coherence tomography (OCT)

Optical coherence tomography is an invasive catheter-based imaging modality that measures 

the intensity and echo time delay of reflected near-infrared light from internal structures 
in tissues [71]. This technique provides a resolution of 10–20 μm in vivo, which is largely 

 superior to IVUS. The recent technology uses the optical frequency domain imaging (OFDI), 
which enables faster pullback speeds without altering image quality and resolution [9]. 

The use of non-occlusive techniques with flushing of contrast through the guiding catheter 
 during simultaneous image acquisition has partly resolved the issue of light absorption by 

blood components. OCT can discriminate features of high-risk plaques by evaluating the 
lipid  content and macrophages infiltration, as well as the measurement of fibrous cap thick-

ness [72]. This imaging modality is also used during percutaneous coronary intervention 
to assess stent apposition, coronary dissections, neoatherosclerosis and in-stent restenosis, 

 mechanisms of plaque disruption in ACS patients, and more recently to evaluate the scaffold 
of  bioabsorbable stents [73, 74]. The main limitation of OCT is the shallow penetration depth 
(1.0–2.5 mm) into the tissue, which limits proper imaging of biomarkers in atherosclerotic 

plaques [9, 75]. Other limitations include the lack of standardization of fibrous cap thickness 
analysis and the inconsistent accuracy in discriminating lipid-rich plaques from similar opti-

cal properties, such as macrophages accumulation, which can lead to false-positive results 

[72]. Regardless of the limitations, intracoronary FD-OCT remains a promising new clinical 
method for interrogating the microstructural details of the coronary wall [76].

2.5.4. Near-infrared spectroscopy (NIRS)

In contrast to IVUS, RF-IVUS, and OCT, which collect structural information, NIRS is unique for 
its ability to directly identify the chemical composition of the arterial wall and assess the presence 

of the LCP. NIRS detects unequivocal fingerprints from lipid core that is not affected by signal 
loss behind calcium due to acoustic shadowing, as it can occasionally preclude grayscale IVUS 

analysis, and the validation of NIRS included both calcified and non-calcified lipid cores in the 
definition of LCP [38]. NIRS alone does not provide information about structural anatomic param-

eters, such as vessel remodeling, plaque thickness, lumen area, and calcification [77]. However, as 

previously mentioned, the combined NIRS-IVUS-imaging catheter allows co-registration of both 

IVUS and NIRS data, which gives information on both plaque composition and morphology. 

NIRS-IVUS has shown to improve LCP detection, by comparison to IVUS, in calcified plaques as 
well as in lesions with small plaque burden [78]. The combined measures of plaque burden and 
LCBI improved the accuracy of fibroatheroma detection as compared with plaque burden alone 
by grayscale IVUS. Indeed, Puri et al. [79] conducted an ex vivo NIRS and IVUS-imaging study, 

performed in 116 coronary arteries of 51 autopsied hearts, whereas lesion-based analysis demon-

strated that combining plaque burden and LCBI analysis significantly improves fibroatheroma 
detection accuracy (c index 0.77, P = 0.028), by comparison to plaque burden alone.
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Several studies have compared NIRS with other intravascular-imaging modalities for LCP 

detection. It was previously shown that large plaque area measured by grayscale IVUS was 

more often associated with lipid accumulation/LCP detected by NIRS [19, 80]. However, 

Brugaletta et al. [80] found a weak correlation between the VH necrotic core content of the 

plaque and the block chemogram probability values (r =0.149), which did not improve after 

correction for the presence of calcium. In a larger study performed in 131 plaques of 66 ves-

sels, in which 31 plaques (26.7%) were attenuated, the relation between VH-derived per-

centage necrotic core and NIRS-derived LCBI was not significant (r = 0.16, P = 0.110) [81]. 

However, after separation of the plaques according to grayscale IVUS morphology, a positive 

relationship between VH-derived maximum percentage necrotic core and LCBI was found 

in non-calcified plaques, but not in calcified plaques. A study conducted in 17 patients who 
underwent NIRS and OCT imaging showed modest linear correlation between LCBI and 
maximum lipid arc and lipid index measured by OCT (r2 = 0.319, P = 0.003, and r2 = 0.404, P 

= 0.001, respectively) [82]. Furthermore, Roleder et al. [83] conducted a study which aimed 

to evaluate the accuracy of NIRS-IVUS-imaging modality to detect TCFA in 60 patients with 
stable CAD, by comparison to OCT used as the gold-standard reference to define TCFA (cap 
thickness of <65 μm). They showed that OCT-defined TCFA was characterized by positive 
vessel remodeling with higher lipid-core burden, while NIRS revealed greater LCBI per 2-mm 

segment (LCBI
2mm

) >315 with a remodeling index >1.046 as a combined criterion value.

In summary, there are important differences in LCP detection between different intravascu-

lar-imaging modalities, owing to their different imaging properties and limitations. As previ-
ously mentioned, OCT has the highest resolution but the weakest tissue penetration, limiting 
assessment of plaque burden and overall plaque volume [84]. While IVUS-VH and OCT 
require image interpretation for the detection of LCP, NIRS provides automated LCP detec-

tion without the need for manual imaging processing, facilitating its use in the catheterization 

laboratory and enabling rapid ad hoc clinical decision making during procedures. Moreover, 

OCT and NIRS can image through calcified lesions, whereas IVUS cannot. VH-IVUS can 
incorrectly misclassify intracoronary stents as calcium surrounded by necrotic core, a major 

limitation that is not found with OCT and NIRS imaging [84]. From the strengths and weak-

nesses of each individual imaging modality, it appears that the combination of two or more 

imaging technologies could improve LCP and vulnerable plaque detection [85].

2.6. NIRS-IVUS clinical applications

There is growing evidence from multiple studies of the clinical applications and value of the 
NIRS-IVUS imaging modality, including identifying the culprit lesion in ACS, optimizing PCI 

procedure, identifying plaques at high risk of periprocedural complications, for risk stratifica-

tion, monitoring lipid-lowering therapy, and assessing plaque vulnerability (e.g., Table 3) [86].

2.6.1. In vivo detection of culprit lesions in ACS

Several studies have evaluated NIRS detection of LCP, shown by an increased LCBI, at the 

site of culprit lesions associated with coronary events. Madder et al. [17] performed NIRS 

imaging in culprit vessels of 20 patients with acute ST-segment elevation myocardial infarc-
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Setting Study or authors Publishing year N Clinical end point(s) Results, references

LCP detection 

and in vivo 

validation of 

NIRS imaging

SPECTACL 2009 106 (1) Evaluate the similarities of NIRS 

spectra obtained in patients to spectra 

previously obtained and validated by 

histology in autopsy specimens; 

(2) to assess the safety of the device; 

and (3) to quantify the presence of LCP 

at target and non-target sites

NIRS system enables to safely obtain spectral data in patients 

that were similar to those from autopsy specimens and results 

demonstrated the feasibility of invasive detection of coronary 

LCP [10]

Plaque 

characterization

Brugaletta et al. 2011 31 Compare the findings of NIRS, 
IVUS-VH and IVUS grayscale obtained 

in matched coronary vessel segments 

of patients undergoing coronary 

angiography

Larger plaque area by grayscale IVUS was more often 

associated with either elevated percentage of VH derived-

necrotic core (NC) or LCP by NIRS; correlation between LCP 

detected by NIRS and NC by VH was weak [80]

Pu et al. 2012 66 Evaluate NIRS combined with IVUS to 

provide novel information on human 

coronary plaque characterization

Combining NIRS and IVUS contributes to plaque 

characterization in vivo [81]

Vulnerable 

plaque

ATHEROREMO-
NIRS

2014 203 Determine the long-term prognostic 

value of intracoronary NIRS as 

assessed in a nonculprit vessel in 

patients with CAD

CAD patients with an LCBI ≥ 43.0 had a fourfold risk of 
MACE during 1-year follow-up [92]

Madder et al. 2016 121 Evaluate the association between large 

lipid-rich plaques (LRP) detected by 

NIRS at non-stented sites in a target 

artery and subsequent MACCE

Detection of large LRP by NIRS (maxLCBI
4mm

 ≥400) at 
non-stented sites in a target vessel was associated with an 

increased risk of future MACCE [93]

Acute coronary 

syndrome 

Madder et al. 2012 60 Determine the frequency of LCP at 

target and remote sites in ACS vs. 

stable angina patients

Target lesions responsible for ACS were frequently composed 
of LCP; LCP in culprit and non culprit lesions were more 

common in patients with ACS vs. stable angina patients  [77]

Madder et al. 2013 20 To describe NIRS findings in culprits 
lesions of STEMI patients

maxLCBI4mm > 400 detected in vivo by NIRS is a threshold 
for identification of STEMI culprit plaques [17]

Madder et al. 2015 81 Assess the lipid burden of culprit 

lesions in NSTEMI and UA patients
LCP similar to those detected at STEMI culprit sites were 
detected at culprit sites of NSTEMI and UA patients [18]
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Setting Study or authors Publishing year N Clinical end point(s) Results, references

Periprocedural 

MI 

COLOR registry 2011 62 Analyse the relationship between the 

presence of large LCP detected by 

NIRS and periprocedural MI

NIRS provides a rapid and automated detection of extensive 

LCPs that are associated with a high risk of periprocedural 

MI [20]

Raghunathan 

et al.

2011 30 Evaluate if an association between the 

presence and extend of LCP detected 

by NIRS before PCI and periprocedural 

MI

PCI of LCP detected lesions by NIRS is associated with 

increased risk of MI after PCI [21]

Maini et al. 2013 77 Evaluation of LCP modification with 
coronary revascularization and its 

correlation with periprocedural MI

Plaque modification can be performed by interventional 
methods and evaluated with NIRS; axial plaque shifting is an 

acute prognostic marker for postprocedural MI [124]

PCI 

optimization 

Dixon et al. 2012 69 Compare the target lesions length 

using NIRS combined with 

angiography vs. angiography alone

Patients undergoing stent implantation could have LCP 

extended beyond angiographic margins of the initial target 

lesion using QCA alone [97]

Hanson et al. 2015 58 Assess the prevalence of plaque 

burden and LCP extended beyond 

angiographic borders of target lesions

NIRS-IVUS imaging demonstrates that target lesion length is 

commonly underestimated by angiography alone [98]

Ali et al. 2013 65 Characterize neointimal composition 

of in-stent restenosis in both BMS and 

DES using a multimodality approach 

with OCT and NIRS-IVUS

In-stent thin-cap neoatherosclerosis is more prevalent, more 

diffusely distributed across stented segment and is associated 
with increased periprocedural MI in DES compared with 

BMS  [108]

Madder et al. 2016 120 Evaluate NIRS-IVUS system findings 
of increased lipid signals in pre-

existing stents, speculated to indicate 

neoatherosclerosis, and compare with 

a control group of freshly implanted 

stents, in which any lipid signal 

originates from fibroatheroma under 
the stent

Detection of LCP in pre-existing stents by NIRS alone is not 

reliable evidence of neoatherosclerosis, as the lipid signal 

may originate from fibroatheroma under the stent [109]

Monitoring 

lipid-lowering 

therapies

YELLOW 2013 87 Determine the impact of short-term 

intensive statin therapy (Rosuvastatin 

40 mg OD) on intracoronary plaque 

content

Short-term intensive treatment with statin was associated 

with a significant reduction in LCBI / lipid content compared 
to standard therapy [22]
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Setting Study or authors Publishing year N Clinical end point(s) Results, references

Prevention 

of PCI 

complications

Brilakis et al. 2012 9 Investigate whether the use of a 

distal embolic protection device 

might prevent complications of LCP 

interventions

The use of a distal protection device frequently resulted in 
embolized material retrieval after stenting of native coronary 

artery lesions with large LCP [123]

CANARY 2015 85 Evaluate if a distal protection device 

reduce postprocedural MI for PCI of 

LCP lesions

Distal protection device dis not reduce postprocedural MI 

[125]

Erlinge et al. 2015 18 Evaluate if aspiration thrombectomy 

reduces the lipid content of culprit 

plaques by NIRS-IVUS in ACS patients 

assessed

Thrombus aspiration resulted in a 28% reduction in lipid 
content by performing aspiration thrombectomy in culprit 

lesion [129]

ACS: acute coronary syndrome; BMS: bare-metal stent; CAD: coronary artery disease; DES: drug-eluting stent; IVUS: intravascular ultrasound; LCBI: lipid-core burden 

index; LCP: lipid-core plaque; LRP: lipid-rich plaque; MACE: major adverse cardiac events; MACCE: major adverse cardiac and cerebrovascular events; MI: myocardial 

infarction; NC: necrotic core; NIRS; near-infrared spectroscopy; NSTEMI: non-ST-segment elevation myocardial infarction OCT: optical coherence tomography; PCI: 
percutaneous coronary intervention; QCA: quantitative coronary angiography; STEMI: ST-segment elevation myocardial infarction; UA: unstable angina; VH: virtual 
histology.

Table 3. A summary of intracoronary human NIRS clinical studies to identify lipid-core plaques (LCPs).
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tion (STEMI) and compared their findings with spectra analysis in nonculprit segments of 
the artery and with autopsy control segments. The maxLCBI

4mm
 was 5.8-fold higher in STEMI 

culprit segments than in 87 nonculprit segments of the STEMI culprit vessel (median (inter-

quartile range (IQR)): 523 [445 to 821] vs. 90 [6 to 265]; P < 0.001). Moreover, maxLCBI
4mm

 was 

87-fold higher than in 279 coronary autopsy segments free of large LCP by histology (median 

(interquartile range (IQR)): 523 [445 to 821] vs. 6 [0 to 88]; P < 0.001). Thus, a threshold of 
maxLCBI

4mm 
≥400 distinguished STEMI culprit segments in vivo from coronary artery autopsy 

segments free of LCP with high accuracy (sensitivity: 85%; specificity: 98%) [17]. Among the 

first 85 STEMI cases, two patients showed culprit lesions that did not contain lipid plaque, but 
rather a calcified nodule in one case and a coronary dissection in the other [15].

Similar NIRS findings of lipid burden were observed in culprit lesions of patients in non-
ST segment elevation myocardial infarction (NSTEMI) [18, 77]. LCPs are more common in 

patients with ACS compared to stable angina patients. From the 81 NSTEMI and unstable 
angina (UA) patients who underwent culprit vessel NIRS imaging prior to stenting, non-

STEMI culprit segments had a 3.4-fold greater maxLCBI
4mm

 than nonculprit segments (448 

± 229 vs. 132 ± 154, P < 0.001) and unstable segments had a 2.6-fold higher maxLCBI
4mm

 than 

nonculprit lesions (381 ± 239 vs. 146 ± 175, P < 0.001) [18]. Culprit segments in NSTEMI patients 
were more often characterized by a maxLCBI

4mm
 ≥400 than those with UA, with a sensitivity 

of 63.6% versus 38.5%, respectively. Moreover, a large LCP was identified by NIRS within the 
culprit lesions of five cases of resuscitated out-of-hospital cardiac arrest that subsequently 
underwent coronary angiography [87]. There is a stepwise increase in lipid content, repre-

sented by maxLCBI
4mm

, from nonculprit lesions (0–130), to unstable angina (≈380), to NSTEMI 
(≈450) and STEMI patients (≈550), supporting the concept of more fibrotic lesions in stable 
angina and more lipid-rich vulnerable plaque in STEMI, NSTEMI, and sudden death [15]. 

NIRS-IVUS evidence of LCP with a large plaque burden suggests that the lesion is a culprit, 

and that such information could be relevant in patients with ambiguous coronary angiogra-

phy for efficient treatment management.

2.6.2. Association with cardiovascular risk factors

A recent clinical study has evaluated the association between clinical risk factors and blood 

characteristics of vascular inflammation and lipid content/LCP visualized by NIRS. de Boer 
et al. [19] reported the use of NIRS in a nonculprit coronary artery in 208 patients under-

going percutaneous coronary intervention or invasive diagnostic coronary exploration for 

various indications. It was found that male gender, hypercholesterolemia, and the presence 

of multivessel CAD were modestly associated with higher LCBI values on NIRS. A history 

of peripheral vascular disease and/or cerebral disease and the use of beta-blockers were 

positively associated with LCBI, while biomarkers such as blood lipids and high-sensitivity 

C-reactive protein were not. All clinical characteristics reflecting patients with high CAD risk 
explained only 23% of the variability in LCBI. Moreover, the LCBI on NIRS and the percent-

age area of plaque burden determined by IVUS were modestly correlated (r =0.29). In the light 

of these results, this study could not address the prognosis value of NIRS-imaging modality. 

Methodological caveats could in part explain the low correlation obtained between NIRS and 
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IVUS imaging, including the use of lower-frequency IVUS catheters (20 MHz), IVUS and 

NIRS acquisitions performed using different catheters, measurement of a single cross section 
on IVUS, and the absence of data regarding the reproducibility of repeated NIRS pullbacks 

and measurements [88].

2.6.3. Assessing plaque vulnerability and risk stratification

Retrospective autopsy studies have revealed specific histological culprit lesion morpholo-

gies in patients suffering from an ACS, which has created an enthusiasm in the use of intra-

vascular coronary artery imaging in search of the “vulnerable plaque” at risk of rupture and 

endoluminal thrombosis. The thin-cap fibroatheroma (TCFA) is believed to be the precur-

sor lesion of plaque rupture, although there is a lack of prospective robust evidence in the 

literature [15, 89]. A prospective animal study conducted in an atherosclerotic and diabetic 

pig model showed that NIRS-IVUS imaging can detect and predict the future development 

of inflamed fibroatheromas with subsequent validation against postmortem histology [90]. 

The features of rupture-prone plaques included thinned fibrous cap, increased plaque and 
necrotic core areas, increased concentration of activated inflammatory cells, and the pres-

ence of apoptotic and proliferating cells within the fibrous cap [90]. An autopsy study of 

103 coronary arteries from 56 autopsied hearts, aiming to assess grayscale IVUS and NIRS 

detection of histological fibroatheroma (FA), with histology validation as the gold standard, 
showed that both superficial IVUS attenuation and NIRS-LCP had a similar high specificity 
of approximately 95% in detecting FAs, however IVUS showed a low sensitivity (36% vs. 

47%; P =001) [91]. The addition of NIRS significantly increased the accuracy of fibroatheroma 
detection at the minimum lumen area from 75% to 89% among all cross-sections (P < 0.05). 

When either IVUS attenuation or lipid-rich plaque was present, the sensitivity for prediction 
of an FA was significantly higher compared with IVUS alone (63% vs. 36%, P < 0.001) and 

NIRS alone (84% vs. 65%, P < 0.001).

The first prospective human study, published in 2014, has evaluated the association of 
high LCP by NIRS and cardiovascular events. The ATHEROREMO-NIRS (The European 
Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis—
Near-Infrared Spectroscopy) trial is a prospective, observational study that aimed to evaluate 

the prognostic value of NIRS in a nonculprit coronary artery from 203 patients referred for 

angiography due to stable angina or ACS [92]. The results showed that the 1-year cumulative 
incidence of  all-cause mortality, non-fatal ACS, stroke, and unplanned coronary revascular-

ization was 4-fold increased in patients with an LCBI equal or above to the median value 

of 43.0 compared to those with an LCBI value below the median (adjusted HR: 4.04; 95% 

CI: 1.33–12.29; P = 0.01). The association of the LCBI value with primary end point was similar 
in both stable and ACS patients. Although these results are promising, the number of events 

in this trial was small, and therefore studies with larger number of events will be required 

for the validation of vulnerable patient detection with NIRS-IVUS imaging. A more recent 

NIRS-IVUS  single-center registry study was conducted in 121 consecutive patients undergo-

ing combined NIRS and IVUS imaging to evaluate the association of large lipid-rich plaques 

at non-stented sites in a target vessel and subsequent major adverse cardiovascular and cere-

Near-Infrared Spectroscopy (NIRS): A Novel Tool for Intravascular Coronary Imaging
http://dx.doi.org/10.5772/67196

43



brovascular events (MACCE) [93]. The results showed that the presence of large LCP in a 
non-stented segment, defined by NIRS maxLCBI

4mm
 ≥400 at baseline, was associated with a 

significantly increased risk of future MACCE during follow-up (HR 10.2, 95% CI: 3.4–30.6; 
P < 0.001). This study, although single center, underpowered, and with limited follow-up, was 
consistent with the findings of ATHEROREMO-NIRS study, whereas NIRS detection of lipid 
burden was associated with patient-level risk of future MACCE [93].

The detection of fibroatheroma could help to identify culprit lesions in ACS patients, pre-

dict lesions subject to periprocedural complications, could allow optimal stent selection, and 

reduce the rate of stent restenosis. Whether the detection of fibroatheroma using NIRS-IVUS 
will prevent future events is currently being studied in several trials, including the Lipid-

Rich Plaque study (LCP; Clinical Trials.org Identifier: NCT02033694), PROSPECT II ABSORB 
trial (A Multicentre Prospective Natural History Study Using Multimodality Imaging in 

Patients With acute Coronary Syndromes; Clinical Trials.org Identifier: NCT02171065), and 
ORACLE-NIRS trial (Lipid cORe Plaque Association With CLinical Events: a Near-InfraRed 

Spectroscopy Study; Clinical Trials.org Identifier: NCT02265146).

2.6.4. Optimizing percutaneous coronary intervention procedures

Visual estimation of a coronary stenosis on a two-dimensional (2D) angiography or quantitative 

coronary angiography (QCA) of lesion lengths is often misleading from image foreshortening 

and underestimation of plaque burden. IVUS offers accurate length measurement during auto-

mated pullback, proximal and distal reference diameter of a vessel, and enables to evaluate the 

presence and extent of calcifications [26]. The ADAPT-DES (Assessment of Dual Antiplatelet 
Therapy With Drug-Eluting Stents) study, a prospective, multicenter, nonrandomized “all-
comers” registry of 8583 consecutive patients, showed that IVUS-guidance PCI, performed in 
39% of patients, was associated with reduced 1-year rates of MACE (3.1% vs. 4.7%; adjusted 

HR, 0.70; 95% CI: 0.55–0.88; P = 002), as compared to angiography guidance alone [94]. The 
benefits of IVUS were observed in patients with ACS and complex lesions, although significant 
reductions in MACE were present in all patient subgroups, including stable angina and single-

vessel disease. Similar results were observed in subsequent meta-analysis [95, 96].

The use of combined NIRS-IVUS imaging may further optimize stent implantation by accurate 
identification of lipid margins, and thus cover all the segments with high lipid burden. Dixon 
et al. [97] analyzed 75 lesions with NIRS imaging and demonstrated that lipid-core plaque 

extended beyond the angiographic margins of the initial target lesion in 16% of cases. Hanson 

et al. [98] showed that atheroma, defined as plaque burden >40% or LCP, extended beyond 
angiographic margins in 52 of the 58 lesions analyzed with NIRS-IVUS (90% of lesions), with 

a mean lesion length that was significantly longer when assessed by NIRS-IVUS as compared 
with angiography alone (19.8 ± 7.0 vs. 13.4 ± 5.9 mm; P < 0.0001). Those results suggests that 
NIRS-IVUS guidance during PCI procedures, as a “red-to-red” stenting strategy, could opti-
mize complete LCP coverage by a stent with the proper length according to the landing zones 

and thus reduce the risk of edge dissections, stent failure, and subsequent adverse clinical 

outcomes [26, 39, 99–101]. Although it seems rationale to implant the edges of a stent in a 

normal artery segment, the marginal increased risk of stent thrombosis and restenosis with 
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longer stents will require future studies to determine if routine use of NIRS-IVUS for proper 

stent sizing will improve patient outcomes [102].

Detection of lipid core in a lesion has also been used as one of the factors to consider in the 

decision to implant a bare metal stent (BMS) or a drug-eluting stent (DES). Several stud-

ies have demonstrated a greater frequency of stent thrombosis after DES implantation when 

struts were penetrating into a lipid-rich necrotic core plaque rather than in a non-yellow 

(fibrous) plaque [103, 104]. The absence of struts coverage by the formation of a neointima 
layer during vessel’s healing process was seen with both DES and BMS implantation in lipid-

rich plaques, which is likely the underlying mechanism of stent thrombosis seen in those 

patients [105, 106]. Neoatherosclerosis is an important contributor to late-stent thrombosis 

with newer generation DES, as well as late in-stent restenosis. Histologically, neoatheroscle-

rosis is characterized by the accumulation of lipid-laden macrophages within the neointima 

with or without necrotic core formation and/or calcification and can occur months to years 
following stent placement [107]. Originally described in postmortem studies, neoatheroscle-

rosis has more recently been detected by intracoronary imaging. Ali et al. [108] used NIRS and 

OCT to assess the development of neoatherosclerosis in 65 consecutive patients with symp-

tomatic in-stent restenosis. The prevalence of LCP within neointimal hyperplasia segments 
was 89% using NIRS versus 62% using OCT. Neoatherosclerosis was associated with sig-

nificantly reduced minimal cap thickness with plaque rupture occurring exclusively in those 
patients. Moreover, DES had a higher prevalence and earlier occurrence of neoatherosclero-

sis, thinner cap, and more lipid burden and density. However, LCP identified by NIRS alone 
was not associated with periprocedural MI during treatment for in-stent restenosis, which 

reflects the limited ability of NIRS to differentiate lipid located within the neointimal tissue 
from a lipid core located underneath stent struts. Nevertheless, postmortem imaging and 

subsequent histology analysis showed that NIRS could correctly characterize lipid despite the 

presence of metal struts. Similar findings were reported in a study published by Madder et al. 
[109], whereas NIRS was not reliable for neoatherosclerosis detection when used as the sole 

imaging modality for LCP detection. The NIRS lipid signal could not distinguish neoathero-

sclerosis from fibroatheroma underlying the stent. No doubt that NIRS can detect coronary 
LCP, but it seems unlikely suitable as a standalone technique for accurate neoatherosclerosis 

detection and that the adjunction of IVUS or OCT will be required to determine the position 
of NIRS lipid signal relative to the underlying stent struts [110].

It was proposed that the growth of neointima tissue on the top of a vulnerable plaque might 

increase the thickness of the fibrous cap [103, 110, 111]. Brugaletta et al. [112] reported the abil-

ity of bioresorbable vascular scaffold (BVS) implantation to promote the growth of neointimal 
tissue, which acts as a barrier to isolate vulnerable plaques. An ongoing trial, the PROSPECT 
II ABSORB sub-study trial (Clinical Trials.org Identifier: NCT021711065), will randomize 
patients with plaques at high risk of causing future coronary events (plaque burden ≥70%) 
to receive an AbsorbTM BVS (Abbott Vascular, IL, USA) with optimal medical therapy (OMT) 
versus OMT alone. This sub-study aims to evaluate the changes in the plaque at 2 years fol-
low-up. Clinically, large LCPs have been shown to be associated with MACE, especially peri-

procedural myocardial infarction [21]. Whether lipid burden influences long-term outcomes 
following stent implantation remains elusive.
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2.6.5. Prevention of periprocedural complications

Approximately 3–15% of percutaneous coronary interventions are complicated by periproce-

dural myocardial infarction (PPMI) and no-reflow, in part by distal embolization of intralu-

minal thrombus and/or lipid-core plaque content, which is associated with adverse long-term 

outcomes [113, 114]. It was reported that periprocedural MIs are associated with increased 

atherosclerotic burden and large LCPs [115–118]. Indeed, embolization of the lipid core after 

stent implantation in a plaque with high lipid content has been identified as an important 
cause of periprocedural no-reflow and MI with and without the presence of intracoronary 
thrombus [118–120]. A pilot study performed in nine patients using an embolic protection 

device showed that embolized material consisted in fibrin and platelet aggregates, which 
reflects the highly thrombogenic content of necrotic core of large atheroma plaques and LCP 
[98, 120, 121]. In a sub-study of the COLOR (Chemometric Observation of Lipid-Core Plaques 

of Interest in Native Coronary Arteries) registry, a prospective multicenter observational study 

aiming to determine a relationship between NIRS-defined high LCBI and periprocedural MI, 
Goldstein et al. [20] analyzed the cardiac biomarkers of 62 stable patients undergoing PCI. 

The main findings were that periprocedural MI, defined in the study as a postprocedural 
elevation above three times the upper limit of normal (ULN) for either creatine kinase-MB 

(CK-MB) or cTnI measured 4–24 h after PCI, occurred in nine patients (14.5%) and was more 
common among patients with a maxLCBI

4mm 
≥ 500 (7 of 14 patients, 50%) versus patients with 

a maxLCBI
4mm 

< 500 (2 of 48 patients, 4.2%). The authors concluded that a high LCP, defined 
as a maxLCBI

4mm 
≥ 500, was associated with periprocedural events. These results are concor-

dant with the registry study conducted by Raghunathan et al. [21], in which the analysis of 30 

patients who underwent pre-procedure NIRS imaging showed a postprocedural increase of 

CK-MB more than three times the UNL in 27% of patients with a ≥1 yellow blocks (n = 11) as 

opposed to none in the 19 patients without a yellow block within the stented lesion.

Distal embolization, as an important mechanism of periprocedural MI, was further supported 

by several studies that have demonstrated a significant decrease in the size of LCP after stent-
ing [122–124]. Stone et al. showed in the CANARY trial that LCP measured as LCBI by NIRS 

in the stented vessels reduces with PCI treatment, with a significant reduction of median LCBI 
from 143.2 before PCI to 17.9 after PCI (P < 0.001) [125]. Moreover, the authors showed that the 

occurrence of periprocedural MI was associated with higher LCBI, results that are concordant 

with previous findings [20, 21].

In order to prevent periprocedural MI during PCI, several strategies were proposed dur-

ing stenting procedures, including aspiration thrombectomy, embolization distal-protection 

devices, vasodilators, intensive anticoagulation, and antiplatelet therapies. The CANARY 
(Coronary Assessment by NIR of Atherosclerotic Rupture-Prone Yellow) trial randomized 

85 stable angina patients undergoing stent implantation of a single native coronary lesion 

and pre-procedure NIRS-defined maxLCBI
4mm 

≥ 600 to PCI with or without distal-protection 
filter [125]. Among the 31 randomized cases with a maxLCBI

4mm
≥

 
600, there was no differ-

ence in the rates of periprocedural MI with or without the use of distal-protection filter (35.7 
vs. 23.5%, respectively; relative risk 1.52; 95% CI: 0.50–4.60, P =0.69). It should be noted that 

the CANARY trial was ended prematurely due to difficulties in identifying patients suitable 
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for randomization to embolic-protection devices and lack of signs of benefits and thus was 
not adequately powered to detect a difference in MI or other major procedural complica-

tions between the two patient groups. An ongoing study, the CONCERTO (Randomized-
Controlled Trial of a Combined versus Conventional Percutaneous Intervention for 
Near-Infrared Spectroscopy Defined High-Risk Native Coronary Artery Lesions; Clinical 
Trials.org Identifier: NCT02601664) trial, aims to evaluate different strategies for periproce-

dural MI prevention. Patients undergoing PCI with high-risk native coronary lesion, defined 
as ≥2 contiguous yellow blocks on the block chemogram, are randomized to combined pre-

ventive measures versus conventional PCI. The combined preventive measures consist of 
pre-PCI administration of an intracoronary vasodilator and a glycoprotein IIb/IIIa inhibitor, 

in addition to the use of an embolic-protection device if technically feasible and a complete 

coverage of the LCP if technically feasible.

Thrombectomy is often used to aspirate thrombus and restore blood flow in the culprit ves-

sel during primary PCI in STEMI patients. The clinical benefits of routine thrombus aspira-

tion remain a matter of debate, since the TAPAS (Thrombus Aspiration during Percutaneous 
Coronary Intervention in Acute Myocardial Infarction) study demonstrated a reduction of mor-

tality while larger studies such as TASTE (Thrombus Aspiration in ST-Elevation Myocardial 
Infarction in Scandinavia) and TOTAL (Trial of Routine Aspiration Thrombectomy with PCI 
versus PCI Alone in Patients with STEMI) did not show a reduction of cardiovascular mor-

tality, with an increased rate of stroke at a 30-day follow-up in the TOTAL trial [126–128]. 

Erlinge et al. [129] performed NIRS-IVUS imaging in 18 ACS patients to examine if aspiration 

thrombectomy reduced the lipid content of ACS culprit plaques. The culprit lipid content 
was quantified by NIRS-IVUS before and after thrombectomy as the lipid-core burden index 
(LCBI), and aspirates were examined by histological staining for lipids, calcium, and macro-

phages. Culprit lesions were found to have high lipid content prior to thrombectomy, which 

resulted in a 28% reduction in culprit lesion lipid content (pre-aspiration LCBI 466 ± 141 vs. 

post-aspiration 335 ± 117, P = 0.0001).

As aforementioned, the use of intracoronary NIRS-IVUS imaging for accurate identification of 
LCP lesions prone to embolize, as well as different treatment strategies, for periprocedural MI 
prevention are attractive approaches, however their clinical benefits on myocardial  salvage 

and prevention of embolization remains to be demonstrated in future studies.

2.6.6. Monitoring effects of lipid-lowering therapies

It is well known that statin therapy reduces rates of cardiovascular events in secondary 

prevention. The pharmacological effects of specific lipid-reducing agents that reduce free 
and esterified cholesterol could be evaluated with NIRS, as it informs on the lipid content of 
coronary artery plaques over time. The demonstration of markedly reduced LCBI values in 
a patient after 1 year of high-dose rosuvastatin therapy was the first indication that NIRS-
IVUS could be used to evaluate the effect of systemic anti-atherosclerotic medical therapy 
[130]. In the YELLOW (Reduction in Yellow Plaque by Aggressive Lipid-Lowering Therapy) 
trial, Kini et al. [22] prospectively randomized 87 patients with multivessel coronary artery 

disease undergoing PCI with one culprit and one nonculprit hemodynamically significant 
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lesions, defined by fractional flow reserve (FFR <0.80), to receive intensive statin therapy 
(rosuvastatin of 40 mg daily) or standard lipid-lowering therapy. The nonculprit lesions 
had a baseline assessment by NIRS-IVUS and FFR, prior to randomization. Rosuvastatin 
therapy resulted in a significant reduction in the plaque lipid content/maxLCBI

4mm
 com-

pared to standard therapy. The significant reduction in maxLCBI
4mm

 associated with inten-

sive statin therapy was observed across subgroups of the study population, based on age, 

gender, presence of diabetes, and baseline lipid profile. However, no significant changes 
were observed for the maxLCBI

4mm
 and LCBI measurements at the lesion site in the stan-

dard lipid treatment group at follow-up. Although baseline LCBI was significantly higher 
in patients randomly allocated to intensive versus standard therapy, the YELLOW trial 

highlights that LCP measured by NIRS was associated with CAD and that it could be a 

potential tool to monitor regression of the disease in phase II clinical trials evaluating novel 

anti-atheromatous therapies.

A similar study of the effect of rosuvastatin treatment on the coronary plaque composition 
and necrotic core, the IBIS-3 (Integrated Biomarker and Imaging Study 3) trial, failed to dem-

onstrate a significant reduction of necrotic core volume or LCBI under intensive rosuvastatin 
therapy for 1 year [131]. The effects of high-dose statin therapy are being further investigated 
in the YELLLOW II trial (Clinical Trials.org Identifier: NCT01837823), a phase II clinical study, 
that aims to assess the regression of plaque lipid content and changes in plaque morphology 

from atherosclerotic lesions after 8–12 weeks of high-dose statin therapy by utilizing NIRS, 

IVUS, and OCT imaging modalities in the coronary arteries.

2.7. Limitations of the technology

Near-infrared spectroscopy (NIRS) identifies the chemical signature of the lipid component, 
specifically lipid core-containing coronary plaque (LCP). The main limitations of NIRS tech-

nology are the lack of information regarding the lumen, plaque anatomy, and status of the 

fibrous cap or its attenuation. Although NIRS may be one of the most sensitive modalities 
to detect lipid-core plaques, it cannot provide information on the depth of the lipid core. 

Moreover, the accurate measurement of lipid volume/burden with NIRS has not been vali-

dated [132]. To overcome these pitfalls, a new combined imaging catheter adding intravascu-

lar ultrasound (IVUS) imaging was developed. However, since intravascular ultrasound has a 

low sensitivity to visualize lipid inside a plaque, the additional value of this new system will 

require further evaluation [26].

The clinical relevance of imaging specific features of the vulnerable plaque for risk stratifi-

cation and clinical decision making remains unclear. Higher-resolution imaging modalities, 

such as OCT, better assessed determinants of vulnerable plaques than NIRS; however, there 
is currently no commercialized system combining OCT and NIRS modalities. The prognostic 
utility and incremental value of NIRS when associated with biomarkers of plaque vulnerability 

assessed by IVUS (plaque burden, MLA, and remodeling) remains to be investigated [26, 133]. 

Many studies have brought evidence that IVUS-guided PCI achieves superior outcomes com-

pared to angiography guidance alone [134]. The potential value of adding NIRS for lipid-rich 
plaques at risk of embolization and for a complete coverage of LCPs remains to be investigated. 
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NIRS-IVUS-imaging modality is an invasive diagnostic modality that targets patients in the 

setting of secondary prevention, thus precluding its utilization for primary prevention, along 

with other invasive imaging technologies.

2.8. Future trials and perspective

NIRS-IVUS-imaging technology is improving and should become a sensitive modality for 

coronary plaque characterization. A new algorithm for collagen detection has been developed 

using the same spectroscopy signal, which enables to detect the amount of fibrous tissue over 
the LCP (thin or thick fibrous cap) [15]. This technology will be further optimized by adding 
a recently developed, but not yet available, high-resolution IVUS, which will allow to accu-

rately differentiate between thin and thick fibrous caps. Co-registration of NIRS with other 
imaging modalities is also being developed. The use of combined OCT-NIRS catheters has 
been recently demonstrated as a proof of concept [15].

NIRS-IVUS has also been used in the carotid arteries to detect LCP, which could represent a 

suitable imaging modality to determine the risk of stroke or the risk of complications during 

carotid stent placement or endarterectomy. However, this new clinical application remains to 

be validated in future studies [15].

Multiple prospective outcome studies are currently ongoing to evaluate the ability of NIRS-

IVUS imaging to detect vulnerable plaques that are likely to cause future adverse events. 

Among those studies are the LRP trial (Lipid-rich Plaque Study; Clinical Trial.org Identifier: 
NCT02033694), the PROSPECT II ABSORB trial (Providing Regional Observations to Study 
Predictors of Events in the Coronary Tree II; Clinical Trial.org Identifier: NCT02171065), and 
the ORACLE-NIRS trial (Lipid-core plaque association with clinical events: a near-infra-

red spectroscopy study; Clinical Trial.org Identifier: NCT02265146). The YELLOW II trial 
(NCT01837823), which aims to evaluate the effects of rosuvastatin treatment on lipid content 
after 8–10 weeks of treatment regimen, has completed patient enrolment but results are still 

pending. Another trial has been completed and awaiting for results publication, the NIRS-

TICAGRELOR trial (Clinical Trial.org Identifier: NCT02282332), which aims to evaluate the 
effect of the P2Y12 inhibitor ticagrelor (AstraZeneca, Cambridge, England) on plaque stabili-
zation and reduction of inflammation by NIRS-defined reduction of LCBI in patients on long-
term statin therapy undergoing non-urgent PCI.

3. Conclusion

NIRS is a promising tool for the detection of vulnerable plaques in CAD patients, PCI-guidance 

procedures, and assessment of lipid-lowering therapies. NIRS-IVUS has been shown to be 

a reliable and reproducible modality for the detection of intracoronary LCPs, with valida-

tion using the current gold-standard, histology. It has already been shown that this imaging 

modality is highly specific for identifying NSTEMI and STEMI culprit plaques, that it can be 
used to follow the progression of vulnerable plaques over time, and to evaluate the effect of 
lipid-lowering therapies and intracoronary devices. Moreover, preliminary data have shown 
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that NIRS-IVUS-imaging technology can identify vulnerable patients. Multiple ongoing clini-

cal trials will hopefully validate this tool for vulnerable plaque and patient detection, as well 

as for treatment management and follow-up of patients with CAD.

Abbreviations

ACS  Acute coronary syndrome

BMS  Bare-metal stent

BVS  Bioresorbable vascular scaffold

CAD  Coronary artery disease

CABG  Coronary artery bypass graft

CCA  Conventional coronary angiography

CK-MB  Creatine kinase-MB

cTnI  Cardiac troponin I

DES  Drug-eluting stent

Fr  French

FA  Fibroatheroma

FDA  US Food and Drug Administration

FD-OCT  Frequency-domain optical coherence tomography

FFR  Fractional flow reserve

IVUS  Intravascular ultrasound

LCBI  Lipid-core burden index

LCP  Lipid-core plaque

LDL  Low-density lipoprotein

LRP  Lipid-rich plaque

MACE  Major adverse cardiac events

MACCE  Major adverse cardiac and cerebrovascular events

maxLCBI
4mm

 Maximum lipid-core burden index in 4-mm region

MI  Myocardial infarction

MLA  Minimal lumen area

NC  Necrotic core

NIRS  Near-infrared spectroscopy
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NSTEMI  Non-ST segment elevation myocardial infarction

OCT  Optical coherence tomography

OFDI  Optical frequency domain imaging

OMT  Optimal medical therapy

PCI  Percutaneous coronary intervention

PPMI  Periprocedural myocardial infarction

QCA  Quantitative coronary angiography

ROI  Region of interest

SCD  Sudden cardiac death

STEMI  ST-segment elevation myocardial infarction

TCFA  Thin-cap fibroatheroma

UA  Unstable angina

ULN  Upper limit of normal

VH  Virtual histology
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