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Abstract

High-frequency and microwave electromagnetic fields are used in billions of various
devices and systems. Design of these systems is impossible without detailed analysis of
their electromagnetic field. Most of microwave systems are very complex, so analytical
solution of the field equations for them is impossible. Therefore, it is necessary to use
numerical methods of field simulation. Unfortunately, such complex devices as, for
example, modern smartphones cannot be accurately analysed by existing commercial
codes. The chapter contains a short review of modern numerical methods for Maxwell's
equations solution. Among them, a vector finite element method is the most suitable for
simulation of complex devices with hundreds of details of various forms and materials,
but electrically not too large. The method is implemented in the computer code radio
frequency simulator (RFS). The code has friendly user interface, an advanced mesh
generator, efficient solver and post-processor. It solves eigenmode problems, driven
waveguide problems, antenna problems, electromagnetic-compatibility problems and
others in frequency domain.

Keywords: electromagnetics, numerical methods, computer simulation, microwaves,
cellular phones

1. Introduction

High-frequency electromagnetic fields are used now in telecommunications and radar sys-

tems, astrophysics, plasma heating and diagnostics, biology, medicine, technology and many

other applications. Special electromagnetic systems excite and guide these fields with given

time and space distribution. A designer or a researcher of such systems ought to know in detail

their electromagnetic field characteristics. This goal can be achieved or by experimental study,

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



often too long in time and expensive, or by computer simulation. The last choice becomes more

and more preferable with fast progress of computational electrodynamics and computer effi-

ciency.

All macroscopic electromagnetic phenomena are governed by Maxwell's equations. Unfortu-

nately, these remarkable equations have so many solutions, that choice of the one satisfying

given initial and boundary conditions (BC) often becomes very difficult problem. A number of

commercial computer codes based on numerical solution of Maxwell's equations are available

at this time. These codes make possible high-frequency electromagnetic field simulation.

Researches have not yet created a universal code, efficiently simulating electromagnetic field

excited by an arbitrary technical or nature source in an arbitrary medium. Some codes are

more suitable for solving one kind of problems and other codes—another kind. Hence, devel-

oping new, more universal and efficient computer codes is an actual task. On the other side, a

designer of electromagnetic devices and systems has to choose most efficient computer code

for solving his/her particular problem. He/she can do right choice only if he/she understands

the basics of a numerical method used in the given code.

The goal of the presented chapter is to formulate electromagnetic problems and to describe in

short prevailing numerical methods of its solving. As an example, the chapter also gives more

detailed description of the radio frequency simulator (RFS) computer code, developed in

collaboration of Saint-Petersburg State Electrotechnical University and LG Russian R&D Cen-

tre. Some results obtained by means of this code demonstrate its accuracy and efficiency.

The author hopes that this chapter would be useful for researchers and designers of modern

telecommunication devices and systems.

2. Basic equations

Maxwell's equations are the basic ones, describing macroscopic electromagnetic fields in an

arbitrary medium. In modern notation, these equations have the form

∇ ·H ¼
∂D

∂t
þ J (1)

∇ ·E ¼ �
∂B

∂t
(2)

∇ �D ¼ ρ (3)

∇ � B ¼ 0 (4)

In these formulas, J,ρ are the electric current and electric charge densities (field sources), E,H

are the electric and magnetic field intensities (or simply electric and magnetic fields), D,B are

the electric and magnetic flux densities, ∇ is Hamilton's differential operator and · is the sign

of vector and scalar products.

The constitutive relations couple flux densities and field intensities:
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D ¼ εE ¼ ε0εrE (5)

B ¼ μH ¼ μ0μrH (6)

Here, ε,μ are the absolute permittivity and permeability, ε0 ¼ 107=ð4πc2Þ, μ0 ¼ 4π � 10�7 are

the dielectric and magnetic constants (we use the SI units in this chapter) and εr, μr are the

relative permittivity and permeability, which can be scalars or tensors, depending on medium

properties. Equations (1), (2), (5) and (6) form a system of 12 scalar differential equations of the

first order with 12 unknowns—components of E,H,D,B vectors, which are functions of space

coordinates and time. To solve this system, one needs to define initial and boundary condi-

tions. These conditions together with the equations form an electrodynamics problem (EMP).

Initial conditions define electric and magnetic field intensities in the computational region at

the initial moment of time.

The most frequently used boundary conditions (BC) are as follows:

• On the surface separating two dielectrics:

n · ðE2 � E1Þ ¼ 0; n · ðH2 �H1Þ ¼ Js (7)

where n is the unit normal to the surface directed from the first medium to the second and

Js is the surface electric current density.

• On the surface of perfect electric conductor (PEC):

n ·E ¼ 0 (8)

• Similarly, on the surface of perfect magnetic conductor (PMC)

n ·H ¼ 0 (9)

• Approximate Leontovich boundary condition holds on the impedance surface:

en · ðen ·ĖÞ � j
Zs

k0η0μr

en · ð∇ ·ĖÞ ¼ 0 (10)

where Zs is the surface impedance. For metals, Zs ¼ ð1þ jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωμ=ð2σÞ
p

.

• We define radiation (adsorption) condition on the surface throw where radiation propa-

gates without reflections. Higdon [1] proposed general absorption boundary conditions

(ABCs) theory of arbitrary order of approximation. For a wave, propagating under arbi-

trary angle ϕ to the border x ¼ Const, the first-order Higton's ABC are

∂

∂x
þ

cosϕ

u

∂

∂t
þ ξ

� �

Eτ ¼ 0 (11)

where ξ is constant, providing solution stability and u is the phase velocity of the wave. Higher

order ABC can be constructed by multiplying several first-order operators (11).
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Another expression for ABC can be derived from the wave equation. For the wave propagating

along the normal en to the border, we get

ð∇ ·ĖÞ
τ
þ jk0

ffiffiffiffiffiffiffiffiffi

εrμr

p
en · ·Ė ¼ 0 (12)

There are two types of EMPs: an inner problem, when the solution is defined in a closed space

region with certain boundary conditions on its border, and an outer problem presuming

existence of the solution in the unbounded space excluding some regions with prescribed

conditions on their boundaries. We ought also to define field sources in the computational

region and initial conditions—electrical and magnetic fields at some moment of time. The

proper initial and boundary conditions guarantee existence and uniqueness of the solution

[2, 3].

Equations (1)–(4) presume arbitrary time dependence of sources and fields. But very often field

dependence on time expresses by the harmonic law: a ¼ am cos ðωtþ ϕÞ, where a is any com-

ponent of the field, ω ¼ 2πf is the angular frequency, f is frequency and ϕ is the initial angle. In

this case, we can simplify Maxwell's equations, using notation

Eðr, tÞ ¼ Re½ĖðrÞejωt�, (13)

where ĖðrÞ ¼ Exe
jϕxex þ Eye

jϕyey þ Eze
jϕzez is the complex electric field amplitude (phasor).

Magnetic field H is presented similarly. Using these notations, we can write Maxwell's equa-

tions for phasors:

∇·H
� ¼ jω _εĖþ _J (14)

∇·Ė ¼ �jω _μH
�

(15)

∇ � ð _εĖÞ ¼ _ρ (16)

∇ � ð _μH
� Þ ¼ 0 (17)

Here, _ε ¼ ε0 _εr, _μ ¼ μ0
_μr are the complex absolute permittivity and permeability and

_εr ¼ ðε0r þ jε″rÞ, _μr ¼ ðμ0
r þ jμ″

rÞ are the relative complex permittivity and permeability. The

equation systems (14)–(17) are simpler than the original one because it does not contain time as

independent variable and has only six unknown functions.

3. Basis stages of electromagnetic problem solution

Solution of a given electromagnetic problem can be divided on several subsequent steps

(stages):

1. Problem formulation—defining the goal of the computation, necessary input and output

data, admissible inaccuracy of the results.
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2. Analytical treatment—formulating of equations, initial and boundary conditions, geomet-

rical description of the computational region and filling medium properties. The choice of

the numerical solution method, transforming equations to the form, most suitable for the

chosen method, a-priory analysis of equations and their solutions properties.

3. Problem discretization—transfer from continuous functions to discrete ones and from

functional equations to the system of linear algebraic equations (SLAE), in the certain

sense approaching the initial problem.

4. Algebraic solution—choosing the most efficient numerical method and solving the SLAE

with the prescribed accuracy.

5. Post-processing—calculation of fields, characteristics and parameters of the electromag-

netic system and visualization of the results.

Each stage of the solution adds its own contribution to the total solution error. The first step adds

the so-called inherent error arising due to inaccuracy of input data. This error cannot be elimi-

nated on the next stages of solution. The second stage adds mathematical model error caused by

imperfect adequateness of themodel to the real physical process. Problem discretization adds the

so-called numerical method error, the value of which depends on the quality of the discretization

process. At last, computational error arises on stages 4 and 5 due to finite accuracy of numbers

presentation in a computer and finite number of operations. With progress in the computational

mathematics and computer, themain error sources move from the uncontrolled first stages to the

fourth and fifth stages, where we can often predict the error value a-priory.

4. Numerical methods classification

The solution of real-life electromagnetic problem is a very complicated task. There are no

universal methods, capable to solve efficiently an arbitrary problem. Hence, a number of

numerical methods were elaborated, each of them is the most efficient for its particular range

of problems. The numerical methods divide on two large groups.

The first group solves problems involving Maxwell's equation (1)–(4), containing time as an

independent variable. This group makes possible to find the solution in time domain (TD) with

arbitrary time dependence of fields. This group of methods is the most suitable for solving

non-linear problems. If the problem is linear, Fourier transform can be used to find frequency

spectrum of the solution.

The most popular method of this group is the Finite Difference Time Domain (FDTD) method,

proposed by Yee [4, 5]. Another method, successfully used in time domain, is the Finite

Integration Technique (FIT), firstly proposed by Weiland [6]. The Transmission Line Matrix

(TLM) method, proposed by Johns and Beurle [7], also works efficiently in time domain. Its

detailed description can be found in [8]. These methods were implemented in a number of

computer codes, such as SPEAG SEMCAD™ (FDTD), CST Studio Suite™ (FIT, TLM) and

many others.
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The second group deals with Eqs. (14)–(17) for field phasors, supposing harmonic time

dependence of fields. This group provides solution in Frequency (or Spectral) Domain

(FD). The finite element method (FEM) is one of the most efficient representatives of this

group. The first application of this method to the solution of mechanical problems refers to

the year 1943 [9]. The book [10] contains detailed description of the method, which is rather

universal and accurate. The Method of Moments (MoMs) and its varieties are also frequently

used in FD. In contrast with FEM, MoM uses integral form of basic equations, where

electric current density distribution on conducting surfaces excited by external sources is

unknown. The book [11] reflects modern state of the MoM. Mentioned methods were

implemented in codes ANSIS HFSS™ (FEM), Altair FEKO™ (MoM, FEM) and other com-

mercial computer codes. Of course, there exist many other numerical methods and various

implementations.

Most of modern methods allow implementation both in TD and in FD.

Because it is impossible to give detailed representation of all numerical methods in a limited

space, we give here more detailed information about the FEM method, which was

implemented in the computer code radio frequency simulator (RFS) [12].

5. Finite element method for electromagnetics

5.1. Main features of the method

The finite element method belongs to the variational methods of solving partial differential

equation (PDE). It presumes formulating a functional, which is stationary (has minimum or

maximum value) on the equation solution. In order to find functional extremum, the compu-

tational region is partitioned on a number of subregions (finite elements). After that, we approx-

imate an unknown function in each finite element (FE) by superposition of basis functions.

Basis functions have to be simple and form a linearly independent system. Applying Ritz

method or Galerkin algorithm, we fulfil discretization of the problem, that is, transition from

the partial difference equation to the system of linear algebraic equations (SLAE). Numerical

solution of the SLAE gives unknown coefficients of basic functions, which are used to restore

electromagnetic field. At last, needed components of electromagnetic field and system param-

eters are calculated.

5.2. Mesh generation

Partitioning of the computational region (mesh generation) is the first stage of problem solu-

tion by FEM. It supposes dividing the computation region on a set of subregions—finite

elements. FEs must densely fill the region and be nearly conformal to its border. In contrast to

FDTD or FIT methods, a FEM mesh can be irregular and contain FEs of different forms.

Tetrahedron FEs are used most commonly, because they allow dense packing and quite

correctly approximate curvilinear borders. However, mesh generation for regions with com-

plex forms filled with different materials is a very complex task.
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Delaunay tessellation is a common way of mesh building. It includes several stages. Firstly, a

surface triangle mesh is generated. Then, a volume mesh based on the surface mesh and

covering the whole computational region is being built. The method can build a rather good

mesh without self-intersections. Some commercial codes, such as SYMMETRIX MeshSym™,

can be used to generate mesh by this procedure.

Unfortunately, this method cannot be applied to tessellation of complex geometrical models

consisting of hundreds of parts made from variousmaterials. Usually, an electromagnetic simula-

tion code imports suchmodels from various CAD systems (see, e.g. Figure 1). As a rule, imported

models contain a number of errors caused by insufficient attention of a designer or arising in the

process of graphic formats transforms. As a result, mesh generator fails to build the mesh.

On the other side, CAD models are often excessively detailed. They contain peculiarities, not

influenced on electromagnetic field. Figure 2 shows an example of such extra detailed CAD

model. The application of standard mesh generator to such a model can result in excess mesh

size. Correction and simplification of the model manually needs several working days of the

qualified engineer.

An advanced method of mesh generation was developed and implemented in the RFS simula-

tion code. The algorithm begins from assigning materials and attributes to the model parts.

Most important objects, such as ports, printed circuit board (PCB) and antennas, are labelled as

‘electrically important'. This is the only stage of the algorithm, which is made manually. This

stage can be omitted for simple models. Then the code builds surface meshes for each detail of

the system. The third stage presumes elimination of individual meshes interceptions and

building united surface mesh. Electrically important, metal parts and parts with higher per-

mittivity have priority in this process. At last, a global volume mesh is generated [13]. The user

Figure 1. A part of the handset CAD model.
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Figure 2. A part of the CAD model with excessive details.

Figure 3. CAD model of the handset (a), united surface mesh (b) and volume mesh (c).
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can control mesh quality (maximum to minimum ratio of tetrahedron's dimensions and other

mesh parameters).

We proved this algorithm on more than 190 models of mobile handsets and showed its 100%

reliability. Generated meshes contained more than 1.5 billion tetrahedrons. Figure 3 shows a

CAD model of the handset (a), surface mesh (b) and volume mesh (c), built by the described

algorithm.

5.3. Basic equation

Consider a region V, delimited by a surface S, where electromagnetic field has to be calculated.

We suppose that the region V is filled by linear medium. Applying curl operator to Eq. (15) and

substituting into result Eq. (14), we get PDE of the second order

∇ · ð _μ�1
r ∇ ·ĖÞ þ jση0kĖ� _εrk

2Ė ¼ �jkη0J
� imp

, (18)

where J
� imp

is the imposed current density, k ¼ ω=c is wave number, c ¼ ðε0μ0Þ
�1=2 is the light

velocity in free space, σ is medium conductivity and η0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

μ0=ε0
p

¼ 120π ohm is the intrinsic

impedance of free space. After solving this equation, we can find magnetic field by means of

Eq. (15):

H
�

¼
j

kη0 _μr

∇·Ė: (19)

To solve Eq. (16), we divide the computation region on finite elements and approximate the

field in each FE by superposition of basis functions. It is natural to approximate vector

unknown function in Eq. (16) by a set of vector basis functions. We name such variant of FEM

as vector finite element method (VFEM).

Nedelec [14] proposed a set of vector basis functions for triangle and tetrahedral FE. These

functions are associated with tetrahedron edges and have the form

wm ¼ ζm1∇ζm2 � ζm2∇ζm1, (20)

where ζmn is the barycentric function of the vertex (node) node n of the edge m

(m ¼ 1,…, 6, n ¼ 1, 2). The barycentric functions are polynomials of the first order. For a given

Descartes coordinate system

ζp ¼ ap þ bpxþ cpyþ dpz, (21)

where p is vertex number. As a tetrahedron has six edges, Nedelec's basis consists of six

functions. Figure 4 shows the numbering scheme for nodes and edges, needed for the correct

use of Nedelec's functions.

Coefficients in Eq. (17) can be found from the equation
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b1 c1 d1 a1
b2 c2 d2 a2
b3 c3 d3 a3
b4 c4 d4 a4

2

6

6

4

3

7

7

5

¼

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

2

6

6

4

3

7

7

5

�1

: (22)

where xp, yp, zp, p ¼ 1…4 are the coordinates of the p-th tetrahedron's node.

Nedelec's basis functions have the following properties:

1. Dimension of these functions is L�1.

2. They have zero divergence and their curl is constant inside the FE. This property provides

the absence of spurious solutions of the problem.

3. Projection of the function wm on the edge m is constant, and its projection on the other

edges is equal to zero. Hence, these functions provide continuity of tangential electric field

on the border between neighbouring tetrahedrons.

Figure 4. Numbering order of a tetrahedron's vertices and edges.
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4. Circulation of function wm along its edge is equal to unity.

Full first-order polynomial set for electric field approximation contains 12 functions (3 E-vector

projections, each needs four functions). However, Nedelec's set contains only six basis func-

tions. Hence, it does not form full first-order polynomial system. The order of approximation

by these functions is lower than one. Finite elements with these functions are called FE of order

1/2 or CT/LN (constant tangential/linear normal) according to the behaviour of these functions

along edges and in normal direction to them.

Striving for increasing approximation accuracy led to creating another set of basis functions

with higher order of approximation. A set of 20 functions (12 associated with edges and eight

with faces) forms FE of order 1.5 or LN/QN (linear tangential/quadratic normal) [15, 16]. There

exist basis functions of order 2.5 and higher, but they are rarely used.

With the aim of simplicity, we consider further only Nedelec's basis functions. So, electric field

intensity in q-th tetrahedron is approximated as

Ė
q
ðrÞ ¼

X6
n¼1

_xqnw
q
nðrÞ, q ¼ 1,…,Nq, (23)

where Nq is the total number of tetrahedrons.

Coefficients _xqm have the sense of voltage on edge (with reverse sign). Really, taking integral

along an edge

Vq
m ¼ �

ð
Lq

Ė
q
� dlm ¼ �

X6
n¼1

_xqnw
q
ndlm ¼ � _xqm, (24)

due to the fourth property of basis functions.

Let us consider q-th tetrahedron. According to Galerkin's method, we multiply Eq. (16) by

basis function w
q
m, belonging to this tetrahedron and integrate the product over the tetrahe-

dron volume Vq. As a result, we obtain the so-called week form of Eq. (16):

ð
Vq

½∇· ð _μ
�1
r ∇ ·EqÞ� �wq

mdV þ jη0k

ð
Vq

σEq �wq
mdV � k2

ð
Vq

_εrE
q �wq

mdV ¼ �jkη0

ð
Vq

Jimp �wq
mdV:

Transformation of the first term of this equation and subsequent substitution into result

approximation (19) gives a system of linear algebraic equations:

X6
n¼1

_xqn½

ð
Vq

ð _μ
�1
r ∇ ·wq

nÞ � ð∇ ·wq
mÞdV þ jk

ð
Vq

η0σw
q
n �w

q
mdV � k2

ð
Vq

_εrw
q
n �w

q
mdV�

¼ �∮ Sq
½ð _μ

�1
r ∇ ·Ė

q
Þ ·wq

m�dS� jk

ð
Vq

η0J
� imp

�wq
mdV , m ¼ 1, 2,…, 6; q ¼ 1, 2,…,Nq,

(25)
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where Nq is the total number of FE in the computation region.

The system of Eq. (25) can be written in matrix form:

Q
q
Xq � ðT

q
þ jkU

q
� k2R

q
ÞX

q
¼ �S

q
� jkB

q
, (26)

where Qq,T
q
,U

q
,R

q
are square matrices having dimension 6 · 6, S

q
,B

q
are column vectors

having six components, dependent on the given boundary conditions and implicit current

density in the q-th finite element. Depending on BC, Sq can sometimes be a square 6 · 6

matrix.

Equation (26) is called the local matrix equation, and matrix Qq is the local matrix of q-th FE.

Such matrices should be built for every FE in the computational region.

Components of matrices T
q
,U

q
,R

q
and vectors S

q
,B

q
are defined by the expressions

tmn ¼ _μ�1
r

ð
V

ð∇ ·wmÞ � ð∇ ·wnÞdV ; (27)

umn ¼ η0σ

ð
V

wm �wndV; (28)

rmn ¼ _εr

ð
V

wn �wmdV; (29)

sm ¼ _μ�1
r ∮ S½ð∇ ·ĖÞ ·wm�dS; (30)

bm ¼ η0

ð
V
J
� imp

�wmdV: (31)

Medium in these expressions is supposed to be homogeneous inside the FE. Index ‘q' denoted

FE number is omitted. We can see that in order to calculate elements (27)–(31), it is sufficient to

calculate two integrals:

fmn ¼

ð
V

ð∇ ·wnÞ�ð∇·wmÞdV and hmn ¼

ð
V

ðwn �wmÞdV: (32)

We use the next algorithm for the calculation of matrices and vectors elements:

For each tetrahedron

• Coefficients of the barycentric functions are calculated by means of Eq. (22).

• Auxiliary values are calculated:

vij ¼ ∇ζi ·∇ζj ¼ ðcidj � cjdiÞx
_

þ ðdibj � djbiÞy
_

þ ðbicj � bjciÞz
_

; (33)

ϕij ¼ ∇ζi � ∇ζj ¼ bibj þ cicj þ didj: (34)

It can be easily shown that ∇ ·wm ¼ 2vm1,m2.
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• We introduce matrix G with components

gij ¼ V�1

ð

V

ζiζjdV: (35)

Using integration formula for three-dimensional (3D) simplex, we can prove that

G ¼
1

20

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

: (36)

• Integrals (32) are calculated:

fmn ¼ 4VðVm1,m2 �Vn1,n2ÞdV; (37)

hmn ¼ Vðϕm2,n2gm1,n1 � ϕm2,n1gm1,n2 � ϕm1,n2gm2,n1 þ ϕm1,n1gm2,n2Þ, m, n ¼ 1,…, 6: (38)

In these expressions, V is the volume of the tetrahedron.

Construction of the global matrix (assembling) for all tetrahedrons is a rather complex task,

because many nodes, edges and faces are common for neighbour FEs (see Figure 5, which

shows two neighbour tetrahedrons, separated for reader's convenience). They have three

common vertices and three common edges. Hence, the united matrix for two FEs has only 9

dimensions instead of 12.

The code RFS uses the next algorithm for building the global matrix:

1. Calculate a local matrix for the tetrahedron number one (q = 1). Give its edges global

numbers from 1 to Nc ¼ 6:

2. Choose the tetrahedron with q = 2

Figure 5. Two neighbour tetrahedrons. Edges e11 and e22, e31 and e32, e51 and e62 and vertices v11 and v12, v21 and v32,

v41 and v42 are common for both FEs.
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a. Choose the edge of this tetrahedron with m = 1. Check whether this edge coincides

with any edge of the previous tetrahedron. If it does, calculate its matrix elements and

add them to corresponding matrix elements of the previous tetrahedron. In the other

case, give the edge global number Nc þ 1 and fill a corresponding element of the

global matrix. Set Nc ¼ Nc þ 1.

b. Do this procedure for all edges of the tetrahedron.

3. Repeat point 2 for every tetrahedron in the region testing whether a given edge of the

tetrahedron coincides with any edge, previously included in analysis.

Similar assembling procedure is valid for basis functions of higher order.

As a result, we get a global matrix of the problem, a global vector of the right side of Eq. (26)

and a global vector of unknowns. Dimension of the global matrix is equal to the total number

of coefficients (degrees of freedom) in formulas (23).

5.4. Numerical approximation of boundary conditions

• Border between two dielectrics. A finite element mesh is built so that every tetrahedron

lies inside one of the media. Hence, the common face of two neighbour tetrahedrons lies

on the separation surface or approximate it in the case of curvilinear border. Due to basis

function properties, tangential electric field of both tetrahedrons is equal on the face

edges, consequently electric fields are equal on the whole face area. As a result, BCs (7)

for electric field are satisfied automatically. As for magnetic field intensity, its continuity

on the border between media with different permeabilities is not guaranteed.

• Electrical wall. According to Eq. (8), tangential electric field on PEC surface is equal to

zero. Hence, three coefficients of Eq. (25) belonging to edges, lying on the surface, are

equal to zero. Corresponding rows and columns of local matrix of the given tetrahedron

have to be eliminated.

• Magnetic wall. According to Eq. (9), surface tangential magnetic field on the PMC is equal

to zero. We can see from Eqs. (27)–(31) that only term sm has to be changed:

sm ¼ jk0η0

ð

S

ðH·wmÞen ¼ 0: (39)

This expression is equal to zero as the mixed product under the integral has two vectors

(H, en) with the same direction. Therefore, PMC BC does not change local matrix.

• Absorption boundary conditions. Formula for matrix elements smn can be derived from

Eq. (11):

smn ¼ jk0

ffiffiffiffiffiffiffiffiffiffiffi

μr=εr

q

ð

S

ðen ·wmÞ�ðen ·wnÞdS: (40)

Expressions for the higher order ABC can be found in [10].
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• Impedance surface. Impedance surface has finite surface conductivity σs. Such surface is a

good approximation of the metal surface in microwave frequency band. Using Leontovich

BC (10), we can derive expression

smn ¼ �jk0η0σs

ð
S

wm �wndS: (41)

These values must be added to the corresponding elements of the local matrix. Of course,

they are nonzero only for functions associated with edges lying on the impedance surface.

• Excitation sources. Electromagnetic field in the system excites by electric current or by

electric or magnetic fields, defined on a part of the system border. In the first case, we use

Eq. (26) to calculate right-hand vector elements. In the second case, we define the so-called

ports—surfaces on which nonzero excitation field exists. Frequently, we define port as

cross section of the regular transmission line (TL). Such ports are called wave ports. If TL

cross section has simple form (rectangular, circular, etc.), we can define field on the port

analytically. Otherwise, we have to solve two-dimensional (2D) boundary problem.

Together with wave ports, lumped ports (LPs) are often used. These ports are defined by

current I and intrinsic admittance Zi. LPs are used when excitation source dimensions are

very low compared to the whole-system dimensions or wavelength. Geometrical model of

LP is a segment of a straight line (linear LP) or a rectangle (planar LP). Linear and planar

LPs are implemented in the RFS code. Arbitrary number of tetrahedron's edges or (and)

faces can cover such LPs. We suppose that surface current density and electric field distri-

butions on the PL are homogeneous. Values of right-hand vector for a planar LP are

calculated by Eq. (31), where J
� imp

¼ I=w, I is port current and w is port width. Implemented

model of the LP excludes limitations imposed on the mesh generator by other models.

• Lumped elements. Embedding of lumped elements (LEs) into 3D field model enlarges the

capability of the code, as an LE excludes the necessity of generating very fine mesh inside

such parts as resistors, capacitors and inductors. In the RFS code, linear and planar LEs

are implemented [17].

The presence of LEs modifies the global matrix by adding to diagonal matrix elements

terms

q0mm ¼ �jk0η0Yl, (42)

where Y is the admittance of the LE, l is its length. The RFS code implements models of a

resistor, capacitor and inductor, and their parallel connection. The number of LEs in the

model is unlimited.

5.5. Fast-frequency sweep

The finite element method in frequency domain solves the problem at one specific frequency.

Calculation of the system frequency response (e.g. S-matrix) needs solving the problem many

times (often several hundreds or even thousands). This procedure takes much computation time.
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Considerable economy of computational resources can be achieved by implementing the so-

called fast-frequency sweep (FFS). The algorithm of FFS is based on model-order reduction

(MOR) technique. According to the MOR, we seek solution in one frequency point and then

expand left and right sides of Eq. (21) in frequency power series. Terms with the same power

are equated and full solution as a function of frequency is restored. The RFS code implements

one of such algorithms—well conditioned asymptotic wave form evaluation (WCAWE) [18]. This

method was adapted to the RFS procedures, particularly for LE models, and showed high

efficiency, making possible to calculate system fields and parameters in three-octave frequency

band using full solution only in one frequency point. Hence, computation time for wideband

systems decreases by tens and hundreds times without losing accuracy.

6. The RFS code description

The RFS code is designated to solve complex 3D electromagnetic problems, especially mobile

handsets modelling. It contains graphic user interface for creating and editing geometric

objects or for import CAD models. Geometric primitives, besides boxes, cylinders, spheres,

pyramids and cones, include coaxial and strip lines and wizards for creating human head and

hand models (phantoms), spiral antennas and other objects. All Boolean operations, such as

extrusion, skinning and others, are also implemented. The code includes a rich material library.

Two types of meshing are available: exact automatic meshing based on Delaunay tessellation and

hand meshing with automatic geometry corrections. We recommend the last one for meshing

complex models, imported fromCAD codes, for example, for full models of a handset. Two types

of basis functions can be used: low order (CT/LN) and high order (LT/QN). The last is used as

default, but for complex models with many small details, we recommend low-order basis.

The code solves several types of problems: driven solution in one frequency point, driven solution in

frequency bandwith given frequency step (solution in each point or FFS), eigenmode, EMS andEMI

problems.The code canperformparametric solutionwhenoneor severalgeometricor (and)material

parameters changes in a givenorder. The results can be represented as functions of these parameters.

Post-processing includes the calculation of S-, Y- and Z-parameters, field distribution in a vol-

ume, on a surface or along a line, the calculation of cavities intrinsic impedance, specific absorp-

tion rate (SAR) and EMC/EMI parameters. Results are represented in one-dimensional (1D), 2D

and 3D graphs, tables and can be exported in a file.

7. Computation results

Firstly, we validated the code by solving problems having analytical solution. One of such prob-

lems is an eigenvalue problem for cylindrical cavity. A cylindrical cavity has curvilinear surface, so

calculation can demonstrate the quality of surface approximation by a tetrahedron mesh. The

analysed cavity had radius 10mm and height 15 mm. Cavity walls were supposed to be perfectly

conducting. Eight eigen frequencies and eigen fields were calculated using high-order basis func-

tions (LT/QN).
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Computation results together with analytical data are shown in Table 1. The table also con-

tains relative calculation error δ. Azimuthal inhomogeneous modes are twice degenerated.

Numerical errors remove this degeneration, so two eigen frequencies for each mode are given.

Degenerated modes differ by their field, turned by 90° in azimuth direction and computation

results confirm this phenomenon. Difference between degenerated eigen frequencies is no

more than hundreds of per cent.

The table demonstrates that eigen frequency calculation error decreases with mesh refinement

and not exceeds 0.1% on the last mesh.

Another example, an electric dipole, consisted of two perfectly conducting cylinders, connected

to the linear-lumped source (Figure 6). To solve this outer problem, we ought to constrain

Mode Analytical eigen

frequency (EF), GHz

Mesh size

6768 15,026 26,580

EF, GHz δ, % EF, GHz δ, % EF, GHz δ, %

TM010 11.474 11.502 0.235 11.4905 0.135 11.4848 0.085

TE111 13.302 13.317

13.319

0.11

0.135

13.3132

13.3139

0.084

0.089

13.3104

13.311

0.063

0.067

TM011 15.216 15.232 0.098 15.2287 0.077 15.2241 0.052

TE211 17.670 17.696

17.705

0.147

0.198

17.6853

17.6877

0.086

0.102

17.6802

17.6811

0.058

0.063

TM110 18.284 18.3246

18.3287

0.222

0.244

18.3081

18.3102

0.131

0.143

18.299

18.291

0.082

0.083

Table 1. Comparison of analytical and computational eigen frequencies for a cylindrical cavity.

Figure 6. A dipole model: a, dipole structure; b, mesh; c, 3D directivity chart; d, 2D directivity chart in the plane ϕ ¼ 0.
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computational region by the so-called air box with ABC on its surface. The code automatically

determines air box size so that the minimal distance between the dipole and the air box is not

less than λ=4, where λ is wavelength in free space.

Cylinders have diameter 0.5 mm and length 9.5 mm. Together with a lumped port of 1-mm

length, the total dipole length is 20 mm. Excitation frequency was chosen to be 1.5 GHz, so the

ratio l=λ ¼ 0:1. Such a dipole can be considered as elemental (Figure 6a). Its directivity is

described by the formula Dðθ,ϕÞ ¼ 1:5sin2θ:

Figure 6b shows mesh used in simulation. The sphere inside cylinder contains refined local

mesh, surrounding the dipole. The total number of tetrahedrons is 64553. The 3D directivity

chart is shown in Figure 6c, and 2D directivity chart in plain ϕ ¼ 0 in Figure 6d. Calculated

dipole directivity is 1.506 with relative error of 0.4 %. This error can be caused by the finite

diameter of cylinders.

Figure 7a shows handset together with human head and hand phantoms. The handset has

PIFA-type antenna. Reflection coefficient of this antenna in the presence of the phantoms was

calculated by RFS code and code SEMCAD [19], based on FDTD method.

Finite element mesh built by the RFS code in the phantom contains only 200,000 tetrahedrons.

The total mesh size was about 450,000 tetrahedrons. Efficient algorithm of SAR calculation,

implemented in the RFS code, provides using such comparatively small mesh size without the

loss of accuracy. SEMCAD hexagonal mesh had about 1.5 billion of cells.

Figure 7b shows the module of reflection coefficient versus frequency for FRS and SEMCAD.

As can be seen, both codes give similar results, especially for resonant frequencies.

We also calculated maximum SAR level in a brain tissue, averaged on 1 g of the tissue. The

results are shown in Table 2. As can be seen, both codes give similar results, but SEMCAD

solution time was nearly five times greater than RFS.

Figure 7. A handset with human head and hand phantoms: a, model; b, reflection coefficient chart.

Computer Simulation210



8. Conclusion

The problem of high-frequency electromagnetic field simulation is formulated. A short survey

of numerical methods for solving high-frequency electromagnetic problems is presented. It

was shown that one of the most efficient methods for solving inner EMP and outer EMP with

moderate electrical size is the vector finite element method in frequency domain. The algo-

rithm of this method, including mesh generation, building of the global matrix, boundary

conditions approximation, SLAE solving and FFS technique was described. Some peculiarities

of lumped ports and elements implementation into the RFS computer code were also depicted.

Simulation results for a simple systems having analytical solution, as well as for complex

problems, such as handset antenna analysis near human head show high accuracy and effi-

ciency of the code. The code can be used for the solution of antenna problems, waveguide

problems, PCB analysis and microwave resonator problems.
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