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Abstract

Pulsed electroacoustic (PEA) method, dielectric analyzer, and high resistance meter were 
used to research the DC breakdown, space charge behavior, permittivity, loss tangent, 
and volume resistivity of neat low density polyethylene (LDPE) and LDPE/MgO nano-
composites with concentration of 1, 3, and 5 wt% with and without the elongation ratio 
of 1.1. Results indicate that the DC breakdown strengths of neat LDPE and nanocompos-
ites decrease after stretching. The heterocharges near electrodes in neat LDPE change 
to homocharges after stretching and a large amount of positive and negative charges 
accumulated in samples with concentration of 3 and 5 wt%. Meanwhile, homocharges 
near cathode electrode in nanocomposite with concentration of 1 wt% decrease a little 
and a small amount of positive charges were observed in the samples after stretching. 
Furthermore, there are different increases in amplitudes of permittivity in all the samples 
after stretching, as well as the loss of tangents especially in the frequency domain from 
10−1 to 102 Hz. The results of volume resistivity show that comparing with the nanocom-
posite with the concentration of 1 wt% whose volume resistivity decrease after stretch-
ing, larger volume resistivity is observed in neat LDPE and nanocomposites with the 
concentration of 3 and 5 wt%.

Keywords: stretching, LDPE/MgO nanocomposites, interface, free volume, electrical 

properties

1. Introduction

Polyethylene was widely used in high voltage equipment especially in DC cables because 

of its excellent electrical and mechanical properties [1, 2]. In comparison with the polyethyl-

ene, polymer-based nanocomposites have better electrical and mechanical properties, such 
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as higher DC or AC breakdown strength and volume resistivity, smaller amount of space 

charge accumulation, and so on [3–6]. However, polyethylene insulation materials may be 

affected by stretching during operation, which may lead to the change of electrical proper-

ties. Therefore, some questions arise such as: what are the properties of polyethylene and 

nanocomposites after stretching? And how does stretching affect the electrical properties of 
polyethylene and nanocomposites?

It is generally agreed that electrical properties of polymer insulation materials can improve 

after the addition of nanoparticles. In order to analyze the mechanism, nanocomposites with 

different nanoparticles and different polymer matrixes were prepared, such as LDPE/ZnO 
nanocomposites, LDPE/SiO

2
 nanocomposites, Epoxy/TiO

2
 nanocomposites, Epoxy/POSS 

nanocomposites, and so on [7–12]. According to the research, it is concluded that the inter-

face between nanoparticles and polymer matrix can dominate the characteristics of polymer-

based nanocomposites [13–18]. On this basis, some interface models such as multicore model 

and space charge model have been proposed [19–21].

Recent reports on the effects of stretching on electrical properties of polymer focus on car-

bon nanotube/polymer-based materials. To the best of our knowledge, there are currently no 

reports on the effect of stretching on the electrical properties of polymer-based nanocompos-

ites. Previous studies have indicated that stretching can change the space charge behavior of 

poly(vinyl chloride) (PVC) and cross-linked polyethylene (XLPE), and even the conformations 

of PVC [22, 23]. In carbon nanotube/polymer composites, stretching causes deflection of the 
carbon nanotubes and the deflection extent can reach up to 45°, decreasing the conductivity of 
the carbon nanotube/polymer [24–27]. Additionally, influences of hydrostatic pressure on the 
dielectric properties of polyethylene/aluminum oxide nanocomposites have been researched, 

with results showing that permittivity and free volume will decrease after pressure [28].

Stretching may change the interface between nanoparticles and polymer matrix. This research 

can enhance our understanding of electrical properties of polymer-based nanocomposites. 

Furthermore, in order to answer the questions mentioned above, the DC breakdown, space 

charge behavior, permittivity, loss tangent, and volume resistivity of neat LDPE and LDPE/
MgO nanocomposites with concentration of 1, 3, and 5 wt% with and without elongation 

ration of 1.1 were researched in this chapter. On this basis, the change of interface, space 

charge traps, and free volume were discussed.

2. Experiment

2.1. Material

The base polymer used was an additive-free low density polyethylene (LDPE) with a melt 

flow index of 2.1–2.2 g/min and a density of 0.910–0.925 mg/cm3. The nanoparticles used were 

MgO with a 40-nm particle size. Nanocomposites, with concentration of 1, 3, and 5 wt%, were 
press-modeled at 393 K and at a pressure of 10 MPa, to produce films with a thickness of about 
190 μm. Samples were degassed in a vacuum drier for 7 days at 353 K. Dumbbell-shaped 
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samples cut by a dumbbell cutting tool were stretched in tension machine. The elongation 
ratio was chosen as 1.1–1.4 in the previous research [22, 23]. However, the elongation ratio of 

insulation material of cables may not be so high. Therefore, we choose 1.1 as the elongation 

ratio in this chapter. Additionally, because the polyethylene is an elastic material, the elon-

gation ratio of samples in the tension machine should be higher than 1.1 to ensure that the 

elongation ratio of samples is about 1.1 after rebound.

2.2. Characteristics

2.2.1. Electrical breakdown strength testing

Samples were placed between spherical electrodes (ø = 6.3 cm), which were immersed in 

transformer oil to avoid surface flashover on the samples. The applied DC voltage was 
increased linearly at a rate of 0.5 kV/s until breakdown occurred. The thickness of the tested 

samples was measured to calculate the DC breakdown strength. Each sample was tested 15 

times and the two-parameter Weibull distribution was used to analyze the DC breakdown 

characteristics of the samples.

2.2.2. Space charge measurements

The space charge measurements were carried out with a pulsed electroacoustic (PEA) sys-

tem, whose pulse width is 2–5 ns, pulse amplitude is 200 V, and output voltage is 0–20 kV. 

All samples were measured at room temperature (25 ± 1°C). In this chapter, a DC electrical 
field was applied for 1 h and the space charge formation was confirmed with the polarization 
of 10 s, 30 s, 1 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, 50 min, and 
1 h. The reproducibility of the space charge behavior was confirmed by repeating the experi-
ments five times for each group.

2.2.3. Dielectric properties

The dielectric properties of the materials were measured in the frequency domain from 10−1 

to 106 Hz at room temperature (25 ± 1°C) by using a Novocontrol ALPHA-A high resolu-

tion dielectric analyzer. Prior to dielectric analysis, gold electrodes were deposited onto both 

surfaces of the specimens by sputtering. The diameter of sputtered electrodes is 15 mm. The 
results are the average measurements of five different specimens for each sample and the 
error in the measurement is within 2%.

2.2.4. Volume resistivity

Volume resistance was measured by a high resistance meter (model PC68). Compression-

molded sheet having a diameter of 100 mm was inserted into the sample holder and charged 

for 1 min at 500 V. The volume resistance measurements were carried out at room tempera-

ture (25 ± 1°C). Volume resistivity (ohm. m) = 21.237 (R
v
/t), where R

v
 is the volume resistance 

(ohm) and t is the thickness (m) of the sheet. The results are the average measurements of five 
different specimens for each sample.
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3. Results

3.1. DC breakdown

The DC breakdown properties of insulation are affected by many factors. Randomness and 
dispersion of DC breakdown cannot be prevented even under identical conditions. It is recog-

nized that the two-parameter Weibull probability can fit the DC breakdown strength of solid 
materials effectively with the following expression [29]:

  F  (  U; α, β )    = 1 − exp   (  −   (    U 
_ α   )     

β
  )     (1)

where U represents the DC breakdown strength; α represents scale parameters, indicating 

the DC breakdown strength when the failure rate is 0.632; and β represents shape parameters, 

indicating the randomness of the data.

Figure 1 is the Weibull probability plot for the DC breakdown of neat LDPE and LDPE/MgO 

nanocomposites before and after stretching, and the scale parameters and shape parameters 

are listed in Tables 1 and 2.

Figure 1. Weibull probability plot for DC breakdown strength of LDPE and LDPE/MgO nanocomposites before and after 

stretching. (a) Before stretching and (b) after stretching.

LDPE 1 wt% LDPE/MgO 3 wt% LDPE/MgO 5 wt% LDPE/MgO

α (kV/mm) 248.76 337.71 302.07 297.92

β 6.65 8.20 13.17 6.89

Table 1. Scale parameter α and shape parameter 72 for LDPE and LDPE/MgO nanocomposites before stretching.
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According to Figure 1, the scale parameters α increase after adding MgO nanoparticles, espe-

cially the nanocomposites with a concentration of 1 wt%, whose scale parameter is 337.71 kV/mm. 

However, the scale parameters α decrease with the increase of concentration of nanoparticles. 

This phenomenon is the same as the research of Murakami [30]. Furthermore, the scale param-

eters of all samples decrease after stretching.

On the basis of the space charge behavior, the heterocharges near electrodes in neat LDPE change 

to the homocharges after adding nanoparticles, which means the electrical strengths between 

electrodes and materials increase as well as electron injection currents decrease. Therefore, the 

amount of electrons or holes injected by electrodes may increase and lead to the improvement 

of DC breakdown strengths [31]. Additionally, the interface between nanoparticles and poly-

mer matrix may introduce a large amount of charge traps [32]. As the carriers are trapped, the 

energy of nanofillers may decrease and may also promote the DC breakdown strength.

3.2. Space charge behavior

Figure 2 is the space charge behavior of neat LDPE and LDPE/MgO nanocomposites. Before 

stretching, heterocharges near electrodes are observed in neat LDPE with the largest amount 

near anode, whose value is 2.7 C/m3 after polarization time of 10 s. Meanwhile, there are posi-

tive packet-like space charges moving from anode to cathode in neat LDPE with the value of 

3.5 and 3.6 C/m3 with the polarization time of 10 and 30 s, respectively. This phenomenon is 

the same as the research of Murakami [30]. Adding nanoparticles, homocharges are observed 

near electrodes in nanocomposites, whose amount increases with the increase of polarization 

times, especially in nanocomposites with concentration of 1 and 5 wt%. After all, all samples 

prepared in this chapter can suppress space charge accumulation and in which the nanocom-

posite with concentration of 3 wt% has the best effect.

After stretching, heterocharges near electrodes in neat LDPE change to homocharges. Space 

charge behavior in nanocomposite with concentration of 1 wt% changes a little and a little 
more positive space charges are observed. At the same time, there are positive and negative 

charges in nanocomposites with concentration of 3 and 5 wt% after stretching, especially in 

nanocomposite with concentration of 5 wt%, whose amount of positive charges is 6 C/m3 and 

the amount of negative charges is 7 C/m3. Interestingly, the space charge behavior of nano-

composite with concentration of 3 wt% after stretching is very similar to that of nanocompos-

ite with concentration of 5 wt% before stretching.

It is inevitable that some residues existing in neat LDPE, which may decompose under high volt-

age strength, lead to the heterocharges near the electrodes [33]. On the other hand, because of 

LDPE 1 wt% LDPE/MgO 3 wt% LDPE/MgO 5 wt% LDPE/MgO

α (kV/mm) 220.59 314.39 286.05 266.32

β 5.62 12.99 7.41 6.99

Table 2. Scale parameter α and shape parameter 72 for LDPE and LDPE/MgO nanocomposites after stretching.
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Figure 2. Space charge behavior of LDPE and LDPE/MgO nanocomposites before and after stretching during the 

application of a DC electric field of 40 kV/mm. (a) Neat LDPE, (b) stretching-neat LDPE, (c) 1 wt% LDPE/MgO, (d) 
stretching 1 wt% LDPE/MgO, (e) 3 wt% LDPE/MgO, (f) stretching 3 wt% LDPE/MgO, (g) 5 wt% LDPE/MgO, and (h) 

stretching 5 wt% LDPE/MgO.
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the packet-like space charges observed in neat LDPE, the carriers injected by electrodes move 

to another electrode which may also create the heterocharges. Therefore, the heterocharges 

observed in this chapter may be caused by these two reasons. Due to the lack of adjacent atoms 

around the surface of nanoparticles, nanoparticles have high chemical activity, leading to the 

interface between nanoparticles and polymer matrix, which may dominate the electrical proper-

ties of nanocomposites [34]. In order to understand this interface, the multicore model has been 

proposed by Tanaka et al. [20]. According to this model, the interface between nanoparticles and 

polymer matrix can be divided into three layers: bonded layer, bond layer, and loose layer. The 

deep charge traps are almost distributed in bonded layer but the shallow charge traps are distrib-

uted in loose layer. Based on the research of Takada et al. [32], nanoparticle doping will increase 

the amount and depth of charge traps. Therefore, the carriers injected by electrodes will be 

trapped in charge traps leading to the homocharges in LDPE/MgO nanocomposites. On the other 

hand, because of the large amount of shallow traps distributed in loose layer, electrons or holes 

can move along the voltage field by trapping and detrapping, which means there may be over-

laps between loose layers of nanoparticles as the concentration is high, such as 3 wt%, providing 

routes for electrons or holes and decreasing the amount of trapped carriers. This may be one of 

the reasons for the suppression of space charges accumulation in nanocomposite with concentra-

tion of 3 wt%. However, agglomerates may exist as the concentration is too high, such as 5 wt%, 

which may decrease the special surface area of nanoparticles and affect the interface between 
nanoparticles and polymer matrix, leading to the low capacity of suppression space charges accu-

mulation. As shown in Figure 2(e) and (g), there are more space charges in nanocomposite with 

concentration of 5 wt% in comparison with nanocomposite with concentration of 3 wt%.

3.3. Dielectric properties

Figure 3 is the dielectric properties of neat LDPE and LDPE/MgO nanocomposites before and 

after stretching. It is obvious that the values of permittivity of nanocomposites increase with 
the increase of concentration of nanoparticles, which is the same as the research of Ishimoto 

et al. [35]. Additionally, after stretching, the values of permittivity of all samples increase with 
different increasing amplitudes, in which neat LDPE has the smallest increasing amplitude 
but nanocomposite with concentration of 3 wt% has the largest.

Considering the large amount of free volume distributed in the interface between nanopar-

ticles and polymer matrix, which may cause Maxwell-Wagner interface polarization [33], the 

values of permittivity of LDPE/MgO nanocomposites increase after adding nanoparticles. 
Furthermore, because the free volume mainly distributes in the loose layer of the interface, 

the Maxwell-Wagner interface polarization may be affected by loose layer in nanocompos-

ites. On the other hand, the values of permittivity of nanocomposites may also increase after 
adding nanoparticles because of the large value of permittivity of MgO nanoparticles [35]. 

Additionally, according to Figure 3(a), the permittivity of nanocomposite whose concentra-

tion is 5 wt% has a slope in the frequency domain from 10−1 to 100 Hz. Meanwhile, Figure 2(g) 

shows that there is a large amount of space charges in nanocomposite with concentration of 5 

wt%. Therefore, it is considered that the slope may be caused by the space charge polarization 

in nanocomposites.
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As shown in Figure 3(b), before stretching, the gradient of slope of neat LDPE is larger than 

that of nanocomposite with concentration of 1 wt% but smaller than that of nanocomposites 

with concentration of 3 and 5 wt%. After stretching, there are little changes in the frequency 
domain from 102 to 106 Hz in all samples after stretching but a large increase in amplitudes 

in the frequency domain from 10−1 to 102 Hz, in which nanocomposite with concentration of 5 

wt% has the highest value, about 0.02 at the frequency of 0.1 Hz.

Additionally, it is well known that the complicated relaxation processes of LDPE/MgO nano-

composites before and after stretching can be described by a modified Debye equation, which 
gives the frequency-dependent complex permittivity as follows:

   ε   ∗   (  ω )    =  ε  
∞

   +   (   ε  
s
   −  ε  

∞
   )    /   [  1 +   (  iω  τ  

0
   )     

1−α
  ]     (2)

where α is an empirical constant with the value between 0 and 1. The case α = 0 corresponds 

to the Debye model that has a single relaxation time. ε
0
 is the vacuum permittivity, ε

s
 is the 

static permittivity, ε∞ is the dielectric constant at high frequency, ω is the angular frequency 

2πf, and τ
0
 is the mean relaxation time. Furthermore, in Figure 3, the decrease of ε’’ at low 

frequency can be attributed to the suppression of electrical conduction by the nanoparticles. 
Therefore, the contribution of electrical conduction to ε’’ has to be considered, and the term 

σ
0
/iε

0
ω should be added into Eq. (3), where σ

0
 represents the specific conductivity and ε

0
 is 

the permittivity of free space. Therefore, the imaginary part ε’’ can be given according to the 

Debye function Eq. (2) by
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0
  
 ___  ε  

0
   ω   +   (   ε  
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   +   (  ω  τ  

0
   )     

2  (  1−α )   

 
    (3)

When more than one relaxation peak exists in the polycrystalline ceramics, Eq. (3) can be 

rewritten as

Figure 3. Dielectric properties of neat LDPE and LDPE/MgO nanocomposites before and after stretching during 

the application of an AC electric field of 5 V/mm. (a) Frequency dependence of real permittivity and (b) frequency 
dependence of loss tangent.
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The first part of Eq. (4) is related to temperature-dependence electrical conductivity and 
the second part to the thermal polarization. The excellent agreement between the experi-

mental data and the fitting curve based on Debye function was obtained, as shown in 
Figure 4.

3.4. Volume resistivity

Figure 5 is the volume resistivity of neat LDPE and LDPE/MgO nanocomposites. As shown in 

the image, the values of volume resistivity increase after adding nanoparticles and decrease 

with the increase of concentration of nanoparticles. The nanocomposite with concentration of 

1 wt% has the highest value. After stretching, the values of volume resistivity of neat LDPE 

and nanocomposites with concentration of 3 and 5 wt% increase but decrease in nanocompos-

ites with concentration of 1 wt%.

It is recognized that conductivity κ can be expressed by Eq. (2) [30],

  κ = enμ  (5)

where e, n, and μ represent the elementary charge, carrier density, and mobility, respec-

tively. It is noted that the carriers are probably to be captured by traps at the interface 

between polymer matrix and nanoparticles in LDPE/MgO nanocomposites, decreasing the 

carrier mobility [35]. According to Eq. (1), the conductivity will decrease with the decrease 

of carrier mobility. Furthermore, when the concentration of nanofillers is high, such as 3 
and 5 wt%, there are overlaps of transmission layers, increasing the carrier mobility as well 

as the conductivity of nanocomposites. Therefore, the volume resistivity decreases with the 

increase of concentration.

Figure 4. The representative fitting results of the dielectric loss based on Debye theory before and after stretching. (a) 
Before stretching and (b) after stretching.
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4. Conclusions

The effect of stretching on electrical properties of nanocomposites has been investigated. On 
the basis of the test results, the conclusions are as follows:

(1) The DC breakdown strengths of neat LDPE and nanocomposites decrease after stretch-

ing, which are contrary to the volume resistivity of all samples except the nanocomposites 

with concentration of 1 wt%. Additionally, the values of permittivity of all samples also 
increase after stretching as well as the loss tangent especially in the frequency domain 

from 10−1 to 102 Hz.

(2) The homocharges increase in all samples after stretching except the nanocomposite 

whose concentration is 1 wt% with a little more positive space charges accumulated in 
the sample. This may be caused by the increase of amorphous area as well as the change 

of interface between nanoparticles and polymer matrix after stretching.

(3) Because of the weakness in connection between molecules in loose layer, it is considered 

that the area of loose layer may increase after stretching, increasing the amount and 

depth of charge traps as well as the free volume. The change of loose layer may be the 

main reason for the change of electrical properties of nanocomposites after stretching.

Figure 5. The dependence of MgO nanofiller content on volume resistivity during the application of a DC electric field 
of 2.5 kV/mm.
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