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Abstract

The study analyses the performance of different LED circuit configurations feed from a
low power resonant driver under pulse quasi-triangular currents. The considered LED
driver topology is based on a bridgeless single-stage AC-AC converter with bidirectional
switches and a parallel LC resonant tank. The converter performances are simultaneously
analyzed in correlation with the most important features, such as the electric efficiency,
luminous efficacy, power factor correction capabilities, and flickering implications.
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1. Introduction

Nowadays, once with the improvements in process and technology, light-emitting diodes

(LEDs) have become a very popular solution for lighting devices due to its superior efficacy

performance. It is well known that many electronic converters are using an input rectifier and a

high-electrolytic filtering capacitance [1, 2]. In high frequency commutations, this electrolytic

capacitors have reliability issues, and this fact is limiting the lifetime of the overall LED system

[3–7]. In addition, the use of high capacitance electrolytic capacitors remains a problem in

achieving high power density and high power factor. Refs. [8–11] propose different topologies

of AC-DC converters capable to increase the lifetime of LED driver, by using film capacitors

instead of electrolytic capacitors. The basic idea of Ref. [8] is to increase the conduction time of

the input current consuming more at the peak and less at the valley of the input power. A high

power factor LED driver topology consisting of a derivate topology from a two-cascade flyback
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converter is presented in Ref. [9]. Thus, the proposed single-stage, single-switch topology is able

to provide high power factor without any unreliable electrolytic capacitors. Moreover, no feed-

back control circuit is required for minimizing the low-frequency ripple of the LED current. Ref.

[10] proposes an AC/DC driver, which is able to provide constant current for LEDs and near-

unity input power factor, as well. The idea of this chapter consists in modulating the input

current, using pulsating current to drive LEDs and some energy storage elements to balance the

power difference. Bearing in mind all these, it is unanimously accepted that in order to increase

the lifespan of artificial LED lighting, the elimination of electrolytic capacitors is a must. Like-

wise, the need to increase the power factor of this electronic load together with constant output

current is necessary measures for sustainable development of these technologies [12, 13].

For AC-DC LED drivers, light flicker introduced by the low-frequency pulsating current repre-

sents a real problem for the performance of the system and can also have negative influence on

human vision [14]. Ref. [15] presents a series-resonant converter (SRC), which can be used as a

power control stage able to reduce the low-frequency ripple of the LED current. Additionally, a

good performance of the system is gained due to the low switching losses of the SRC and by

using film capacitors instead of electrolytic capacitance at the output of power factor correction

(PFC) stage. Ref. [16] offers another method capable to obtain a low current ripple by using an

average current modulator in series with the LED load. In Ref. [17], a flicker-free electrolytic

capacitor-less single-phase AC-DC LED driver is being introduced. By using a bidirectional

buck-boost converter, the topology is capable to limit the AC component of the pulsating current

and let only the DC component to drive the LEDs. The idea of obtaining an output low-current

ripple for avoiding flicker problem is also found in Ref. [18]. This work offers a two-stage flyback/

Buck converter topology for which a low output current ripple is obtained. Taking into account

all the facts mentioned above, many research interests are related to the minimization of the low-

frequency current ripples first because of optical behavior and lifespan of the LED and second

because of the lower efficacy of LED in high current ripples [19]. Given that, a low ripple for the

LED current can be considered a good practice in designing of high quality LED lighting systems.

In some situations, such as direct AC LED lighting devices [20–22], the high current ripples

prove not to be a problem at frequencies of 100 Hz or higher. At these frequencies, the light

flicker is considered invisible for most people as is presented in [23–25]. A negative impact for

human vision is the stroboscopic effect from flicker, which can be permanently avoided at

frequencies higher than 300 Hz.

The present work introduces a new AC-AC resonant converter topology, wherein the main

novelty consists on directly feeding from mains a resonant LC tank by two bidirectional

switches. In comparison with Ref. [26], the advantage is the elimination of the input diode

rectifier, which mainly is translated into achieving higher efficiency. Also, the driver topology

is characterized by inherent constant current and high power factor; thus, no close-loop control

is considered. The results are presented in correlation with: the electric efficiency, luminous

efficacy, power factor correction capabilities, and flicker parameters implications.

The study is organized with a nomenclature section followed by an introduction. Section 3

analytically analyzes the proposed topology and its working principles, while Section 4 deals

in the practical measurements of the proposed topology. Section 5 is dedicated for the conclu-

sion, and some hints on future work to be done for further improvements are provided.
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2. Considered LED driver topology

In this section, the considered LED driver topology is introduced. The circuit is subject to a

patent application [27] and is based on an AC-AC quasi-resonant LC parallel converter driving

an output LED stage. The considered topology is presented in Figure 1.

It can be seen in Figure 1 that the AC-AC converter is composed of two bidirectional switches,

each having two MOSFETs connected with a common source. In this way, the transistors’

control signals can be easily obtained from an IC (in this case, an IR21531 was used) or discrete

self-oscillating driver. Using only two signals to control all four transistors is advantageous

due to the simplicity and cost-related implications. In Figure 2, the presumptive waveforms of

the main signals are displayed. From the upper part of the image, it can be seen that the

transistors’ command signals are represented by 50% duty-cycle signals.

In Figures 3 and 4 for the input positive and negative half-cycles, the main circuit states depicting

the current paths and the activated switches are highlighted. It can be noted that six different

stages can be found on both the positive and negative input half-cycles, as presented in Figure 2.

Referring toFigure1, the resulted simplified circuit is exemplified inFigure5. The transistorsT1and

T2 are represented by the bidirectional switch S1,while T3 and T4 by the bidirectional switch S2.

The analysis is made by considering the positive cycle of the input alternative voltage. Starting

from the simplified converter model in Figure 5, from the presumptive waveforms in Figure 2,

and the current paths in Figure 3, not considering the switching time frames, three main time

intervals can be identified for a half-cycle:

(a) For the time interval defined in Figure 2 between t0 and t1, corresponding to Figure 3 state

I, the switch S1 is conductive and S2 is in the OFF state, the converter equation is:

Figure 1. Considered LED driver.
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Figure 2. Presumptive waveforms of the AC-AC LED driver.
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usðtÞ ¼ LRES
diLðtÞ

dðtÞ
þ uLEDðtÞ (1)

Now, the circuit is in resonant mode, with no current in the LED (iLEDðtÞ ¼ 0):

ucðtÞ ¼
1

CRES

Z
icðtÞdt (2)

Figure 3. The six main time intervals for the input positive half-cycle.
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For this time interval, the inductor current is equal to the capacitor current:

iLðtÞ ¼ iCðtÞ (3)

(b) For the time interval between t1 and t2, corresponding to Figure 3, state II, same as for

previous interval, the switch S1 is in the ON state and the switch S2 in the OFF state:

Figure 4. The six main time intervals for the input negative half-cycle.
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usðtÞ ¼ LRES
diLðtÞ

dðtÞ
þ uLEDðtÞ (4)

Now, uLEDðtÞ > ULED (the forward voltage of the direct biased LED), and for the considered

time frame where usðtÞ ¼
UAC

2 , the above equation becomes:

diLðtÞ

dðtÞ
¼

UAC

2 �ULED

LRES
≈ const: (5)

Because the direct biased LED is conductive, the capacitor current equals 0; thus, the coil

current is equal to the LED current, as in:

iLðtÞ ¼ iLEDðtÞ (6)

(c) For the time interval between t2 and T/2, corresponding to Figure 3, state III, the switch S1 is

in OFF state and the switch S2 is in ON state, the converter equation becomes:

�usðtÞ ¼ LRES
diLðtÞ

dðtÞ
þ uLEDðtÞ (7)

In this time interval, uLEDðtÞ > ULED, thus:

�
diLðtÞ

dðtÞ
¼

UAC

2 �ULED

LRES
≈ const: (8)

Because the direct biased LED is still in conductive mode, the inductor current is equal to the

LED current:

iLðtÞ ¼ iLEDðtÞ (9)

Figure 5. Simplified, model-based schematics of the consider LED driver.
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At the time t = T/2, the direct biased LED current reaches the 0 value, and from this moment,

the above presented behavior is being repeated for the remaining half cycle. As can be seen in

Figure 4, the same behavior can be found during the negative cycle of the mains voltage.

It is known that the forward voltage of the LED changes with temperature, so in view of this:

�
diLðtÞ

dðtÞ
¼

UAC

2 þULED � uLEDð˚CÞ

LRES
(10)

One can admit that uLEDð˚CÞ≪
UAC

2 þULED, thus:

�iLEDðtÞ ¼
UAC

2 þULED � uLEDð˚CÞ

LRES
≈ const: (11)

Consequently, the proposed schematic has a current source behavior, with constant output

current, regardless of the output LED load type/characteristics. From the input point of view,

the circuit presents, to some extent, a natural corrective power factor function.

In Figures 6 and 7, the simulation results obtained with PSim 10 software point out the high

power factor attained by the proposed circuit. The mains input current waveform for half a

cycle is slightly liner/constant and, admittedly, the input current waveform shows, once more,

the current source/constant current behavior of the converter.

Figure 6. Simulated low frequency representation of the input voltage/current and output current iLED.
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3. Practical implementation of the AC-AC LED driver

The practical measurements have been done on the converter topology from Figure 1 (named

the AC-AC type) using the following LED modules: CREE- XLamp CXA1304, CITIZEN-

CLU028-1202C4-40AL7K3, and OPTOFLASH-OF-LM002-5B380. Because the Cree LED has

an antiparallel diode, the circuit from Figure 8, named the AC-AC-1 type, is proposed where

a fast diode, with low voltage drop, has been introduced in series with each LED strings.

General characteristics and converter components used are: IR21531 self-oscillating IC, IRF640

transistors, STPS2L40 high-frequency diode, LRES – 2 mH resonant coil, CRES – 2.2 nF resonant

capacitor, C1-C2 100 nF voltage divider, L1 – 4 mH input filter, and 82 kHz switching frequency.

To reinforce the presumptive waveforms from Figure 2, the experimental results for the direct

AC-AC driver considering the Citizen LED module are shown in Figures 9–12, wherein the

signals are being presented both at low and high frequency ranges.

On the upper part of Figure 9, the input voltage uACðtÞ and current iACðtÞ are represented. On

the lower part, the low frequency representation of the output resonant tank voltage, usðtÞ and

LED current, iLEDðtÞ is highlighted. Figure 10 presents the main output signals in relation with

the transistor control signal uGS, T1, T2. Therefore, the output voltage of the resonant tank, usðtÞ

is represented in conjunction with the LED voltage, uLEDðtÞ and LED current, iLEDðtÞ.

Figure 7. Simulated high frequency representation of the output current waveforms: output resonant tank current; LED

string 1 current; LED string 2 current.
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Figure 11 highlights the voltage at the drains for the bidirectional switch composed of T1 and

T2 transistors in conjunction with the gate control signals and the output LED current. One can

notice that the gate signal used for the T1 and T2 transistors is applied after the voltage at the

drains was lowered close to zero, thus ZVS (zero voltage switching) is attained. This represents

one of the most important aspects in using resonant converters, where the switching losses are

Figure 8. Proposed AC-AC-1 type converter.

Figure 9. Low frequency signals representation: the input voltage uACðtÞ; the current iACðtÞ; the output resonant tank

voltage, usðtÞ; the LED current, iLEDðtÞ:
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Figure 10. High frequency signals representation: transistor control signal uGS, T1, T2;. The output voltage of the resonant

tank, usðtÞ; LED voltage, uLEDðtÞ; LED current, iLEDðtÞ.

Figure 11. High frequency signals representation: the gate control signals (upper part); the voltage at the drains for the

T1-T2 bidirectional switch; the output LED current (lower part).
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narrowed to a minimum value. Moreover, the ZVS helps limiting the EMI levels caused by

high-frequency switching converters.

Figure 12 shows, on the upper part, the output current of the resonant tank composed of the

LED current, iLEDðtÞ, and the resonant capacitor current, iCðtÞ. On the lower part of the picture,

the LED String 1 current and the LED String 2 current are being represented.

The general performances of the converter with all the three LED modules are centralized in:

Table 1 for the Cree LED,Table 2 for Citizen LED, andTable 3 for the OptoFlash LED. The power

measurements were completed by the use of the precision power analyzer KinetiQ PPA2530. The

flickermeasurements have been performedwith the light sensorOPT101 fromTexas Instruments.

From thesewaveforms, the percent flicker and the flicker indexwere deducted.

For all the LED types, the converter components and the switching frequency were kept the

same, and since the forward voltage of the modules was different, dissimilar input power

values have been obtained. Analyzing the electric efficiency, it can be observed that higher

efficiency is achieved at higher input power, regardless of the LED type used. Also, the power

factor is negatively influenced by the lower input power level.

The implementation of control loops was not an objective of the present study. Thus, the study

states that for low power, acceptable performances in terms of light quality, high efficacy, and

long lifespan with no capacitive filtering, the single-stage AC-AC with two antiparallel LED

Figure 12. High frequency signals representation: the LED current, iLEDðtÞ and the resonant capacitor current, iCðtÞ (upper

part); LED String 1 current and the LED String 2 current (lower part).
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strings could be an interesting solution. For upgraded results, mainly related with light quality,

output rectifying solutions with high capacitance filtering are solutions to be investigated. The

inherent current source behavior of the converter and high power factor are naturally being

accomplished. For further improvements, pure sinusoidal input current shape building and

dimming functions can be implemented by means of variable frequency closed-loop control.

The proposed solution was closely analyzed, considering most of the known issues and good

practices. The need for high power factor together with constant output current is the feature

of an LED drive that is not the subject of discussion. Also, high efficacy, light quality, and

lifespans in a cost-efficient technology are targets for high performance LED devices. The study

attempts to address all aspects presented above, but as a well-known general rule, some of the

above criteria are more important than others, which are defined by the target application.

4. Conclusion

The present research introduces a method of using the benefits of soft switching, by the imple-

mentation of a resonant converter in controlling the current for LED lighting devices. The topol-

ogy is a single-stage AC-AC converter that is capable of obtaining high power factor in an

inherent way, with no feedback control loop. What is more, the circuit has a strong current source

behavior; thus, no imperative constant output current control is required. All the characteristics

are inherently attained, with no control loops; thus, there is room left for further improvement.

Input power

[W]

Electric efficiency

[%]

System efficacy

[lm/W]

Power

factor

THD

[%]

Flicker

index

Percent

flicker [%]

AC-AC – – – – – – –

AC-AC-1 5.03 79.6 102.39 0.916 28.0 0.35 100

Table 1. Practical measurements—LED-Cree.

Input power

[W]

Electric efficiency

[%]

System efficacy

[lm/W]

Power

factor THD [%]

Flicker

index

Percent

flicker [%]

AC-AC 7.9 91 134.36 0.95 29.8 0.3 100

AC-AC-1 7.97 90.3 128.68 0.952 29.1 0.30 100

Table 2. Practical measurements—LED-Citizen.

Input power

[W]

Electric efficiency

[%]

System efficacy

[lm/W]

Power

factor

THD

[%]

Flicker

index

Percent

flicker [%]

AC-AC 7.15 89.7 97.45 0.952 28.8 0.34 100

AC-AC-1 7.24 88.2 96.91 0.926 29 0.34 100

Table 3. Practical measurements—LED-Optoflash.
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Mainly related with the AC-AC stage, the feasibility of the suggested solution is increased if

electronic components manufacturing companies are willing to introduce bidirectional con-

trolled switches in a single-chip technology for all power/voltage range applications.

Future work can consider the output circuits with low or high capacitance filtering, closed loop

constant current controls, discrete self-oscillating control circuit, and higher switching frequen-

cies for lower inductance needed for the resonant coil.
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CRES Resonant tank capacitor

D Duty cycle; diode

iLED Input current for the LED arrangement circuit

iAC Alternative input current

iC Resonant tank capacitor current

iL Resonant tank inductor current

LRES Resonant tank inductor

Sn Bidirectional switch n

t Time

uAC Alternative input voltage

uDD,T1,T2 Drains voltage for the T1-T2 bidirectional switch

uGS Gate-source control voltage

uLED LED voltage

ULED LED forward voltage

uS AC-AC converter output voltage

Optoelectronics - Advanced Device Structures246



References

[1] J. W. Yang and H. L. Do. High-efficiency ZVS AC-DC LED driver using a self-driven

synchronous rectifier. IEEE Transactions on Circuits and Systems: Regular Papers.

2014;61(8):2505–2512. DOI: 10.1109/TCSI.2014.2309837

[2] C. Cheng, C. H. Chang, F. Yang and T. Chung. A novel single-stage high-power-factor

LED driver for street-lighting applications. IEEE Power Electronics and Drive Systems.

2013;IA-21:330–333. DOI: 10.1109/PEDS.2013.6527039

[3] J. M. Alonso, D. Gacio, A. J. Calleja, F. Sichirollo, M. F. da Silva, M. A. Dalla Costa and R.

N. do Prado. Reducing storage capacitance in off-line LED power supplies by using

integrated converters. IEEE Industry Applications Society Annual Meeting (IAS); 7–11

October 2012; Las Vegas. New York: IEEE; 2012. p.1–8.

[4] D. Camponogara, D. Ribeiro Vargas, M. A. Dalla Costa, J. M. Alonso, J. Garcia and T.

Marchesan. Capacitance reduction with an optimized converter connection applied to

LED drivers. IEEE Transactions on Industrial Electronics. 2015;62:184–192. DOI: 10.1109/

TIE.2014.2327591

[5] U.S. Department of Energy. Energy Efficiency Renew. Energy. Lifetime of white LEDs.

Pacific Northwest Nat. Lab., Richland, WA, USA, Tech. Rep. 2009.

[6] L. Gu, X. Ruan, M. Xu and K. Yao. Means of eliminating electrolytic capacitor in AC/DC

power supplies for LED lightings. IEEE Transactions on Power Electronics. 2009;24:1399–

1408. DOI: 10.1109/TPEL.2009.2016662

[7] R. Wang, F. Wang, R. Lai, P. Ning, R. Burgos and D. Boroyevich. Study of energy storage

capacitor reduction for single phase PWM rectifier. In: Applied Power Electr. Conf., APEC;

15–19 Feb. 2009; Singapore. IEEE; 2009. pp. 1177–1183. DOI: 10.1109/APEC.2009.4802812

[8] F. Zhang, J. Ni and Y. Yu. High power factor AC-DC LED driver with film capacitors.

IEEE Transactions on Power Electronics. 2013;48(10):4831–4840. DOI: 10.1109/TPEL.2012.

2233498

[9] J. C. W. Lam and P. K. Jain. A high power factor, electrolytic capacitor-less AC-input LED

driver topology with high frequency pulsating output current. IEEE Transactions on

Power Electronics. 2015;30(2):943–955. DOI: 10.1109/TPEL.2014.2309555

[10] W. Chen and S. Y. R. Hui. Elimination of an electrolytic capacitor in AC/DC light-emitting

diode (LED) driver with high input power factor and constant output current. IEEE Trans-

actions on Power Electronics. 2012;27(3):1598–1607. DOI: 10.1109/TPEL.2010.2103959

[11] Y. Wang, J. Huang, W.Wang and D. Xu. A single-stage single-switch LED driver based on

Class-E converter. IEEE Transactions on Industry Applications. 2016;PPDOI: 10.1109/

TIA.2016.2519324,

[12] A. Shrivastava, B. Singh and S. Pal. A novel wall-switched step-dimming concept in LED

lighting systems using PFC zeta converter. IEEE Transactions on Industrial Electronics.

2015;62:6272–6283. DOI: 10.1109/TIE.2015.2416338

Analysis of a Resonant AC‐AC LED Driver
http://dx.doi.org/10.5772/67472

247



[13] Y. Wang, Y. Guan, K. Ren, W. Wang and D. Xu. A single-stage LED driver based on BCM

boost circuit and LLC converter for street lighting system. IEEE Transactions on Indus-

trial Electronics. 2015;62:5446–5457. DOI: 10.1109/TIE.2015.2416341

[14] A. Wilkins, J. Veitch and B. Lehman. LED lighting flicker and potential health concerns.

In: IEEE Energy Convers. Congr. Expo.; 12 Sep–16 Sep 2010; Atlanta, GA, USA. IEEE;

2010. pp. 171–178.

[15] M. F. de Melo, W. D. Vizzotto, J. M. Alonso and M. A. Dalla Costa. Analysis of series-

resonant LED driver applied to reduce the low-frequency current ripple transmission.

IEEE 24th International Symposium on Industrial Electronics (ISIE). 2015; pp. 1166–1171.

[16] B. White, H. Wang, Y. Liu and X. Liu. An average current modulation method for single-

stage LED drivers with high power factor and zero low-frequency current ripple. IEEE

Journal of Emerging and Selected Topics in Power Electronics. 2015;3(3). DOI: 10.1109/

JESTPE.2015.2424680

[17] S. Whang, X. Ruan, K. Yao, S. C. Tan, Y. Yang and Z. Ye. A flicker free electrolytic

capacitor-less AC-DC LED driver. IEEE Transactions on Power Electronics. 2012;27(11).

DOI: 10.1109/TPEL.2011.2180026

[18] H. Valipour, G. Rezazadeh and M. R. Zolghadri. Flicker-free electrolytic capacitor-less

universal input off-line LED driver with PFC. IEEE Transactions on Power Electronics.

2015;31(9). DOI: 0.1109/TPEL.2015.2504378

[19] P. S. Almeida, V. C. Bender, H. A. C. Braga, M. A. Dalla Costa, T. B. Marchesan and J. M.

Alonso. Static and dynamic photoelectrothermal modeling of LED lamps including low-

frequency current ripple effects. IEEE Transactions on Power Electronics. 2015;30(7). DOI:

10.1109/TPEL.2014.2340352

[20] C. Park and C. T. Rim. Filter-free AC direct LED driver with unity power factor and low

input current THD using binary segmented switched LED strings and linear current

regulator. In: Applied Power Electronics Conference and Exposition (APEC); 17 Mar–21

Mar 2013; Long Beach, CA, USA. IEEE; pp. 870–874.

[21] H. Gao, K. Sun, J. Chen, X. Wu, Y. Leng, J. Xi and L. He. An electrolytic-capacitorless and

inductorless AC direct LED driver with power compensation. In: Future Energy Elec-

tronics Conference; 03 Nov–06 Nov 2013; Department of Electrical Engineering, National

Cheng Kung University, Taiwan. IEEE Power Electronics Society; pp. 1–5.

[22] Y. C. Chung, K. M. Lee, H. J. Choe, C. H. Sung and B. Kang. Low-cost drive circuit for

AC-direct LED lamps. IEEE Transactions on Power Electronics. 2015;30(10). DOI: 10.1109/

TPEL.2014.2374160

[23] Texas Instruments. The impact of low frequency ripple current on LEDs and LED drivers’

by Texas Instruments at OSRAM Opto Semiconductors and LED drivers’ by Texas

Instruments at OSRAM Opto Semiconductors [Internet]. Oct. 2010. Available from:

http://www.ledlight.osram-os.com/ [Accessed: April 2016].

Optoelectronics - Advanced Device Structures248



[24] Lighting Research Center. SSIST: Alliance for solid-state illumination systems and tech-

nologies [Internet]. Available from: http://www.lrc.rpi.edu/programs/solidstate/assist/

flicker.asp [Accessed: April 2016].

[25] E. Biery. Understand the lighting flicker frustration (magazine) [Internet]. Dec. 2015.

Available from: http://www.ledsmagazine.com/ [Accessed: April 2016].

[26] P. D. Teodosescu, M. Bojan and R. Marschalko. Resonant LED driver with inherent

constant current and power factor correction. Electronics Letters. 2014;50:1087–1088.

[27] P. D. Teodosescu, M. S. Sabau, N. C. Szekely, M. Bojan and R. Marschalko. Electronic

device for LED lighting systems. Romanian State Office for Inventions and Trademarks

(OSIM). 2015; request no. a 2015 00876.

Analysis of a Resonant AC‐AC LED Driver
http://dx.doi.org/10.5772/67472

249




