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Abstract

Non-celiac gluten sensitivity (NCGS) is an intestinal tissue transglutaminase (TG2)- 
and IgE-independent form of GS. NCGS is approximately 6× more prevalent than the 
classical celiac disease (CD), and its incidence is on the rise. Because of its high rela-
tive prevalence and striking resemblance to other forms of GS, there is a greater need 
to develop new and accurate diagnostic assays to facilitate its definitive diagnosis. As 
the presence of serum anti-gliadin antibodies (AGA) in the absence of TG2 antibodies 
is suggestive of NCGS, several reports have recommended AGA immunoassays for 
differential diagnosis. Although AGA immunoassays are in general suitable for diag-
nostic purpose, to corroborate NCGS and to distinguish it from CD, a simultaneous 
use of CD-specific diagnostics, i.e., TG2 antibody-based assay, is also required. Due 
to lower accuracy of AGA assays than those of TG2-based ones, there will always be 
a chance (estimated to 5–10%) of misdiagnosing NCGS. Moreover, AGA-based diag-
nostics would not take into consideration the fact that NCGS is potentially triggered 
by not only gluten but also other molecules such as fermentable oligosaccharides, 
disaccharides, monosaccharides, and polyols (FODMAPs). Therefore, a second gen-
eration of assays needs to be developed to differentiate NCGS from CD with high 
accuracy.

Keywords: celiac, gluten, NCGS, tissue transglutaminase, differential diagnosis, gut 
microbiome, gluten-free, diet, IBS, chronic inflammation, small intestine, GI tract

1. Introduction: NCGS, CD, and irritable bowel syndrome

Similarities between non-celiac gluten sensitivity (NCGS) and irritable bowel syndrome (IBS) 

were first noted in 1978 when it was reported that an adult female patient with IBS but not 
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celiac disease (CD) showed dramatic relief of chronic diarrhea and abdominal pain symp-

toms after administration of gluten-free diet (GFD) [1–6]. More recent studies corroborated 

that some but not all IBS patients show significant onset of clinical diarrhea upon muco-

sal challenge with gluten [7, 8]. There is an emerging consensus that tissue transglutamin-

ase (TG2) antibody-negative and anti-gliadin antibodies (AGA)-positive (TG2−AGA+) IBS 
patients with DQ2/8-negative haplotype qualify as NCGS candidates [3]. Such an assump-

tion can be confirmed by placing suspect NCGS patients on GFD with subsequent relief of 
clinical/immunological symptoms. Conversely, if AGA test is used alone, without other cor-

roborative/exclusionary assays, its predictive value for NCGS is poor [4]. Taken together, it 

appears that NCGS and IBS patients share several clinical and histopathological symptoms. 

NCGS should therefore be differentiated from IBS based on complete CD/NCGS serology, 
and diagnosis can be confirmed by performing a mucosal gluten challenge. To simplify and 
to expedite diagnostic steps, new molecular assays need to be developed to differentiate 
NCGS from IBS and CD.

2. Composition of host gut microbiome and NCGS/CD

Given the unprecedented rise of food allergies and autoimmune disorders in urban popu-

lations during recent decades, several studies have indicated that a potential causative 

association exists between some of these disorders and composition of the host’s gut 

microbiome [9, 10]. Since both CD and NCGS are inflammatory disorders of not only 
gastrointestinal (GI) tract but also other organs, including dysfunction of the gut-brain 

axis [11, 12], studies aimed at identification of specific hallmarks of gut dysbiosis of these 
disorders are the focus of current investigations.

It has been reported that bacteria involved in gluten metabolism predominantly belong to 

phylum Firmicutes, in particular, those from the genus Lactobacillus, followed by Streptococcus, 

Staphylococcus, and Clostridia [13, 14]. Recently, it was shown that GFD treatment significantly 
altered proportions of these bacterial groups and that restoration of normal bacterial flora 
took many months and possibly years [14, 15]. It was also shown that increased presence of 

some of the bacterial species involved in gluten metabolism leads to enteritis [13]. Our group 

recently demonstrated that Streptococcaceae and Lactobacillaceae families were enriched in GS 

rhesus macaque model of CD, while Coriobacteriaceae predominated in healthy animals [14]. 

In the future, studies to elucidate specific dysbiotic pathways that distinguish NCGS from CD 
need to be done.

3. Host luminal shedding of fecal microRNAs

Recently, a novel concept concerning the capability of intestinal epithelial cells to release 

luminal regulatory microRNAs (miRNAs) was described [16]. It was demonstrated that 
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these fecal miRNAs could potentially enter bacterial cells and regulate their replication 
and growth. In this context, it is possible that inflammation-induced miRNAs could enter 
commensal bacteria and posttranscriptionally suppress or promote their growth by bind-

ing to specific sequences on bacterial genes [16]. This in turn, depending on the outcome, 

may give pathogenic bacteria an opportunity to expand leading to dysbiosis. [16]. These 

findings have therapeutic implications as oral supplementation of stable miRNA mimics 
capable of targeting specific dysbiotic or probiotic members of the gut microflora relevant 
to disease relapse and/or remission may be implemented. In our recently published stud-

ies, we hypothesized that GS disorders including CD and NCGS have their own unique 
signatures of dysbiosis. In addition, it is also likely that regulatory miRNAs secreted by 
host epithelial cells in response to dysbiotic events are also disease specific. Recently, we 
identified and reported several miRNAs (miR-203, miR-204, miR-23b, and miR-29b) with 
perfect complementarity between miRNA seed nucleotides (5′ prime nt position 2–7) and 
16S rRNA sequence of dysbiotic bacterial species in the rhesus macaque model of CD 
(Figure 1) [14].

Dysbiotic bacterial species that could be potentially regulated in this fashion by inflam-

matory miRNAs included members of the Streptococcaceae and Lactobacillaceae families that 

are known to play roles in metabolism of gluten [13]. As biological and regulatory func-

tions of miRNAs include host cell effects such as expression of epithelial tight junction 
proteins, more work remains to be performed to characterize regulatory relationships and 

pathways pertinent to miRNA molecules that influence dysbiotic gut microbiota in NCGS 
and CD individuals.

Figure 1. Small intestinal epithelial cells of gluten-sensitive rhesus macaque (A) were visualized by immunofluorescent 
triple labeling of cytokeratin-1 (red), tight junction protein claudin-1 (green), and nuclear DNA (blue) antigens. 
Epithelial cells of gluten-sensitive but not healthy, normal primates produced regulatory fecal microRNAs (miRNA) 
species complementary with dysbiotic bacterial species such as Streptococcus leuticeae (B) and others. It was proposed 

that intensity of such interactions can shape the gut microbiome dysbiosis either toward remission or relapse [14, 16].
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4. Dietary gluten and neurodevelopmental disease markers

The first report suggesting an association between increased occurrence of neurodevelop-

mental disorders and consumption of gluten-containing cereal grains dates back to 1966 [17]. 

In the same year, it was reported that some but not all GS patients develop neurological dys-

functions referred to as gluten ataxia, gluten neuropathy, or gluten encephalopathy [18, 19]. 

Since then, several studies have suggested that symptoms of the autism spectrum disorders 

(ASD) could be improved upon changes in diet. One of these diets is GFD [20]. Despite its 

widespread use, the efficacy of GFD for the treatment and prevention of ASD has not been 
conclusively proven. More recently, a case report involving NCGS patients with gluten psy-

chosis was reported [21]. The molecular mechanisms underlying ASD/psychosis vs. dietary 
gluten relationship are highly complex and understudied [22, 23]. Therefore, a transition from 

the “clinical phenomena” to “basic research” type of studies is needed. We propose that per-

turbation levels (measured by the extent of mRNA expression) of ASD predisposition genes 
need to be elucidated in preclinical, humanlike models first in the context of experimental 
introduction/withdrawal of dietary gluten.

For this and other purposes, we developed the rhesus macaque (Macaca mulatta) model of GS [14, 

24–30]. The presence of AGAs, gluten-sensitive enteropathy (GSE), increased intestinal perme-

ability, and genetic predisposition were all documented. Consistent with human disease, GSE 

in macaques is characterized by a wide range of severity, ranging from the subclinical to severe 
form that includes decreased absorption of nutrients, decreased xenobiotic metabolism, cancer 

predisposition, diarrhea, dermatitis, decreased diversity of gut microbiome, as well as the per-

turbations in expression of several neurodevelopmental disorder-associated genes including 

those of ASD and down syndrome. One of these genes that showed significant upregulation 
in GS rhesus macaques was the Ca2+-dependent activator protein for secretion 2 (CADPS2). In 

humans, the CADPS2 gene is located within the autism susceptibility locus 1 on chromosome 

7q. It was shown that Cadps2-knockout mice exhibit cellular and behavioral traits consistent with 

ASD [31]. The CADPS2 protein regulates exocytosis of synaptic vesicles in neurons and neuro-

endocrine cells. In accordance with these findings, analysis of the ASD-associated genetic pre-

disposition factors by a group at Harvard School of Medicine revealed that ASD is not restricted 
to not only humans but also apes, monkeys, and dolphins [32]. Remission and relapse stages of 

GSE can be accomplished in GS macaques by feeding gluten-free and gluten-containing diets, 
respectively. Similar to human gluten-sensitive patients, AGA and GSE are reversibly dependent 
in GS macaques by exposure to dietary gluten [24, 33, 34]. Thus, an extensive use of GS rhesus 

macaque model in experimental and translational studies involving neurodevelopmental dis-

order-associated genes and their corresponding pathways is desired—as a new preclinical tool 

for not only ASD research but also for the development of NCGS vs. CD differential diagnostics.

5. NCGS vs. CD microbial signatures

Based on the assumption that CD is caused by an autoimmune reaction to TG2, while NCGS 

is caused by chronic bacterial intestinal infections, a recent study by Columbia University 
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researchers focused on the identification of differential, bacterial byproduct-specific diagnos-

tic markers to distinguish the two conditions [35]. Their findings suggested that enteropathy 
could occur in individuals who report GS in the absence of CD, while it is associated with 

increased serum antibodies recognizing bacterial lipopolysaccharide (LPS) and/or its CD14 
ligand [35]. Although several antibodies were evaluated for their potential to be used as differ-

ential diagnostic tools including anti-LPS, anti-flagellin, and anti-soluble CD14 (sCD14), the 
best predictive values were attributed to antibodies targeting LPS and sCD14. These results 
corroborated that NCGS and CD have common and differential features that can be further 
exploited for the development of more sensitive and accurate differential diagnostic assays.
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