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Abstract

In vertebrate species, induction of the embryonic axis is initiated by the transport of mater-
nally supplied determinants, initially localized to the vegetal pole of the egg, toward the 
prospective organizer in the animal region. This transport process remains incompletely 
understood. Here, we review studies involving embryonic manipulations, visualiza-
tion, and functional analysis of the cytoskeleton and loss- and gain-of-function condi-
tions, which provide insights in this process. Transport of dorsal determinants requires 
cytoskeletal reorganization of a vegetal array of microtubules, microtubule motors, and 
an off-center movement of the vegetal cortex with respect to the inner egg core, a so-
called cortical rotation. Additional mechanisms may be used in specific systems, such as 
a more general animally directed movement found in the teleost embryo. Initial polar-
ity of the microtubule movement depends on early asymmetries, which are amplified 
by the movement of the outermost cortex. An interplay between microtubule organiza-
tion and axis specification has also been reported in other animal species. Altogether, 
these studies show the importance of cytoskeletal dynamic changes, such as bundling, 
force- inducing motor activity, and regulated cytoskeletal growth, for the intracellular 
 transport of maternally inherited factors to their site of action in the zygote.

Keywords: microtubules, dorsoventral axis, cortical rotation, zebrafish, Xenopus, 

embryo

1. Introduction

One of the main events that take place during vertebrate development is the establishment of 

the dorsoventral (DV) axis. This process has been studied in a variety of vertebrate species, 

in particular in the amphibian Xenopus laevis and the teleost fish Danio rerio. In these model 

systems, embryological manipulations show that the ligation of the vegetal pole of the freshly 
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laid egg results in embryos that lack a primary (dorsal) axis (reviewed in Ref. [1]). However, 

the ligation of the same vegetal region after the second cell cycle does not have this effect. 
These manipulations allowed to infer the presence of dorsal determinants initially localized 

to the vegetal pole of the egg, which following fertilization are transported to a more animal 

region to specify prospective dorsal cells. These determinants, through mechanisms that have 

not been fully determined, result in the activation of the canonical Wnt/β-catenin signaling 
pathway, leading to dorsal gene expression and the induction of the dorsal organizer [2–4]. In 

Xenopus, the inferred transport of these determinants is coincident with the shift of the outer 

cortex, the “cortical rotation,” relative to the entire cytoplasm, a shift that is readily apparent 

due to pigmentation patterns of granules in the cortex.

It has been shown that the process of transport of dorsal determinants is dependent on the 

microtubule cytoskeleton in the egg cortex, specifically on the reorganization of vegetal 
microtubules as long tracks of parallel bundles (Figure 1, left and center). In Xenopus, this 

array of aligned microtubule bundles extends the relatively long span from the vegetal pole 

to the prospective dorsal region near the animal pole, and visualization of particles, vesicles, 

and fluorescently labeled factors suggests that these tracks of microtubules may be acting as a 

Figure 1. Schematic of early developmental processes in fish, amphibians, and ascidians. Prior to fertilization in 

zebrafish and Xenopus wild-type embryos, maternal factors are localized at the vegetal pole. Upon fertilization, they 

are transported to the dorsal region via a parallel array of vegetal microtubules. In zebrafish hecate/grip2a (hec) mutants, 

this vegetal microtubule array is compromised, preventing an initial early off-center dorsal shift of maternal factors, 
subsequently leading to a ventralized embryo (bottom row, second from left, compared to wild-type at left). A second 
phase of animally directed transport in zebrafish (not shown) appears to depend on a more general mechanism, 
independent of vegetal microtubule alignment [26]. In ascidian embryos, first the egg cortex and plasma membrane 
contract, resulting in the segregation of microfilaments, mitochondria, cER, postplasmic/PEM RNAs, and muscle-
forming and endoderm-forming determinants toward the vegetal pole region. These components subsequently move 

toward the posterior pole through the attraction of a microtubule aster-based center.
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substrate for long-range transport [5, 6]. Early zebrafish embryos do not exhibit an outwardly 
apparent cortical shift [7], and aligned vegetal microtubule tracks appear to span a more 

restricted area [6, 8], yet vegetal cortex microtubules may have similar transport functions as 

in Xenopus. Analysis of dynamic changes during microtubule reorganization in the context of 

the embryo has led to a model in which cortical rotation and microtubule-dependent trans-

port are interdependent processes that together mediate the transport of dorsal determinants 

(see below) [5]. Forward and reverse genetic approaches in various systems, primarily zebra-

fish and Xenopus, have contributed to our understanding of these processes.

This chapter reviews events involved in the cytoskeletal reorganization required for the 

movement of determinants leading to axis induction. The outcome of microtubule reorgani-

zation in the early embryo is the induction of the dorsal axis, and we first briefly review this 
process in the zebrafish as well as the amphibian X. laevis.

2. Induction signals for axis specification

A primary event in the establishment of the dorsoventral axis in zebrafish and Xenopus is the 

translocation of the normally cytoplasmic protein β-catenin into the nuclei of dorsal blasto-

meres during cleavage stages (Figure 2) [2, 9, 10]. In the absence of Wnt signaling, levels of 

the cytoplasmic pool of β-catenin are reduced by the activity of glycogen synthase kinase-3 
(GSK-3), which promotes β-catenin degradation (reviewed in Ref. [11]). Accordingly, enrich-

ment of β-catenin in dorsal cell nuclei, as well as dorsal axis induction, is blocked by ectopic 
expression of GSK-3. Activation of the canonical Wnt signaling pathway, resulting in localized 
inhibition of GSK-3 on the future dorsal side of the embryo, is thought to promote the accu-

mulation of cytoplasmic β-catenin in the prospective dorsal region. Accumulated β-catenin in 
turn translocates to the nucleus [3, 12], where it can influence gene expression (reviewed in 
Refs. [13, 14]).

A key mediator of Wnt signaling, when localized to the nuclei, β-catenin acts as a tran-

scriptional effector to activate dorsal-specific genes such as bozozok/dharma, nodal-related 

1, and chordin [13]. Products expressed from these dorsal genes along with those from 

their targets antagonize ventralizing signals such as bone morphogenetic proteins (BMPs), 
thus promoting dorsal cell fate specification (reviewed in Refs. [14, 15]). Failure of nuclear 

β-catenin to localize to the nuclei of dorsal blastomeres results in the ventralization of 
embryos [16].

The intricacies of the Wnt signaling pathway and its role in vertebrate axis induction have 

been determined through many studies, including functional manipulation of genes through 

ectopic expression and knockdown or expression of dominant-negative constructs (reviewed 

in Refs. [11, 17]). For example, overexpression of β-catenin induces a secondary axis in Xenopus 

embryos [18]. When β-catenin is overexpressed in zebrafish embryos, it is able to induce the 
expression of target genes such as goosecoid and ntl [19]. Similar results have been observed 

with the overexpression of some Wnt ligands [20], including overexpression of Wnt8 and 

Wnt8b in zebrafish embryos [19].

Reorganization of Vegetal Cortex Microtubules and Its Role in Axis Induction in the Early Vertebrate Embryo
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Several mutations in zebrafish have allowed for the confirmation of an endogenous role 
for Wnt signaling pathway in axis induction in the early embryo. An identified recessive 
maternal-effect mutant in ichabod results in defective dorsal organizer formation and severe 

ventralization and shows impaired nuclear localization of maternal β-catenin protein [21]. 

This mutation was found to be closely linked to β-catenin-2 (ctnnb2), a duplicate copy of 

the β-catenin gene located on a different linkage group from the previously characterized 
β-catenin-1 [22]. It was shown that although the ichabod mutation does not functionally 

alter the β-catenin-2 open reading frame, the level of maternal β-catenin-2 transcript (but 

not that of the unlinked β-catenin-1 gene) is substantially lower in ichabod mutant embryos. 

Reduction of β-catenin-2 function in wild-type embryos by the injection of a gene-specific 
morpholino antisense oligonucleotide (MO) results in ventralized phenotypes [22], which 

are similar to those seen in ichabod mutant embryos. In contrast, MOs directed against 
β-catenin-1 have no ventralizing effect on wild-type embryos. These data strongly suggest 

Figure 2. Simplified diagram of Wnt activity involved in axis specification. In the canonical Wnt signaling pathway, 

extracellular Wnt protein ligands signal through Frizzled transmembrane receptors to activate the cytoplasmic protein 

dishevelled (Dsh). Dsh in turn inhibits GSK-3 activity. GSK-3 is part of a complex that normally destabilizes β-catenin 
protein; hence, inhibition of GSK-3 activity results in β-catenin stabilization and its translocation into the nucleus. 
β-Catenin forms a complex with the transcription factor Tcf/Lef to activate dorsal-specific gene expression. Asterisk 
denotes factors thought to undergo a translocation to the prospective dorsal site through a process involving cortical 

rotation and/or microtubule-dependent transport.

Cytoskeleton - Structure, Dynamics, Function and Disease6



that the ichabod mutation corresponds to the β-catenin-2 gene, providing genetic evidence 

for the role of this factor in axis induction. These results indicate that activation of Wnt 

signaling via the stabilization of β-catenin is essential for proper organization of the embry-

onic axis.

Activation of the Wnt/β-catenin signaling pathway, as well as its important role in the 
expression of dorsal genes, has been extensively studied in a number of cellular systems 

(reviewed in Refs. [11, 17]). However, the identity of the molecules thought to activate 

the pathway in early vertebrate embryos, referred to as dorsal determinants, remains to 

be fully elucidated. Wnt11 has been proposed to be a dorsal determinant in amphibian 

species [23]. In Xenopus, wnt11 mRNA is located at the vegetal pole of the mature egg 
and, after fertilization, becomes enriched at the future dorsal side of the embryo. Thus, 

the localization of wnt11 RNA exhibits the expected behavior of the inferred dorsal deter-

minant, as predicted from transplantation of the dorsal-inducing activity. Additionally, 

it was shown that depletion of wnt11 mRNA from oocytes results in embryos defective 
in dorsal axis induction [24]. Further studies have implicated ubiquitously present Wnt5 

as acting together with Wnt11 in Wnt/β-catenin activation [23]. Studies in zebrafish have 
not implicated Wnt11 or Wnt5 function in axis induction. However, a role for zebrafish 
Wnt8a has been suggested in this process [25, 26]. Similarly to Xenopus wnt11, zebrafish 
wnt8a mRNA is localized to the vegetal pole of the egg and can be observed to translo-

cate after fertilization toward the animally located blastomeres. These studies also indicate 

that, while Wnt/β-catenin pathway activation may be highly conserved in axis induction 
across the animal kingdom, there are variations in maternally based mechanisms leading 

to pathway activation.

Studies in Xenopus and zebrafish also showed that the transport of dorsal determinants, 
which results in the translocation of β-catenin to the nuclei of dorsal blastomeres, requires 
an array of parallel microtubules originating in the vegetal pole region [6, 27]. Miller 
and colleagues investigated the mechanisms responsible for the dorsal activation of the 

Wnt signaling pathway in Xenopus eggs and the subsequent specification of dorsal cell 
fates in the embryo. It was shown that dishevelled (Dsh) protein, a cytoplasmic compo-

nent of the Wnt pathway that functions upstream of β-catenin [28], is associated with 

vesicle-like organelles that become enriched in the prospective dorsal side of the egg at 

the end of the first cell cycle and that the accumulation of Dsh persists through early 
cleavage stages [27]. Further experiments revealed that when embryos were UV irradi-

ated at the vegetal hemisphere, the distribution of Dsh was blocked, which also blocked 

dorsal axis formation. Subsequently, when observing the subcellular localization of 

Dsh fused to GFP, it was revealed that during cortical rotation Dsh-GFP is translocated 

toward the future dorsal side via the vegetal cortex microtubule array [27]. Together, 

these data suggest a model in which dorsal-determining factors including wnt gene prod-

ucts and Dsh protein are transported via a microtubule-dependent pathway to the future 

dorsal side of the embryo, leading to the localized activation of the Wnt signaling path-

way, the accumulation of β-catenin in dorsal blastomeres, and the induction of dorsal cell 
fates [27].

Reorganization of Vegetal Cortex Microtubules and Its Role in Axis Induction in the Early Vertebrate Embryo
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3. Transport of dorsal determinants in Xenopus and zebrafish

3.1. Molecular mechanism underlying cortical rotation

As mentioned above, embryological manipulations showed that, both in Xenopus and zebra-

fish, dorsal determinants are localized to the vegetal pole of the egg at the time of fertilization 
but have within several cell cycles moved to an animal region where they influence cell fate. 
Spatial changes that lead to these determinants translocating to the prospective dorsal region 

appear to be facilitated by two processes: the rotation of the zygote cortex with respect to 

the core during cortical rotation and the intracellular movement of factors (e.g., wnt RNA or 
Dsh-bound vesicles) along aligned vegetal microtubules. These are likely intertwined pro-

cesses, as tracks of parallel microtubules appear to be required not only for the movement of 

vegetal factors to the prospective dorsal side but also for cortical rotation [29]. Treatment of 

the vegetal portion of embryos to prevent microtubule polymerization, such as exposure to 

nocodazole, cold shock, hydrostatic pressure, or UV irradiation [30, 31], shows that microtu-

bules are required for cortical rotation in normal conditions [31]. In contrast, cytochalasin D, 

an inhibitor of actin polymerization, does not interfere with cortical rotation, indicating that 

microfilaments are not required for this process. Inhibition of protein synthesis with cyclo-

heximide, known to have dramatic effects such as cell cycle arrest [32], also does not inhibit 

rotation, indicating that the control of cortical rotation is posttranslational and depends on 
preformed maternal proteins [32].

Failure of cortical rotation results in a ventralized mutant phenotype in the embryo. However, 

in embryos treated to inhibit microtubules, a cortical rotation can be artificially induced by 
gravity after immobilizing the embryo in a matrix and physically turning it 90°. This manipu-

lation results in the formation of dorsal structures, albeit delayed [33]. Under these condi-

tions, gravity leads to a rearrangement of the heavier yolk-containing core of the embryo 

relative to the cortex. This is thought to increase the proximity of vegetally localized cortical 

signals to internal regions in the more animally located prospective dorsal region. The abil-

ity of the entire cortex to move as a whole relative to the embryonic core contrasts with the 

visualization of moving particles along microtubule tracks. These observations suggest that 

both transport along cortical microtubules and a cortical shift relative to the embryonic core 

contribute to the redistribution of signals involved in axis induction during the early embry-

onic cell cycles. We subsequently address each of these processes.

3.2. Relocalization of RNA determinants during oogenesis and early embryogenesis

The mRNA for the putative zebrafish dorsal determinant wnt8a is localized to the Balbiani 

body during oogenesis. The zebrafish Balbiani body [34] is a mitochondria-rich subcellular 

structure in the forming oocyte shown to be essential for the creation of animal-vegetal polar-

ity in the oocyte. This structure, thought to be homologous to the early messenger transport 

organizer (METRO) pathway of localization in Xenopus [35], constitutes a crucial component 

of a vegetally directed transport pathway that entraps mRNAs and other gene products nec-

essary for patterning of the embryo and germ cell formation [34, 35]. Association of wnt8a 
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RNA with the Balbiani body leads to the localization of this RNA to the vegetal pole of the 
mature zebrafish oocyte [25]. Thus, fertilized embryos initiate development with wnt8a RNA 
localized to the vegetal pole. However, in wild-type embryos starting at 30 min, this mRNA 
experiences an asymmetric movement toward a more animal region that will become the 

prospective organizer region [25, 26].

In addition to wnt8a, genetic studies in zebrafish have allowed the identification of other 
maternally inherited factors involved in the transport of determinants essential for dorsal 

axis induction, such as hecate/grip2a mRNA and Tokkaebi/Syntabulin proteins. Molecular 
characterization of the three independent mutant alleles of the zebrafish maternal effect 
gene hecate/grip2a shows that loss of function for its product results in embryos with reduced 

dorsal gene expression and concomitant defects in forming dorso-anterior structures [26]. 

Similar effects are caused by a single mutation in tokkaebi [36]. Mutations in genes coding 
for either hecate/grip2a or tokkaebi/syntabulin do not interfere with vegetal pole localization 

of wnt8a RNA during oogenesis, but abolish the animally directed asymmetric movement 
of this RNA that normally occurs after fertilization [25, 36, 37]. Given the proposed role 

for Wnt8a as the dorsal determinant in zebrafish [25], the postfertilization defect in wnt8a 

RNA asymmetric movement in hecate and tokkaebi mutants explains axis induction defects 

observed in these mutants.

Positional cloning of hecate shows that this gene encodes glutamate receptor-interacting pro-

tein (Grip) 2a, a factor whose Drosophila homologue protein is associated with membrane 

vesicles in postsynaptic neuronal cells, where it acts in the reception of Wnt signals across 

the synapse [38]. Zebrafish Grip2a protein has four PDZ domains, which are known to inter-

act with membrane-associated factors including members of the Wnt signaling pathway. 

Mutant alleles in this protein exhibit a range of phenotypes whose severity roughly corre-

lates with the extent of unaffected protein, with the strongest allele causing a premature stop 
codon that truncates the Grip2a protein, removing all four PDZ domains [26]. The mutation 

in tokkaebi corresponds to syntabulin, which codes for a linker of the kinesin I motor pro-

tein [36], and acts as a linker molecule that attaches mitochondria to the kinesin-1 motor, 
thereby contributing to anterograde trafficking of mitochondria to neuronal processes [39]. 

The known roles for Grip and syntabulin in the transport of membranous organelles and 

signaling in neuronal types begin to draw similarities between microtubule-based transport 

of vesicles in neurons and the transport of dorsal determinants, also thought to at least par-

tially associate with vesicles (as highlighted by Dsh-GFP movement [27]), in early vertebrate 

embryos.

Consistent with the effect of maternal-effect mutations in hecate/grip2a and tokkaebi/syntabulin 

on the formation of dorsal structures, products of these genes are localized in patterns that 
likely facilitate the movement of dorsal determinants [26, 36, 40]. In wild-type embryos, grip2a 

mRNA, like wnt8a, is localized via a Balbiani body-dependent mechanism to the vegetal pole 

of the oocyte and early embryo, and following egg activation and fertilization, the localization 

of this mRNA shifts off-center about 30° from the vegetal pole. During oogenesis, as in the 
case of grip2a RNA, syntabulin RNA becomes localized to the vegetal pole of the oocyte via 
a Balbiani body-dependent pathway, resulting in the localization of both syntabulin mRNA 

Reorganization of Vegetal Cortex Microtubules and Its Role in Axis Induction in the Early Vertebrate Embryo
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and protein to the vegetal pole of the egg. After fertilization, as in the case of wnt8a RNA and 
grip2a RNA, Syntabulin protein (but not its RNA) exhibits an off-center shift upon egg activa-

tion [36]. The off-center shift from the vegetal pole exhibited by wnt8a and grip2a mRNAs and 
Syntabulin protein roughly corresponds to a 30° arc offset from the vegetal pole that contains 
an aligned set of arrayed microtubules in the zebrafish embryo and which has been observed 
to contain moving subcellular particles [8]. Thus, the movement of these mRNAs roughly 
corresponds to a region in the teleost early embryo thought to undergo mass movements 

toward the future dorsal side, reminiscent of the amphibian cortical rotation. The coordinated 

asymmetric movement of vegetally localized products such as wnt8a RNA, grip2a RNA, and 
Syntabulin protein is consistent with the observed mass transport of particles in the veg-

etal cortex [8], although they may also reflect specialized transport mechanisms involving 
microtubule tracks, Syntabulin-mediated motor movement, and wnt8 RNA- and grip2a RNA-
containing RNPs.

Genetic analysis indicates that the Hecate/Grip2a and Tokkaebi/Syntabulin products are 

required for the off-center, asymmetric shift of vegetally localized determinants that fol-
lows fertilization. hecate/grip2a mutants show defects in this off-center movement for veg-

etally localized products such as wnt8a RNA and Syntabulin protein, as well as grip2a RNA 
itself [26]. Mutations in tokkaebi/syntabulin also result in defects in wnt8a RNA and Syntabulin 
protein asymmetric movement [36]. However, in both of these mutants, localization of dor-

sal factors (wnt8a RNA, hecate/grip2a RNA, and tokkaebi products) during oogenesis remains 

unaffected. Localization of these factors during oogenesis is instead dependent on the func-

tion of buckyball [25, 26, 36], a novel protein required for Balbiani body formation [34, 41]. 

Thus, localization of dorsal factors to the vegetal pole of the oocyte relies on a Balbiani body-

dependent pathway, and the asymmetric movement of these factors after fertilization, which 

is required for axis induction, depends on the subsequent action of hecate and tokkaebi. As 

discussed below, these functions rely on microtubule-dependent reorganization and trans-

port processes.

Additional studies have shown that, as in Xenopus, zebrafish vegetal cortex microtubules 
become reorganized into parallel bundles (Figure 3) [6, 8]. The studies paint a picture of trans-

location of dorsal axis determinants that is remarkably similar to that of the known Xenopus 

cortical rotation. However, transport of dorsal determinants in zebrafish appears to use a dual 
system, in which microtubule alignment initiates an off-center shift, and other cytoskeletal 
processes mediate long-range transport (see below). In spite of observed differences, these 
studies show that microtubule-dependent transport of dorsal determinants plays an essential 

role in canonical Wnt pathway activation and dorsal axis determination in teleost embryos, 

as in amphibians.

Interestingly, the RNA for the grip2 homologue in Xenopus, XGRIP2 is, like its zebrafish 
homologue grip2a, localized to the mitochondrial cloud (the Balbiani body in zebrafish) dur-

ing Xenopus oocyte development and subsequently to the vegetal pole of the mature oocyte. 

However, in contrast to zebrafish grip2a RNA, Xenopus XGRIP2 RNA does not have an appar-

ent role in axis induction, and after fertilization its RNA becomes localized to germplasm 
masses that coalesce in the embryo (see below) [42–44].

Cytoskeleton - Structure, Dynamics, Function and Disease10



Altogether, these studies indicate key roles for RNA localization pathways during oogenesis 
leading to the localization of factors required for axis induction to the vegetal pole of the egg. 

Initially localized to the vegetal pole through the action of the mitochondrial cloud during 

oogenesis, after fertilization and egg activation these factors exhibit an off-center shift depen-

dent on the function of vegetally localized factors, such as Grip2a and the kinesin motor adap-

tor protein Syntabulin.

3.3. Reorganization of microtubules during cortical rotation

At least in the case of Xenopus, it is clear that the rotation of the cortex facilitates the reloca-

tion of dorsalizing factors from the vegetal pole to the presumptive future dorsal side or to a 

more animal (equatorial in the case of Xenopus) region, where they act to initiate gene expres-

sion programs corresponding to the body axis, at a signaling center known as Spemann’s 

organizer [45]. Following fertilization in the Xenopus egg, the cortex rotates an average of 

30° within the first cell cycle, relative to the inner cytoplasm [29, 46], a rotation mediated 

by an array of aligned microtubules beneath the vegetal cortex [47]. At the same time, these 

microtubules become aligned in a parallel arrangement with plus ends directed toward the 

direction of cortical translocation [48], a reorganization that coincides with the initiation of 

cortical rotation [30].

Figure 3. Alignment of microtubules at the vegetal cortex in wild-type zebrafish embryos. (A–B) Between 7 and 12 

min postfertilization (mpf), microtubules at the vegetal cortex start to become reorganized to form parallel bundles. 

(C–D) Around 17 mpf, microtubules become organized into parallel bundles. This organization facilitates the movement 
of dorsal determinants from the base of the vegetal pole to the dorsal region. Scale bar in D represents two microns 

for all panels. (E) Diagrammatic representation of dorsal determinants (green) with respect to more internally located 
determinants, such as vegetally localized germplasm determinants in the zebrafish (orange), depicting microtubule 
reorganization (red lines), before (left) and after (right) cortical rotation.
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In the early Xenopus embryo, microtubule nucleation occurs deep within the animal hemi-

sphere [49] by the sperm-derived centriole near the site of sperm entry. These microtubules 

extend through the cytoplasm toward the vegetal pole, where they contribute to the formation 

of the vegetal microtubule array (Figure 4, top left) [50]. Thus, in Xenopus, rotation (and dorsal 

site formation) typically occurs away from the sperm site of entry. On the other hand, the orien-

tation of the vegetal microtubule array can occur in potentially any direction with respect to the 

cleavage site [5, 29], so that it is unlikely that there is an intrinsic preexisting dorsal asymmetry 

in the egg with respect to the site of cellular cleavage, itself determined by the orientation of 

the spindle [51, 52]. Studies have also shown that cortical rotation can occur toward the sperm 

entry point in specific cases, such as when the sites of meiotic spindle assembly and polar body 
extrusion are oppositely located [53], suggesting the existence of additional unknown variables 

that influence the orientation of the vegetal microtubule array. In Xenopus, cortical rotation is 

halted right before the first cellular cleavage occurs [47], when the microtubules of the vegetal 

microtubule array are depolymerized under the influence of M-phase-promoting factor [54].

A morphologically apparent cortical rotation, observed through changes in the position of 

an outer cortex relative to an inner core as observed in Xenopus, is not readily apparent in 

the zebrafish embryo. However, studies have indicated the existence of processes in the 
zebrafish embryo that share similarities with the amphibian cortical rotation. Early studies 
showed that fluorescent polystyrene beads injected at the vegetal pole were transported 

Figure 4. Microtubule dynamics during cortical rotation. In the Xenopus embryo, microtubule polymerization is 

initiated approximately 30 min after fertilization at the vegetal cortex, when astral microtubules derived from sperm 
components at the animal pole reach the vegetal cortex. Microtubule polymerization also occurs at the vegetal pole 
(growing microtubule (plus) ends indicated by green arrows and preformed microtubules by red lines). Relative 

movement between the yolk cell and the cortex (dashed arrows), initiated by the asymmetry conferred by the sperm-

derived asters, facilitates the alignment of both growing and preformed microtubules in the direction of movement. 

Microtubule alignment in turn contributes to cortical movement. Microtubules oriented toward the dorsal side, the 
direction in which the cortex rotates (Reprinted from Ref. [58], with permission).

Cytoskeleton - Structure, Dynamics, Function and Disease12



animally along microtubule-based cortical tracks in a microtubule-dependent manner [6] 

and that this movement had temporal dynamics and functional requirements similar to 

that of the movement of putative dorsal determinants as defined by embryological manip-

ulations. However, this movement was shown to occur by visualizing injected fluorescent 
beads, as opposed to an entire cortex, consistent with translocation along microtubule 

arrays but not necessarily a shift of the outer cortex analogous to a cortical rotation. A cor-

tical rotation process in the zebrafish was later suggested by the observation of coordi-
nated movement of optically visible particles in the vegetal cortex, and that long-term 

tracking of these particles occurs toward the presumed dorsal side, as expected from a 

cortical rotation [8].

A cortical rotation-like process is also consistent with differences in the changes in RNP par-

ticle distribution at different cortical depths, as visualized by fluorescent in situ hybridization, 
since RNPs located at the outermost cortex undergo a spatial shift with respect to more inter-

nally located RNPs (Figure 3E) [55]. To understand the basis of transport for differentially 
localizing factors at the zebrafish vegetal-most embryonic cortex, double fluorescence in situ 
hybridization (FISH) was used to detect pairs of RNAs for factors involved in axis induc-

tion (wnt8a and grip2a) and RNAs for vegetally localized germ cell specification factors (dazl). 
Localization of these three factors occurs in different RNPs at the vegetal cortex. Moreover, 
RNAs for dorsal factors, wnt8a and grip2a, are enriched in the outermost layer of the cortex, 

whereas RNPs for the primordial germ cell determining factor dazl are present in more inter-

nal regions [55]. Although domains containing RNPs for these two sets of vegetally localized 
factors are both centered at the vegetal pole in the egg, upon fertilization the domain con-

taining the outer cortex RNPs, coding for dorsal induction factors, shifts relative to the more 
internal domain containing germplasm determinant RNPs. RNPs in the outer cortex have a 
function in axis determination and need to experience a relative shift to generate an asym-

metry in the embryo, facilitated by the cortical rotation-like movement. These observations 

further add to the finding of bulk particle movement at the zebrafish embryo vegetal cortex 
[8] and are consistent with a cortical rotation-like process in the early zebrafish embryo. As in 
amphibians, this teleost cortical rotation-like process may be involved in generating an asym-

metry in the location and function of dorsal determinants.

Thus, both in amphibians and teleost, an array of aligned microtubules is associated with the 

movement of RNA molecules and the vegetal cortex itself with respect to the inner egg core, 
which altogether mediates the transport of dorsal determinants toward the prospective dorsal 

site.

3.4. Long-range vs. short-range transport

In both Xenopus and zebrafish, the process of cortical rotation appears to be an important 
part of the mechanism that directs dorsal determinants to their final destination at the animal 
pole. However, zebrafish and Xenopus embryos display some differences in mechanism of 
animally directed transport. In the Xenopus embryo, aligned tracks of microtubules appear to 

span most if not all of the space between the vegetal pole and the prospective dorsal region. 

In zebrafish, in contrast, transport with an end point in blastomeres at the animal pole of the 

Reorganization of Vegetal Cortex Microtubules and Its Role in Axis Induction in the Early Vertebrate Embryo
http://dx.doi.org/10.5772/66950

13



embryo appears to depend on two sequential steps: an initial short-range transport of veg-

etal localizing factors generating a slight off-center shift toward the animal pole, followed by 
animally-directed transport via a more general mechanism. The first, off-center asymmetry, 
is revealed by changes in the distribution of RNAs such as wnt8a and grip2a in a process 

that appears to correspond to a cortical rotation-like event. As in Xenopus, the initial cortical 

rotation-like event in zebrafish depends on the alignment of microtubules in parallel bundles 
at the vegetal cortex. The microtubule reorganization into parallel bundles in turn is depen-

dent on the function of Grip2a (Figure 1, left). Short-range shift in vegetal signals is affected 
in homozygous hecate/grip2a mutant embryos, evidenced by defective off-center shift of RNAs 
such as wnt8a and other factors [26].

The second step involves a long-range transport along the mediolateral region of the embryo 

to the base of the blastomeres by a mechanism that is neither restricted to the dorsal side nor 

dependent on Grip2a function [6, 26]. The presence of such a second transport mechanism can 

be inferred by the observation that hecate/grip2a mutants do not exhibit a defect in the long-range 

animally directed translocation of vegetally injected beads, indicating that animally directed 

movement occurring in mediolateral regions is independent of hecate function. Indeed, injec-

tion of beads in opposite sides of the embryo indicates that animally directed travel along the 

mediolateral region of the yolk cortex occurs in both injected sides, implying that, as opposed 

to Xenopus, the entirety of the zebrafish mediolateral cortex, and not only the prospective dorsal 
region, is competent for long-range movement [26]. It is possible that the second step in zebraf-

ish depends on a more general transport mechanism associated with animally directed trans-

port in meroblastic embryos, through which other factors with a function unrelated to dorsal 

axis induction, such as vegetally localized germplasm RNAs [56], need to travel animally 

toward the forming blastodisc. Thus, both Xenopus and zebrafish experience animally directed 
movement of dorsal determinants facilitated by a microtubule-dependent cortical rotation-

like process. However, the Xenopus embryo uses a mechanism in which cortical rotation and 

microtubule alignment into parallel tracks together implement long-range movement of dorsal 

determinants through an apparently seamless mechanism. In teleost embryos, on the other 

hand, embryonic-scale differences along the dorsoventral axis are generated by the sequential 
action of a short-range off-center movement mediated by less expansive vegetal microtubule 
array, which is subsequently amplified by a more general animally directed system.

3.5. Other factors involved in vegetal microtubule reorganization

Additional factors have been identified to be important for dorsal axis induction. A mutation 
in the maternal-effect mutant brom bones, which has a nonsense mutation in the gene hnRNP 

I, shows egg activation defects, disorganized vegetal microtubule array formation, and subse-

quently defects in axis formation [16]. Additionally, these mutant embryos display egg activation 

defects as evidenced by failure of cortical granule exocytosis and chorion expansion. In zebrafish, 
cortical granule exocytosis is one of the first cellular responses to egg activation and is initiated by 
a wave of elevated cytoplasmic calcium that is impaired in brom bones mutants [16]. It is possible 

that the defect in vegetal microtubule alignment in brom bones is similarly based on the calcium 

release defects after egg activation, which is required for vegetal microtubule array formation [8].
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Studies have also revealed that an ubiquitin ligase, tripartite motif-containing 36 (trim36), is 

required for vegetal microtubule reorganization mediating axis induction. Xenopus trim36 is 

maternally expressed, with mRNA enrichment at the Balbiani body in stage 1 oocytes and 
localization to the vegetal cortex of stage VI oocytes. trim36 mRNA is also detectable in the 
germplasm of fertilized eggs and cleavage-stage embryos [57]. Embryos depleted of trim36 

function by injection of antisense oligos into oocytes exhibit defects in vegetal microtubule 

reorganization and cortical rotation, leading to reduced organizer formation and severe 

embryo ventralization at later stages [57]. As expected, injection of wnt11 mRNA rescues this 
effect, confirming that Trim36 functions upstream of Wnt/β-catenin activation. Recent studies 
have shown that Trim36 attenuates the growth of plus ends of vegetal microtubules during 
array formation (see below) [58], indicating a role for this factor, possibly through the media-

tion of protein degradation, in the regulation of microtubule dynamics essential for array 

formation.

The mRNA for dead end, which codes for an RNA-binding protein initially shown to be essen-

tial for the development of the germ line [59–68], has been shown to have a role in vege-

tal microtubule array formation. In Xenopus, the mRNA for dead end1, like that of trim36, is 

localized to the vegetal pole of the oocyte [61]. Early embryos depleted of dead end exhibit 
an unexpected defect in the formation of arrays of parallel vegetal microtubules and conse-

quently axis specification [69]. This requirement appears to depend on the function of Dead 

end protein to directly bind trim36 mRNA and anchor it to the oocyte vegetal pole, likely 
increasing Trim36 protein local concentration in this region [46].

Thus, a variety of factors are required for the reorganization of vegetal cortex microtubules 

leading to dorsal determinant transport. In some cases, these factors are important for general 

processes essential for the microtubule reorganization, such as in the case of hnRNP I and 

dependent calcium signaling. In other cases, these factors begin to delineate a pathway for 

microtubule reorganization, as in the case of dead end and trim36, involved in the regulation 

of vegetal microtubule growth.

3.6. Mechanism of microtubule alignment during cortical rotation

Even though it has been shown that microtubule-dependent cortical rotation is important for 
axis formation, the molecular mechanisms underlying the organization and orientation of 

cortical microtubule have not been fully elucidated. The process of cortical rotation is highly 

conserved, and it likely requires the embryo to use a significant amount of energy. Weaver 
and Kimelman [70] asked the question that if dorsal determinants can travel along microtu-

bules, then what is the purpose of the cortical rotation? As described above, cortical rotation 

might directly contribute to the overall animally directed movement of the dorsalizing activ-

ity. However, studies have also suggested that cortical rotation might serve to facilitate align-

ing the polymerizing microtubules into parallel bundles and orienting their plus ends toward 

the dorsal side. One favored model for the orientation of the microtubule array is a positive 

feedback mechanism where initial random asymmetry in microtubule growth is amplified by 
continuous movement of the cortex [31, 58].
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Microtubules that form the vegetal microtubule array appear to arise from several sources 
[70]. Some are nucleated by the centriole of the sperm, which acts as a minus-end micro-

tubule-organizing center, others extend toward the periphery from unknown sources deep 

in the cytoplasm and bend into the vegetal shear zone, and, finally, some arrays appear to 
polymerize spontaneously in the vegetal shear zone [49, 50]. As the vegetal microtubule array 

begins to form, it becomes progressively stabilized by movement of the cortex during cortical 

rotation, which provides an amplifying loop for microtubule alignment [58]. The precise man-

ner by which this cortical movement contributes to microtubule alignment and stabilization 

is not fully understood. Suggested mechanisms, described below, include a combing process 

mediated by cortically anchored kinesin-related proteins [54, 70] or the stabilization of micro-

tubules by membrane compartments such as the endoplasmic reticulum and vesicles [58].

Vegetal microtubules originally appear with their plus ends in a random orientation yet sub-

sequently become aligned in parallel arrays with plus ends directed toward the dorsal side 

(Figure 4) (reviewed in Ref. [70]; see also Ref. [58]). Marrari and colleagues suggested how 
microtubules could become aligned through cortical motor proteins and the process of the 

cortical rotation [54] (reviewed in Ref. [70]). They proposed that cortically anchored plus-end-

directed motor proteins, such as kinesins, move toward microtubule plus ends, generating a 

cortical displacement with respect to the inner core [47, 54, 71]. The attachment of plus ends to 
the moving cortex mediates aligning of microtubules in the same direction. Thus, the move-

ment and action of these kinesin-related proteins could potentially align the microtubules 

as well as generate the pulling force that is needed to translocate the cortex relative to the 

cytoplasm [54, 70]. This positive feedback loop also allows amplifying an original small asym-

metry into the observed prominent array of parallel microtubule bundles.

Marrari and colleagues also investigated the role of kinesin and dynein motors in the for-

mation of the cortical microtubule array as well as their role in the translocation of the 

vegetal cortex [47, 54, 71]. The function of kinesin was inhibited using an antibody against 

a highly conserved peptide of the kinesin motor domain, LAGSE. Anti-LAGSE antibodies 
block spindle elongation in semi-in vitro systems [47, 54, 71, 72] and successfully interfere 

with kinesin function [47, 54, 71]. The function of dynein was inhibited by microinjection 

of p50/dynamitin beneath the vegetal cortex [54]. In Xenopus egg extracts as well as cells, 

excess dynamitin inhibits processes dependent on dynein function by disrupting the dyn-

actin complex [73].

Inhibition of kinesin-related function results not only in expected defects in mitosis and 

cell cleavage but also in disruptions in the array of vegetal microtubules and cortical rota-

tion [71]. On the other hand, inhibition of dynein causes an inward shift in the distribu-

tion of microtubules with respect to the cortex, indicating that dynein functions to move 

microtubules outward, into the vegetal subcortical layer [47]. Moreover, these experiments 
showed that the formation of the vegetal microtubule array (and therefore cortical rota-

tion) is sensitive to dynein inhibition prior to array formation, but that cortical rotation 

remains sensitive to inhibition of kinesin function throughout the normal period of rotation 

[47]. Together, these data suggest that kinesin and dynein motors have different functions 
during cortical rotation (Figure 5) [47]. In this model, dynein motors anchored to internal 
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elements generate an outward force to facilitate bringing microtubules from the inner egg 

core region to the vegetal cortex. Kinesins, on the other hand, are thought to act by tethering 

microtubule plus ends to the cortex, thus generating a pulling force on microtubule arrays, 

mediating the rotation of the cortex itself, and favoring further parallel alignment of micro-

tubules within the array. It is important to note that, after the vegetal microtubule array 

has formed, further microtubule alignment and cortical rotation can occur independent of 

dynein function, but motors of the kinesin-related protein family are needed for the move-

ment of the cortex [47]. Thus, kinesin motor function appears to be essential for Xenopus 

cortical rotation, whereas the role of dynein appears to be more indirect. Altogether, these 

data suggest that both motor proteins interact early in the process of vegetal microtubule 

array, followed by a period in which kinesin-dependent translocation is sufficient to gener-

ate cortical movement.

Olson and colleagues performed experiments that would characterize microtubule plus-end 

dynamics in Xenopus oocytes and eggs, identified changes in microtubule stability and plus-
end flux during the oocyte to egg transition, and characterized behaviors that are present at 
the onset of cortical rotation (Figure 4) [58]. They showed that the initial phase of microtu-

bule assembly is between 25 and 35 min post egg activation. During this time, microtubules 
are short and dynamic with a low initial density that increases rapidly [58]. In the second 

phase of assembly, microtubules polymerize rapidly from sites within the vegetal cortex. 

Microtubules became thinner or less bundled, and the entire network appears to sink deep 

Figure 5. Proposed role of microtubule-dependent motors on the rotation of the vegetal cortex, as suggested by inhibitor 

studies [47, 54, 71]. A pushing force from the minus-end-directed microtubule motor dynein (green; green arrows show 

direction of motor movement relative to microtubules) helps translocate microtubules (depicted in red) from the inner 

cytoplasm outward onto the cortical surface (green arrowheads indicate direction of microtubule movement). Plus-end-

directed microtubule motors such as kinesins (blue) anchor microtubules to the cortex and facilitate cortical movement 

relative to the yolk mass (blue arrows show direction of motor movement relative to microtubules). (Reprinted from Ref. 

[71], with permission. The original image has been rotated horizontally for a better comparison to others in this chapter.)
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into the cytoplasm. At this time the microtubule array is referred to as exhibiting a “fine-
combed” appearance, which is thought to be the result of the continual action of cortical kine-

sin-related proteins that straighten microtubules as the cortex moves along them [47, 58, 70]. 

At the same time, at approximately 36 min post activation, the cortical shift in relation to the 
egg core becomes apparent [58]. These studies also reveal that microtubule-directed growth, 

occurring after the initial cortical microtubule alignment, has an important contribution to the 

formation of the vegetal array of parallel microtubules, which powers cortical rotation.

It was previously noted that the direction of microtubule polymerization in cultured cells 

depends on the arrangement of elongated tubes of endoplasmic reticulum [74]. Endoplasmic 
reticulum, vesicles, and tubes possess kinesin-like microtubule-associated proteins that asso-

ciate with microtubules during transport and elongation, and it is possible that similar mem-

brane organelles are attached to the vegetal cortex and facilitate kinesin-mediated anchoring 
of microtubules during cortical rotation [31]. A precedent for this is the association of cortical 

ER with aligned microtubules in early ascidian embryos (see below) [75]. Further studies 

will be required to address a potential role for membrane organelle attachment in Xenopus 

vegetal microtubule array formation and cortical rotation, such as membrane organelle slid-

ing between membrane organelles and microtubules, or associations of ER extensions with 
growing microtubule tips [76].

Studies in zebrafish are consistent with mechanisms for cortical microtubule array formation 
and alignment as detailed in amphibians, including the presence of early internal microtu-

bules, increase in cortical microtubule polymerization concomitant with microtubule align-

ment and bulk movement of the cortex, and the aligned orientation of microtubule plus ends 

toward the prospective dorsal site [8].

Altogether, these studies suggest that the formation of the vegetal microtubule array is 

dependent on the orchestration of various influences, including dynein-dependent out-
ward translocation of existing microtubules, kinesin-dependent vegetal anchoring of 

cortical microtubules, and microtubule polymerization at the vegetal cortex. Vegetal 

microtubule and cortical rotation are interdependent and enhance each other, resulting 

in the alignment of preexisting and new microtubules and allowing dorsal determinant 

transport.

4. Cortical rotation and cytoskeletal dynamics in invertebrate and 

protovertebrate systems

As described above, a cortical rotation process has been described in amphibians, and a related 

process proposed in teleosts. However, other studies have described processes of cytoskeletal 

reorganization that serve a similar purpose as the cortical rotation, namely, the early distri-

bution of cellular determinants that will help pattern the egg or embryonic axis. We briefly 
discuss three such examples below, in ascidians (a chordate protovertebrate), the nematode 

Caenorhabditis elegans, and the dipteran Drosophila melanogaster, highlighting similarities with 

cortical rotation-like processes in lower vertebrates. For a more in-depth description of these 

processes, the reader is referred to Refs. [77–81] .
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4.1. Ascidians

In ascidians, gastrulation and neurulation involve cellular rearrangements that are comparable 

to those in vertebrates, with the exception that ascidians are composed of just a few hundred 

cells, while vertebrate embryos contain thousands of cells [82]. In fact, the very first classical evi-
dence that localized determinants control cell fate specification was found in ascidians [82, 83].

The ascidian egg undergoes dramatic cytoplasmic and cortical reorganizations between fertil-

ization and the beginning of the first cleavage, a process that has been referred to as ooplasmic 
segregation [83–85]. Ascidian ooplasmic segregation occurs in two major phases (Figure 1, 

right). The first phase occurs shortly after fertilization. The first consequence of fertilization is 
that a calcium wave is initiated from the site where the sperm and egg fuse [86]. Upon fertil-

ization, the sperm activates the stage IV oocyte, which was arrested in metaphase I of meiosis, 

resulting in the contraction of the egg cortex and the plasma membrane as a wave that travels 

across the egg in the animal to vegetal direction. It was suggested early on that an oocyte acto-

myosin cortical network can only contract in a general animal to vegetal direction regardless 

of the sperm entry site, because of it being less dense around the animal pole, in a basket-like 

arrangement [86, 87]. This animal-to-vegetal contraction in turn causes the segregation of 

cortical and subcortical components including microfilaments, mitochondria, and the cortical 
endoplasmic reticulum (cER) [77, 88, 89].

Unfertilized eggs after the first phase of ooplasmic segregation are radially symmetrical along 
the animal-vegetal (A-V) axis. This symmetry is broken in the second phase of reorganization 

after the movement of cortical and subcortical components from the vegetal pole toward the 

posterior pole occurs, generating an anteroposterior asymmetry, and eggs become bilaterally 

symmetrical [77]. In this second ooplasmic segregation phase, a number of cellular organelles 

such as the ER and mitochondria are brought toward the future posterior pole [90]. These 

organelles also anchor specific RNAs, termed postplasmic/PEM, which are important for mus-

cle determination and the specification of the posterior cell fate, in particular the germ line [91]. 

Other factors involved in endoderm formation and gastrulation do not move toward the future 

posterior pole and instead expand their distribution to the vegetal hemisphere (see Figure 1) 

[77]. Reminiscent of asymmetry development in Xenopus, it has been suggested that also in the 

ascidian egg, reorganization of plus-end-directed motors attached to the ER could provide the 
major force to move the vegetal cortex dorsally to a more equatorial location [48, 92].

Ascidian embryonic polarity is directed by a posteriorly located centrosome, introduced 

through sperm entry in this region [77, 93, 94]. In contrast to the first phase which is driven 
by microfilaments, and where the sperm triggers a cortical contraction [88], the second phase 

is mediated by anchoring one of the centrosomes of the bipolar spindle to the vegetal poste-

rior cortex, resulting in the posterior asymmetric localization of germ line-determining com-

ponents. Spindle pole posterior anchoring also results in the eccentric, posteriorly located 

placement of the spindle, which in turn (because of the influence of the spindle midzone on 
furrow induction) [51, 52], results in asymmetric division [75, 77]. In this manner, the embryo 

generates sets of smaller posterior cells fated to become the germ line.

Thus, in both Xenopus and ascidians, microtubule-dependent function results in the redis-

tribution of embryonic determinants just before the onset of embryonic mitoses, the  
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posterior-specifying cytoplasmic components such as the cER-mRNA and myoplasm domains 
being displaced posteriorly in ascidians and dorsalizing factors being translocated toward the 

future dorsal side in Xenopus [89, 95].

4.2. Caenorhabditis elegans

In the nematode C. elegans, a role for PAR proteins in anterior-posterior (AP) axis specification 
is well documented [96]. In contrast, dorsal-ventral (DV) patterning in this system is less under-

stood. It was recently reported that the so-called cytokinetic midbody remnant (MBR), a thus-
far poorly studied organelle, acts as a polarity cue to define the C. elegans DV axis [97]. The MBR 
is an organelle that forms from the cytokinetic midbody when the fully constricted actomyosin 

furrow embraces the condensed material of the spindle midzone [98, 99]. To understand the 

role of the MBR in DV axis specification, Singh and Pohl [100] analyzed the pattern of segrega-

tion and the movements of the MBR during the first divisions of the C. elegans embryo. The 

AP axis of the C. elegans embryo is established by the asymmetric distribution of PAR proteins 

during the P0 division producing an anterior AB and a posterior P1 blastomere. Subsequently, 

the DV axis is established in the transition from the two-cell to the four-cell stage [101]. During 

prophase of the second cell division in the P1 cell, a 90° rotation of the nucleus-centrosome com-

plex relative to the AP axis takes place, and is regarded as a key event in DV axis formation [102, 

103]. It was not clear as to what generates this movement, which has long been a point of inter-

est. The authors showed that the MBR was displaced toward the ventral side of the embryo and 
that it acts as a positional cue for mitotic spindle rotation in the P1 cell, thereby establishing DV 

axis patterning. Importantly, the authors demonstrated that ventral displacement of the MBR 
is directed by myosin II cortical flow [97, 100]. In this system, again microtubules together with 

coordinated actomyosin regulation are important for symmetry-breaking events in the embryo.

4.3. Drosophila melanogaster

In D. melanogaster, the transition from a round to an elongated egg is driven by the rearrange-

ment of the polar arrays of microtubules [80, 81], a process that is again facilitated by the 

actomyosin cytoskeleton [81]. As in C. elegans and ascidians, this reorganization results in 

the segregation of cell determinants to the posterior pole of the egg, except that in the case of 

Drosophila, these changes occur during oogenesis and not early embryogenesis.

Altogether, these studies show that the microtubule cytoskeleton, and in some cases the acto-

myosin cortex, is used to generate axis asymmetry in various organisms, although the precise 

details of the interactions, and whether microtubules act as tracks that mediate transport or 

attraction centers, are specific to different species [97, 104].

5. Relationship between axis induction and germ cell specification

As mentioned above, in addition to dorsal determinants, anuran and teleost embryos con-

tain other vegetally localized factors, particularly RNAs that become associated with the 
germplasm. The germplasm, also referred to as nuage, is a maternally inherited cytoplasmic 
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 structure containing RNPs present in some animal species. Through a mechanism referred to 
a preformation, inherited germplasm determines the germ cell fate [105]. Evidence for prefor-

mation mechanism for PGC induction in anurans was originally shown by the inheritance of 
electron-dense cytoplasm, corresponding to germplasm, into the primordial germ cells of this 

organism [106]. This electron-dense cytoplasm was later shown to contain specialized mRNAs 
involved in germ cell specification [107]. Similarly, RNAs involved in germ cell development 
in zebrafish, such as for the gene vasa [108] and subsequently other mRNAs [56, 59, 109], were 

shown to localize in electron-dense particles and become segregated to primordial germ cells.

Maternally inherited germplasm in Xenopus and zebrafish contains shared sets of factors for 
primordial germ cell specification, such as deleted in azoospermia-like (dazl) and Xcat2/nanos. 

Zebrafish and Xenopus additionally share similarities in the way in which germplasm masses 

are assembled and segregated, including the gradual condensation of germplasm masses 

from smaller particles, the formation of four germ masses, and their asymmetric segregation 

during cell division in the cleavage stages [110, 111].

Recent studies in these systems have begun to suggest a functional connection between axis 

induction and germ cell determination. As described above, during oogenesis both dorsal 

determinants are transported to the vegetal pole of the egg through the mitochondrial cloud 

in Xenopus and its equivalent structure, the Balbiani body, in zebrafish [111, 112]. Moreover, 
during early embryogenesis, genes acting in dorsal induction functionally overlap and share 

localization patterns with genes involved in germ cell determination. For example, the germ-

plasm component dead end, which has been well characterized as a germplasm-specific tran-

script both in Xenopus [61] and zebrafish [59] and is known to function in germ cell migration 

and survival, has been shown in Xenopus to have an unexpected role in axis induction [46]. 

Xdead end RNA localizes to the vegetal pole in oocytes beginning at the early stage III to stage 

VI, when it becomes transported to the vegetal pole via the late RNA transport pathway [61]. 

It has recently been shown that maternal XDead end plays a role in vegetal microtubule reor-

ganization required for dorsal axis induction [46]. When XDead end function is disrupted, 

the expression of dorsal-specific genes is reduced, and embryos become ventralized, due to 
the disruption in vegetal microtubule reorganization [46]. As mentioned above, this require-

ment appears to be due to a role for XDead end function in the vegetal cortex anchoring of the 

RNA for the Trim36 ubiquitin ligase [46], itself needed for growth regulation of the vegetal 

microtubule array [58].

Conversely, factors known to be involved in dorsal axis induction also function in germ cell 
development. One example is maternal Syntabulin, which as mentioned above is impor-

tant for vegetal microtubule array reorganization and axis induction in both zebrafish 
and Xenopus [36, 113]. Recently, syntabulin mRNA has been shown to localize in Xenopus-

cleaving embryos to clusters near the cleavage furrow on the vegetal hemisphere of the early 

embryo, consistent with germplasm localization and colocalization with Xpat RNA, a germ 
cell marker, during later stages [113]. Xenopus Syntabulin is also expressed in scattered cells 
localized along the posterior endoderm, presumably primordial germ cells [113]. These data 

suggest that, in addition to a role in DV patterning, Syntabulin may have a role in germ cell 
development.
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Similarly, grip2a, which as mentioned above is required for vegetal cortex microtubule 

reorganization in zebrafish [26], has gene homologues involved in germ cell development 

in the Xenopus embryo [43, 44], suggesting a potential scenario in which an ancestral grip 

gene had a role in both processes. Altogether, these findings suggest that there is functional 
overlap between factors involved in germplasm segregation and axis induction. Whether this 

functional overlap is caused by evolutionary history or convergent evolution remains to be 

determined.

It is important to note, as stated above, that there is a difference with respect to cortical depth 
between the factors that are localized to the vegetal pole. Those that are important for micro-

tubule reorganization, and thereby patterning the embryonic axis, namely, grip2a and wnt8a, 

are located toward the outermost region of the cortex. This allows them to be transported 

from the vegetal to the prospective dorsal region of the egg and embryo through a cortical 

rotation-like process. Those factors that are important for germ cell specification, such as dazl 
RNA, are localized deeper within the embryo and are transported via the actin cytoskeleton 
to the animal pole, where they become localized to the aggregating zebrafish germplasm [55]. 

Thus, RNA localization at the cortex reflects transport mechanisms consistent with the func-

tion of the localized product.

These set of studies highlight commonalities between processes and factors involved in axis 

induction and germ cell specification. Factors such as Dead end, Grip2, and Syntabulin may 
form a core gene set with a current or ancestral function in both axis induction and germ cell 

determination.

6. Conclusion: challenges and future directions

The cytoskeleton plays an essential role in axis specification, through its role mediating the 
movement of maternal factors within the early zygote. Studies have shown that the reorga-

nization of the microtubule cytoskeleton is important for the transport of factors from the 

vegetal pole of the embryo to the future dorsal side in both zebrafish and Xenopus, in a process 

associated with the shift of the outermost cortical layer of the embryo—a cortical rotation. 

This cytoskeletal reorganization allows for the asymmetric transport of localized dorsal deter-

minants, involved in the specification of the main embryonic axis. Precise mechanisms for 
microtubule reorganization remain incompletely understood, although are known to involve 

microtubule dependent motors and a positive feedback loop in which an early asymmetry 

and microtubule alignment triggers the rotation of the cortex, which in turn amplifies and sta-

bilizes the incipient cytoskeletal rearrangement. Anurans and teleosts show similarities in the 

use of microtubule arrays and a cortical rotation-like mechanism, although they also exhibit 

differences in the spatial extent implemented by these coordinated processes, variations that 
may be related to the different cleavage type of these embryos. Components of the germ-

plasm, which also become localized to the vegetal pole of the fertilized embryo, may escape 

cortical rotation by virtue of differential localization in more internal regions of the embryo. 
A comparison of early cytoplasmic segregation events in other species, such as ascidians, 
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nematodes, and dipterans, highlights the importance of microtubule- and other cytoskeletal-

dependent processes in the generation of early asymmetries in the embryos. Further studies 

will allow better understanding for mechanisms of microtubule generation, bundling, and 
alignment that drive the movement of cellular determinants in the early vertebrate embryo 

and their relation to similar processes in other animal lineages.
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