
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

25

Impossibles: A Fully Autonomous Four-legged
Robot Soccer Team

Hamid Reza Vaezi Joze, Jafar Habibi and Nima Asadi
Sharif University of Technology

Iran

1. Introduction

The goal of the international RoboCup soccer initiative is to develop a team of humanoid
robots that is able win against the official human World Soccer Champion team until 2050.
Currently, there exist a number of different RoboCup soccer leagues that focus on different
aspects of this challenge. The Four-Legged League is one of them. In the league teams
consisting of four Sony Aibo robots each play on a field of 6 m x 4 m. The robots operate
fully autonomously, i.e. there is no external control, neither by humans nor by computers.
In this chapter we are going to present the Impossibles main architecture and its modules to
create a fully autonomous team of 4-legged robots (Sony Aibo) for playing soccer according
to RoboCup 4-legged Soccer League’s rule. This architecture includes different modules
such as World Model, Vision, Decision Making, Motion Controller, Communication, and
Localization. This chapter presents the integration of our researches in different fields
which came together to create fully autonomous robots for specific purpose that is playing
soccer as humans do. And this could be a primitive attempt to develop intelligent robots.
In the first section we briefly describe the specifications of Aibo Robots, the history and rules
of RoboCup 4-legged Soccer. In Section 2 we discuss previous works which consists of our
team’s architecture. Fig. 1 demonstrates our team (Impossibles) architecture. In next sections
each module will be discussed separately. It includes the tasks of the modules, the
corresponding task in other teams and the scientific methods which were used before or
those that are presented by us.
The Vision module consists of chromatic distortion, color classification, line and object
detection which is mainly concerned on colored image processing. Our Localization module
applies piecewise linear probabilistic localization method which is based on Markov
localization. In the case of distributed agents (against centralized agents) these raw data
should be shared between all teammates via wireless communication. Decision making
module is responsible for high-level decision and it consists of soccer strategies besides
fuzzy rules. Motion skills, parameters of walking and movement estimation are the main
parts of Motion module. In the Tools & Debugging Section we concentrate on debugging
tools which simplify the process of debugging on the robots and also an interpreter which is
used for facilitation of determining team strategies and player’s roles.

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Robotic Soccer 494

1.1 Why Four-Legged Robot Soccer?

As an internationally recognized team game, soccer is a perfect standard project for
studying how multi-robots perform and react autonomously in uncertain, team-oriented
scenarios. The sport also provides some entertainment value adding good spirits and public
interest to a concrete test bed event for researchers. These reasons could be the motivation of
existence of RoboCup Soccer Competitions since 1996.
After years of competition in soccer with the Small Size and Middle Size robots, which
moves with wheels, besides Simulation Leagues, 4-Legged Soccer League was added to
RoboCup. The ambition of 4-Legged soccer league is to simulate the way human beings play
soccer, with the use of legs. One of the other advantages of 4-Legged robots is that the
platform is common among all the teams and this establishes a fair test-bed for Artificial
Intelligence achievements.

1.2 Aibo Robot Specifications

AIBO robots’ first generation was developed by SONY Corporation in 1999 for
entertainment purposes besides its use in research laboratories. The Sony Aibo robot is
currently a very interesting platform to conduct research in Robotics and Artificial
Intelligence. Aside the numerous captors and actuators, the most important element is that
Aibo is programmable. The Aibo programming language, built on top of C++, is provided
by Sony as the OPEN-R SDK. The latest product of Sony Aibos is its third generation Aibo
robot, ERS-7, with a great tool for wireless communication.
These robots have 20 degrees of freedom and are equipped with a 576 MHz processor and

16 MB of RAM. The most important sensor of this robot is a CMOS camera with 56.9°

horizontal and 45.2° vertical vision angles.

2. Impossibles Architecture

Our previous experience in Multi-Agent System (MAS) architecture design in Simulation
league environment led us to World Model Based Architecture (WMBA). We employ it as
our basic designed architecture for concurrently-running objects of Open-R SDK. WMBA
contains four major tasks which are done independently in following subsystems:

1. Sensing Subsystem
2. Communication Subsystem
3. Action Subsystem
4. Debugging Subsystem

These subsystems are to run repeatedly with different frequencies. They are managed in
such a way that objectives are achieved and constraints are convinced. The main constraint
of the AIBO robots is the limited resources such as CPU. The last subsystem which is new to
previous architecture is in charge of gathering appropriate information from other
subsystems and sending them to Aibo Controller software which will be described later.
Fig. 1 demonstrates the World Model based architecture. Subsystems are denoted by dotted
rectangles, data flow is shown as arrows, and processes are shown by circles.
To make Decision Making module completely separate from other parts, we use a non
Open-R abstract class called AbstractPlayer. There are two pure virtual functions in this

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 495

abstract class. The first one is sense which is called every time robot gets some new
information. The second virtual function is decisionMaking which is called in a specific
period of time to decide about new actions. The result of this function could be any of the
actions such as walking, shooting, looking, etc. Some actions such as standing back to
normal position in the case the robot falls down and also Blocking Skills (which will be
discussed later in detail) are done completely without interrupts or preemptions, so
decisionMaking is not called during these skills.

Fig. 1. Impossibles World Model base Architecture

3. Vision

Undoubtedly, vision is the most powerful sense of human being providing a great deal of
information for interaction with environment without any physical contact. In this section,
we concentrate on providing a method for real-time vision in a robot with low
computational power and limited memory. Real-time vision means processing image frames
with the speed of robot's camera. The most important sensor of this Aibo robot is a CMOS
camera with °9.56 horizontal and °2.45 vertical vision angle.

Vision problem for these robots which refer to recognize type and location of surrounding
objects is described as follows:

• Input: (i) The output of robot camera in the form of 30 pictures per second, with the
size f 208x160 pixels and in the YCrCb color space consisting color distortion and noise.
(ii) The value of robot's joints through which the value of camera's pan, tilt and roll can
be obtained.

• Output: (i) Robot's distances and angles in relation to the ground's fix location by which
the robot estimates its position in the field. (ii) Robot’s distances and angles in relation
to moving objects which determine their position relative to the robot.

The first work carried out on the image received from robot's camera is the correction of
distortion existed in the color of image pixel far from the center of image. Then the color of

Robotic Soccer 496

each pixel in the corrected image is attributed to one of the predefined color class. Then,
existing blobs of each color are formed for the color of existing objects in the image, and
based on the color, size and density of existing objects in the image is recognized. Also, by
using a method provided for obtaining the three dimensional coordinates of each pixel in
the image in the outside space relative to itself, position of each object relative to the robot is
calculated. Specially, ground's lines are among of important objects in the soccer field which
are distinguished in a separate manner with seeking green-white edges. Finally, having
determined the position of objects relative to the robot, the position of robot in the field is
calculated through the objects having a fixed place in the environment.

Fig. 2. Architecture of real-time vision system of robot

Fig. 2 displays the architecture of robot's real-time vision system (Mokhtarian et al., 2007).
Also this system require offline processing regulating some provided algorithms'
parameters for various setting prior to the application of software on the robot.

3.1 Correction of Chromatic Distortion

Aibo robot's camera causes a considerable chromatic distortion in the color of pixels at the
corners of images. Fig. 3 (a) displays an image taken by such camera from a uniformly
colored yellow page. Variations of the three color components (Y, Cr, and Cb) of this image's
pixels are shown in Fig. 3 (b) in terms of pixels' distance from image's center (r).
The thick and fading curves of Fig. 3(a) illustrate variations of the observed values of the Cr
component (channel) of pixels, in terms of r, in a number of images taken from uniformly
colored pages. We define the actual value of each component for these colors, as that
component's value in the pixels around the center of the corresponding image, where there
is negligible distortion.
By shifting the horizontal axis to the width of actual value of the Cr component, for each
curve (e.g. 141 for yellow) in Fig. 4(b), the diagram of

actualobserved CrCr − is obtained for each

color, which we approximate by a curve of second degree in the form of 2r×γ . These

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 497

curves are shown in Fig. 4(a) by thin continuous curves. Beside each curve, the actual value
of the Cr component and the corresponding γ value are displayed as well. The coefficient

γ for each curve depends on the actual value related to the curve, as shown in Fig. 4 (b).

(a) (b)
Fig. 3. (a) Image taken from a uniformly colored yellow page. (b) Values of color

components of Figure 2-a's pixels in terms of distance from the center (Y, Cr, and Cb
are shown by gray, red, and blue colors respectively)

(a) (b)

Fig. 4. (a) Variations of the component Cr in terms of r in a number of uniformly colored
pages. (b) γ values in terms of the actual value of Cr

We approximate the values of γ by a linear equation in terms of
actualCr in the form of

βαγ +×=′
actualCr . Coefficientsα and β for each color component, are parameters independent

of images' colors and are determined for the camera with specified parameters (shutter
speed, white balance, and gain).

Curves approximating
actualobserved CrCr − using the new coefficient (γ ′ which is on turn

obtained by a linear approximation from
actualCr) are displayed in Fig. 4(a) as thick dotted

curves. The maximum error of this two-level approximation in our experiments on
uniformly colored images –Fig. 4(a) depicts variations of the Cr component of a number of
them– has been acquired as an inaccuracy of at most 10 units for a component, which seems
appropriate with respect to the interval of components' values (0..255). After determining

coefficientsα and β for the component Cr, Equation (1) holds for each pixel of an image.

1
)(

2

2
2

+×

×−
=×+×=−

r

rCr
CrrCrCrCr observed

actualactualactualobserved
α

β
βα (1)

Therefore, having
observedCr for each pixel, pixel's distance from the center of the image, and

coefficientsα and β , the actual value of the Cr component of each pixel's color is obtained

using Equation (1). Similarly, the actual values of two other components of pixels' colors are

Robotic Soccer 498

obtained and thus the chromatic distortion of the image is corrected. Fig. 5(a) and (b) depict
two sample images captured by robot's camera and Fig. 5(c) and (d) depict the result of their
correction. For speeding up the process of chromatic distortion correction of images in real-
time visioning, we use pre-calculated tables for each process.

(a) (b) (c) (d)

Fig. 5. Two samples images taken by the robot's camera, before ((a) and (b)) and after ((c)
and (d)) correction of chromatic distortion

3.2 Color Classification

In order to recognize objects existing in an image, firstly it should be segmented into color
regions with specified colors and the rest of processes are carried out on the color-classified
image. We use a three-dimensional (128128128 ××) color classification lookup table

mapping points of the YCrCb color space to corresponding color classes. The number of

colors that should be distinguished from one another)(n is 8. Moreover, we consider an

additional class named unknown for colors similar to more than one of our specified classes.
In order to construct this table, we take a large number of images from the environment and
objects with which the robot is dealing, and after correction of chromatic distortion, we
specify relevant color segments in each image for the learning tool.
We conduct color learning and color classification based on the HSL color space since it
resulted in best outcomes in our experiments regarding colors existing in our environment
and its lightning conditions. Therefore, having collected the samples of each color class from
captured images, the averages of H, S, and L components of each color class)(iC is

designated the standard point),,(iii lsh for that color class in the HSL space.

In order to determine the class of each cell of the three-dimensional color classification table,
first we obtain its corresponding point in the HSL space, and then calculate its similarity to

each color class using a heuristic function in the form of Rnich i →≤≤ }1|{: . The value

of this function for a),,(lsh point is calculated using Equation (2).

)),,(),,,((
)(

iii

i
i

lshlshd

w
ch = (2)

In Equation (2), function d stands for the Euclidean distance between two points in the

three-dimensional representation of the HSL color space, and
iw is the weight of each color

class which somehow indicates its dispersion in the color space. Therefore, the standard
deviation of positions of each class's sample points in the HSL space can be thought as an
appropriate statistical criterion for the weight of that class. In addition, this criterion can be
used as an initial state for obtaining the optimum set of weights which results in the best

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 499

outcome (i.e. minimum difference between automatically and manually color-classified
images) using manual tuning tools or intelligent searching algorithms.
Having determined point in the HSL space corresponding to each cell of our lookup table,
and calculated its similarity to each of our color classes, the most similar class is designated
the color class of that cell. In addition, those points of the HSL space which are almost
equally similar to more than one color class (i.e. the difference of their similarity to the most
and the second most similar color classes is lower than a certain value) are placed in the
unknown color class. Fig. 6 illustrates the color classification table obtained for our Aibo
laboratory environment. This figure is a cube of side 256 from whose front a cube of side 192
is taken out. Gray areas of this figure stand for the unknown color class.

Fig. 6. Color classes in the three-dimensional space HSL

A sample of color classification (after correction of chromatic distortion) on the image
shown in Fig. 7(a) is depicted in Fig. 7(b).

(a) (b)

Fig. 7. (a) Image taken by the robot's camera. (b) The result of color classification of (a)

3.3 Transforming a pixel in an image into a point in the space

A pixel in an image can simply be represented by),(nm , its coordinates in the image, where

the coordinates axes of image are chosen as Fig. 8(a) for facilitating the calculations. On the
other hand, a point in the space can be represented by),,(zyx , where the coordinates axes of

the actual space are relative to the robot as shown in Fig. 8(a) (the floor is the plane 0=z).

Fig. 8. coordinates axes in the image and in the actual space

Required parameters of the problem are:

• α : Camera's tilt (Angle made by camera and the horizon).

Robotic Soccer 500

• β : Camera's pan (The angle of camera's deviation to left or right).

• γ : The angle between the oblique image and its horizontal representation.

• ch : Height of the camera from the floor.

•
horψ , verψ : Camera's horizontal and vertical angle of view.

•
imagewidth ,

imageheight : Image's width and height.

These parameters for Aibo robots are functions of the positions of rear and front legs and the
three neck angles.
As a case in point, at each distance from the robot's camera, distances between objects in an

image are assumed constant, i.e. if we know two objects are at distance d from the camera

and at distance l pixels from one another in the image, then the actual distance between

them in the space is regardless of whether they are seen at the center or at the corner of the
image. If the given pixel has a value of m in the horizontal axis, then the actual point is

located on a plane in the space crossing the point)0,0,0(, thus Equation (3) holds.

)2/tan(/2/ horimagewidthmyx ψ×= (3)

0)2/tan(2 =××+× ymxwidth horimage ψ (4)

Therefore, the point is located on the plane represented by Equation (4). Similarly, if the
pixel has a value of n in the vertical axis, then this point is located on a plane in the actual

space represented by Equation (5).

0)2/tan(2 =××+× ynzheight verimage ψ (5)

The resulted line of crossing these two planes is a locus whose all points are seen at the
pixel),(nm in the image. Since the robot mainly interacts with objects located on the floor, we

can posit the relevant point on the floor, thus the desired point is obtained by crossing the
line mentioned above and the floor plane. After shift and rotation of coordinates axes

relative to camera to axes relative to the robot itself usingα , β , and γ , the results can be

calculated using Equations (6) and (7).

image

horx
width

m
a ×=)2/tan(tan(ψθ αψθ +×=

image

very
height

n
a)2/tan(tan(

c

yxxy

xyyx
hx ×

−

+
−=

)cos()cos()cos()sin()cos()cos(

)cos()sin()cos()sin()sin()cos(

γθθγθθ

γθθγθθ
(6)

c

y

yy
h

x
y ×

+×
=

)sin(

)cos()cos()sin()cos(

θ

γθγθ
(7)

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 501

The above calculations have been performed assuming that 0=β , otherwise, the actual

point)0,,(yx should be rotated by an amount of β around the origin.

3.4 Object Recognition

Object recognition in robot's vision consists of detecting objects existed in an image,
assigning actual objects of the environment to them, and locating the recognized object
regarding the coordinates axes relative to the robot.
The robot's working environment can be assumed closed, i.e. there is a set of specified
objects to which no new one will be added. However, it is in general possible for Aibo
footballer robots to see unspecified objects, i.e. other than known objects of the robot's
environment (ball, goals, players, and landmarks). In this subsection, recognition of known
objects based on blob formation is described first, and then recognition of unspecified
objects.

A) Blob Formation
In our robot's real-time visioning sub-system, specified objects are recognized based on their
color, size, and density and position of their corresponding blob in the image. Therefore, the
next task after color-classification of an image is to form blobs existing in it.
In order to form such blobs in a color-classified image, connected pieces of relevant colors
are obtained by a scan on the image. The density of a blob is equal to the number of points
of the connected piece divided by the surface of the rectangle circumscribing that blob.
Obviously, small blobs and those having low densities are ignored as noise. Fig. 9 shows a
color-classified image and its relevant blobs.

Fig. 9. A color-classified image and its relevant blobs

B) Specific Object Recognition
The noteworthy characteristic of specified objects is that their shape and size are known for
us. Therefore, types of these objects can be recognized knowing positions of relevant blobs,
and their locations can be determined by geometrical calculations depending on their shape.
Ball recognition is presented here as a sample of specified objects recognition.
In order to recognize the ball, which is an orange sphere, the relevant orange blob is

considered the blob candidate to be the ball. Two parameters, circle's radius R , and

coordinates of the circle's center),(cc nm in the image, should be extracted from this blob.

They can be calculated by averaging the center and the radius obtained for each three
arbitrary border pixels of the observed ball. Regarding the parameters and coordinates, the

ball's actual),(yx relative to the robot can be calculated using Equations (9) and (8).

)cos()14.850
2

33
(β×+×=

R
y (8)

Robotic Soccer 502

2)tan(

1
1)

)tan(
()(

γγ
γ +−×−= R

m
nsignRx c

cBall (9)

White lines in the green fields are benefical information especially for determining the
position of robot. For more information about our Line Detection methods refer to (Vaezi et
al., 2007).

C) Recognition of Unspecific Objects
Unspecified objects' position can not be determined using their geometrical properties (i.e.
shape). We consider unspecified objects just as some obstacles. Since an Aibo robot has a
complicated shape whose recognition is not practical in our robot's real-time vision, the
players in the field are viewed as unspecified objects by our robots.
Our algorithm is that existing blobs in the image which do not constitute any specified
object and are located on the floor, are considered unspecified (unknown) objects. The
assumption that they are placed on the floor allows us to locate their points on the floor
using their blobs' lowest pixels and the method presented in Section 3.3 for transforming
image's pixels into points in the actual space. At this location, there is merely an obstacle,
and nothing about this object is determined but this obstacle's front edge placed on the
ground. Stages of conducting this procedure for an unspecified object are shown in Fig. 10.

(a) (b) (c) (d)

Fig. 10. Stages of recognition of an unspecified object

The color-classified image and its relevant blobs are depicted in Fig. 10(a) and (b)
respectively. Having checked these blobs and understood that they do not belong to any
known object, the composition of these blobs, which is depicted in Fig. 10(c), is recognized
as an unspecified object. Two points located at the bottom of this object (bottom-right and
bottom-left corners of the object) leading us to calculation of this object's whereabouts are
shown in Fig. 10(d).

3.5 Experimental Result

Since the presented methods and algorithms are to be used for Aibo robots' real-time
visioning, the running time and the accuracy of them are two main parameters for
assessment of these methods' appropriateness. Table 1 displays the running time of our
visioning stages (accuracies are noted in relevant subsections). According to methods
described above, the time required for correction of chromatic distortion and color
classification is constant for all images. The time needed to form colored blobs, which is
indicated in the third row of the table, is calculated for an almost crowded image including
all colored objects existing in the environment of Aibos football field. Objects recognition

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 503

consists of a few calculations and its running time is negligible in comparison with other
visioning algorithms.

Table 1. Running time of different process in Impossibles Vision subsystem

Visioning Stage Running Time

Correction of chromatic distortion 4.8 ms

Color classification 4.1 ms

Blob formation 3.9 ms

Object recognition Less than 1 ms

Line detection 3.8 ms

Total 16.7 ms

The total amount of time consumed by the visioning process is about 17 ms per image, thus
almost the half of the time interval between two frames is left available for the rest of
processes (e.g. decision making, communication, etc.).

4. Communication

Sony AIBO ERS-7 model have a wireless LAN module (wi-fi certificated) which made it able
to communicate with other teammates to share useful information perceived from the
environment to improve the quality of each agent’s world model eventually resulting in
more accurate localization and object detection.
Furthermore, Due to RoboCup 4-legged rules, each team has an upper band limit of 500
Kbps for communication among the agents which includes also game manager commands
but every team has some special UDP port to broadcast. So ideally we can count on about
100 Kbps bandwidth for each AIBO robot.
In what follows we will discuss various aspects of communication and will explain the way
that our communication module is working.
Impossibles AIBO communication module, as an independent module, works in parallel with
other modules such as vision, and decision making. It is also in charge of sharing essential
data amongst all players. For instance, knowing accurate positions of the players are only
possible by having each player report his information such as its own position to the others.
The communication module is to be reliable and eventually be aware of the packet loss if
any exists. It will repeatedly choose entities from World Model (WM) objects based on their
last report time, their reliability measure and also importance of data for other teammates.

4.1 Information Level

There are two general strategies for communication in Multi-Agent Systems (MAS) that a
team can employ depending on system's general architecture and also on what kind of data
the agents intend to share.
High Level Commands: This strategy is best applicable in centralized system architecture
where a center commands its agents; therefore, in this method, all critical and high level
processes and decision makings are made in center. Consequently, only high level
commands are sent to agents in order to make them aware of their behavior.

Robotic Soccer 504

Low Level Commands: In this method communication system is trying to share all raw data
that each agent have and every thing could and should be distributed.

4.2 Centralized vs. Distributed Architecture

Generally, we consider the communications amongst players distributed, but due to the
large amount of transmitted data and hence time-consuming processes, agents themselves
accomplish their own jobs and broadcast the results, i.e. processes data.
If there wasn't any broadcast feature in our access media, having centralized communication
may also reduce number of messages which are needed to share all information among
agents.

m = number of messages needed to have all information shared between agents

• With broadcast message:

o Centralized approach 1+= nm

o Distributed approach nm =

• Without broadcast message:

o Centralized approach nnnm 2=+=

o Distributed approach ()1−×= nnm

When we are considering our access media properties including its broadcast ability and
limited bandwidth and also the fact that defining an agent as center might be unreliable we
decide to use distributed communication by broadcasting messages.
The messages contain low level data sensed and acquired by agents from the surroundings
such as ball, teammates, and opponent players which are used in localization and updating
word model in with each agents self awareness.

5. Localization

Mobile robots must know where there are to operate their tasks properly and this is the first
step to having autonomous mobile robotError! Reference source not found. (Kortenkamp et
al., 1998). Mobile robot Localization is the process of determining and tracking the location
of a mobile robot in global coordinate frame. Localization problem is occasionally referred
to as the most fundamental problem to providing a mobile robot with autonomous
capabilities. A number of techniques have been used for this, including grid-based
approaches or sample-based approaches such as Monde-Carlo. Grid-based approaches
require computation of the probability even in the area where the probability is negligible
and in the vast environments grids are either too many or big. The former makes
communication expensive and the latter makes the results low-resolution. On the other
hand, sample based approaches which are mostly based on sampling-importance re-
sampling (SIR) algorithms (Rubin, et al., 1988) require the computation of a significant
number of samples to support high-performance especially for large areas.
We use a localization algorithm to localize soccer player robots in the field which is called
piecewise Linear Probability Distribution Localization (PLPDL) (Vaezi Joze, et al., 2007) that

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 505

besides designing for low-performance and low-memory machine can localize robots in the
uncertain and dynamic situation. The approach is based on Markov localization (Fox, 1998)
which localize robot probabilistically. Our approach inherits from Markov localization the
ability to localize a robot under global uncertainty. Using piecewise linear functions to
approximate probability distribution functions of these random variables would help our
approach to be fast and inexpensive which is suitable for real-time processing of our robots.
The key idea of Markov localization is to compute a probability distribution over all possible
position in the environment. Let),,(θyxl = denote a position in the state space of the

robot, which x and y are the robot's coordination in the soccer field frame, and θ is the

robot's orientation. The distribution)(lBel expresses the robot's belief for being at position

l . Markov localization applied two different probabilistic models to update belief function,

an action model to incorporate movement of the robot and a perception model to update the
belief upon sensory input.

5.1 Separate Probability Density Functions

If we suppose that probability of 0xx = is independent from probability of 0yy = and

also other independencies for other coordinate variables of robot location, we could
conclude from independency rule of probability theory that:

)()()(

)()),,((

000

0000000

θθ

θθθ

====

=∧=∧===

PyyPxxP

yyxxPyxlBel
(10)

This could convince us to use separate probability for each of the coordinates. In contrast
with Markov Localization assumption or other grid-base localization coordinate variables
such as x are continuous in real environment, so we should consider them as continuous
random variables and their density function could be define in the following formula:
(notice that we assume these random variables are independent, otherwise we have a three
variable density function)

=<<
b

a

X dxxfbxaP)()((11)

Equation (11) concludes)(xf X is non-negative function and 1)(=
+∞

∞−

dxxf X
 .

Using Equation (10) and definition of density function for coordinate random variables:

=<<<<<<

=<<∧<<∧<<==<<=

2

1

2

1

2

1

)()()()()()(

)()),,(),,((

212121

21212122221111

θ

θ

θ θθθθθ

θθθθθ

dfdyyfdxxfPyyyPxxxP

yyyxxxPyxllyxlBel

y

y

Y

x

x

X

(12)

Robotic Soccer 506

The product of these functions obtains belief of robot to be at this position, namely)(lBel .

So our new localization method considers a separate probability density function for each

variable (such as x , y and θ for mobile robot in 2 dimension environments). In Markov

Localization0, for each position in the area),,(000 θyxl = there is)(lBel which means the

robot's belief for being at position l . In contrast, in Probability Distribution Localization

(PDL), we have three probability density functions to express our belief for location of robot.
This model could be used for current location, new observation and also differential motion,

i.e.),,(θ∆∆∆ yx . We need to update current location of robot in the case of motion and

reading sensors. In PDL, Motion Update is corresponding to robot motion of Markov
Localization and Sensor Update is corresponding to sensor reading in Markov Localization.

• Movement Update: We consider X a random variable and its probability density

related to x position of robot and X∆ as a random variable of movement of robot in x

dimension and its probability density. So the new value for X will be XX ∆+ . In
this way the corresponding density function for X is obtained. We know from
probability theory that if X,Y,Z are random variables and Z=X+Y so probability density
of Z could be conclude by convolving probability density of X and Y. And also other
random variables will be updated independently using motion data that should be in
the form of different probability density function for each random variable.

• Sensor Update: Sensor is usually return to the vision module in robot. However it could
be any other sensor for localizing mobile robot. If we suppose sensor data return a
probability density function for each variable such as X and p that is the belief of

correctness of these data. Now we should create a new probability density for X by the
following formula using previous density of X and sensor data in the form of new
density function and our belief of its correctness:

pFxpFxFx SensoroldNew ×+−×=)1((13)

Our probability density functions may become worthless after too many movements or
sensor updates with small p . So we use the idea of "Sensor Resetting Localization" (Lenser

& Veloso, 2000) that considers a threshold for average of p . Some new sensor updates must

replace when it becomes lesser than the assigned threshold. This could be translated to
threshold for distribution of our density functions. In such cases, more sensor data must be
fed by sensor module. The case should happened when the result density function is so
distributed (a precise parameter needed for determining threshold that could be variance)
As explained before, Probabilistic Distribution Localization (PDL)'s main output is a
probability density function and not a crisp value, but PDL is required to provide more
suitable results for other modules such as motion module. So a kind of clustering algorithm
can be employed to prepare crisp data as output if it is needed.

5.2 Piecewise Linear Probabilistic Distribution Localization

In this section we are going to change PDL approach in such a way that it becomes simple
and suitable for real-time applications for mobile robots. In order to simplify the PDL

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 507

process, we employ piecewise linear probability densities in order to make our calculation
and storage system much simpler. In piecewise linear probability densities, functions are
limited to be made by linear pieces. For storing these functions it is enough to store points
which are disjunction of linear pieces. For instance, function shown in Fig. 11, could be
determined by set of following points: { (0,0) , (1,.5) , (2,.5) , (3,0) }

Fig. 11. A sample piecewise linear probability density function

Using piecewise linear function for expressing probability density of location parameter in
PDL approximate the main probability density to obtain speed and decrease in memory
usage. Storing set of points instead of storing complicated function could help to decrease
memory which used for localization purpose. On the other hand applying linear limitation
over probability density function could imply appearance of faster algorithms for
Movement update and sensor update that are express bellow.

• Movement Update: With us considering both probability density of random variables X
and Y piecewise linear, probability density X+Y is paranoid-segment function. To
simplify the process, we approximate such functions to be piecewise linear function (we
should also suggest such a converter algorithm). It could be done using convolution of
these function as it is discuss before. As an example Fig. 12(a) is probability density
function of a random variable before movement update. Fig. 12 (b) shows probability
density of movement and Fig. 12 (c) is the final result of movement update. Fig. 12 (d)
shows linear approximation of result via PLDL algorithm.

Fig. 12. An example of Movement Update process

• Sensor Update: This step is straightforward in piecewise linear density function. Using
Equation 5-4 we should compute weighted sum of two density function such as Fig. 13
(a) and (b). These functions have stored by set of points so for calculation result we
should construct result set using union of x points of both sets with corresponding y
that could be calculated by sum of corresponding y. Fig. 13(c) illustrates result of Sensor

Robotic Soccer 508

Update with p=0.7. Fig. 13(a) is previous density function for a distinct variable and Fig.
13 (b) is sensor data of that distinct variable.

Fig. 13. Sensor Update example. (a) Previous density function (b) sensor data (c) result by
p=.7

Also to decrease required memory for storing set of points for probability density functions
we omit points that express small amount of information. Strictly speaking, each three
consecutive point construct a triangle, we omit central point when the area of this triangle is
smaller than a threshold. Additionally, the function is scaled in a way that integral of the
function becomes one. We could also describe a parameter as maximum number of points in
the set so we could control the computational time needed for PLPDL.

5.3 PLPDL Application

The mentioned algorithm used in the software of controlling Aibo robots for playing soccer
as a self-localization sub-system. Vision used as a sensor and movement update support
from Motion Controller sub-system. Fig. 14 demonstrates Self-Localization flowchart using
PLPDL method. We explained sensor data which is supplied by vision in Section 3 and
movement data will discussed in Section 7. As it presents before probability density
function for each coordinate variable is stored by set of points. The next sub module is PDF
Filtering which filters probability density functions in order to omit small values and also
non-reliable ones. Then, it is determined if some extra samples are required from Vision
sub-System. This decision is made using a threshold over probability density functions'
variance after clustering them.

Fig. 14. Self-Localization Flowchart

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 509

When it needs more sensor data it sends a signal to vision module to provide localization
module with some extra sensor data. This signal also contains information about the
accuracy of such a data that may cause executing time-consuming routine in Vision sub-
system for more accurate data. Although we do not use information about positions of Aibo
robots from external source such as other Aibos using wireless communication, it can be
employed as extra sensor data with smaller belief.

6. Decision Making

As explained in our architecture (Section 2), Decision Making (DM) module plays the key
role in logical decisions made by agents in a multi-agent environment such as AIBO soccer.
DM is done in a completely distributed manner in Impossibles AIBO robots; however,
communication is employed in order to propagate the information obtained from vision,
sensors, and communication modules. Consequently, information is propagated by
communication and decisions are made by agents themselves. This section is organized as
follows: The intra-DM architecture is explained in details in subsection 1. Team behavior is
given in subsection 2. Subsection 3 is devoted to individual behaviors.

6.1 Architecture

Intra-DM module in Impossibles AIBO robots have a hierarchical layered architecture (shown
in Fig. 15). In fact, DM module consists of two major layers. Team Behavior (TB), i.e. tactics,
layer is the highest one which determines the tactics of the soccer team. Secondly, Individual
Behavior (IB) layer is the techniques employed by individual players. As demonstrated in
Fig. 15, Decision Making (DM) module gets its input from the system’s world model
including opponent players’, teammates’, and ball’s locations accompanied by some degrees
of belief which is due to existence of uncertainty in real system environment such as soccer.
Having gotten the inputs from its world model, the AIBO robot will analyze the input in a
two-step procedure. Team behavior (TB) sub-module gets DM inputs from world-model
and then resolves the whole team behavior, e.g. tactics stored in a database. Finally, TB
passes the team behavior and world model information to the lower layer that is Individual
Behavior (IB).

Fig. 15. Decision Making Module Architecture

Robotic Soccer 510

As the second step, the Individual behavior (IB) sub-module obtains the whole team
behavior and world model information form upper layer sub module (TB); then, analyzing
its inputs, IB sub-module decides one of the possible actions to do. As a matter of fact, these
actions are the outputs of the IB sub-module and hence the outputs of the whole Decision
Making (DM) module. This actions set includes (1) shooting in a specified direction with a
particular power, (2) blocking the way in a special direction, (3) walking through a path
determined by an array of points, (4) looking in one direction, and (5) grabbing the ball.

6.2 Team Behavior

As explained above, Impossibles AIBO team tactics is resolved in Team Behavior (TB) sub-
module. The final tactics of the team will be selected from tactics database.

Determining Factors
Tactics selection step needs two parameters. First, fuzzy membership degree in offense set is
to be determined, i.e. Defense-Offense (DO). Teammates’ and Players’ sites is defined to be
the second parameter

A) Defense vs. Offense
Tactics of the team is defined by a fuzzy membership degree, i.e. DO, in offense set. Between
complete defense condition, i.e. 0, and complete offense condition, i.e. 1. The following three
parameters are calculated and then employed to obtain the membership degree.

1. Caution and Risk: The first parameter which contributes to obtain DO is Caution-Risk
(CR) fuzzy membership degree. We have employed a fuzzy logic controller which
outputs CR degree. This fuzzy logic controller gets three inputs: The result of the game,
time, and opponent’s strength.

 (a) (b) (c)
Fig. 16. Caution and Risk which is the output of fuzzy controller for (a) a fixed result (b) a

fixed Opponent-Strength (c) a fixed Time

2. Ball Ownership: Ball ownership is a critical factor which contributes in producing the
final selected team strategy of an AIBO soccer team. In real world soccer environment
we can define ball ownership as a crisp value which at least last long enough to
determine team strategy. In fact it can be represented via digital magnitudes such as a
Boolean variable. Ball ownership in AIBO cannot be defined in such a way. Because in
AIBO soccer game robots intermittent lose the ball; therefore, selected team strategies
will be changed so irregularly that it becomes impossible for a team either to defend or
attack. Here we define a fuzzy membership degree in a Ball Ownership (BO) set. In

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 511

Impossibles robots, the following formula is employed to calculate the BO of the team in
order to evaluate the team membership degree in the complete ownership set.

()
∈

=
ij Teamm j

i
d

TeamBO
α

1
(14)

The final Ball Ownership (BO) factor is obtained by division of our team’s BO and
opponent team’s BO.

3. Hyperbolic Danger Safety Degree: As explained above, Ball Ownership (BO) is a factor due
to players’ rational locations to the ball; however, players’ absolute locations are also
important. In order to accomplish the job a Hyperbolic Factor (HF) is defined. A
hyperbola (Gray, 1997) is a conic section defined as the locus of all points P in the

plane the difference of whose distances PFr 11 = and PFr 22 = from two fixed points

(the foci
1F and

2F) separated by a distance c2 is a given positive constant k ,

krr =− 12
. Letting P fall on the left x -intercept requires that

aacack 2)()(=−−+= . So the constant is given by ak 2= , i.e., twice the distance

between the x -intercepts (left figure below).

Fig. 17. Hyperbola used to calculate Hyperbolic Factor (HF)

We think of the AIBO soccer field to be locus of hyperbolas with variable positive ‘ a ’

and goals to be the focuses of theses hyperbolas; therefore, ‘ c ’ is defined to

be LengthField _5.0 × , i.e. distance of the goals from the center of the soccer field.

Each point in the field is defined to have a danger degree (DD) if an opponent team
member is located in this point. On the other hand, Safety Degree (SD) is defined if one
of our team members is located in that point.

()
() ()

LengthField

PP
PDD ii

i
_

Goalour,distanceGoalopponent,distance −
= (15)

()
() ()

LengthField

PP
PSD ii

i
_

Goalopponent,distanceGoalour,distance −
= (16)

Robotic Soccer 512

According to above equations, points on a hyperbolic locus with a constant ‘ a ’ will

have equal Danger Degrees (DD) in the case of having an opponent player in the point.
Similarly, the points have equal Safety Degree (SD) if one of our team members is
situated in one of those points. The final Hyperbolic Danger-Safety Degree (HDSD)
factor is calculated employing players individual Danger Degree (DD), or Safety Degree
(SD).

()()
()()playerseamopponent t

membersour team

2

1

DDf

SDf
HDSD = (17)

As a significant factor, ()xf is selected according to coach basic idea of either defensive

or offensive strategies. We have employed ‘ Averaging ’ function. Therefore, HDSD

factor is evaluated:

()

()
∈

∈
=

eamopponent tm

i

our teamm

i

i

i

m

m

DD

SD

HDSD (18)

B) Team Fear-Relax Emotional Degree
As explained before, team behavior is determined according to Defense-Offense Degree
(DOD) which lies in the range of 0 to 1. In above subsections, three determining factors were
defined: Caution-Risk (CR), Ball Ownership (BO), and Hyperbolic Safety Danger Degree
(HDSD). Now these three parameters are to be combined to represent the final Team
Behavior Defense Offense Degree.

Team Strategy Database
In order to avoid having CPU over usage problems, we save predefined team strategies in a
Team Strategy Database (TSD). In each moment of the game, a linear combination of the
proper strategies is computed based on TBDOD and players’ locations. Selecting from TSD
offers two priorities over computing dynamic team strategies. First it supports to have a
more flexible team behavior, because further team strategies can be added to TSD later.
Second, this approach helps to decrease the CPU usage.
Generally, team strategies are categorized into three groups. Defensive strategies, midfield
strategies, and offensive strategies are the mentioned groups. Two independent defensive
team strategies (DTS) of Impossibles AIBO robots are presented. Error! Reference source not

found. demonstrates the first DTS in which our players try to defend opponent’s forward
players reaching the goal along a line from the center of the field to our goal. It is the most
defensive strategy of the team employed in critical circumstances.
Note that the following surfaces represent the values of points on the soccer field according
to the team strategy. For instance, the dark red points in the diagrams indicate the most
important regions of the field. On the other hand, the blues ones denote the regions which
are not considered as significant regions. To clarify the problem it may be useful to declare
that (0, 2.7) is the center of our goal. Fig. 18(b) demonstrates the general defensive (GD)

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 513

strategy of the Impossibles AIBO robots employed to some objectives such as preventing the
game result being changed.

(a) (b)
Fig. 18. (a) the maximum defensive team strategy. (b) General Defensive (GD) team strategy

Fig. 19. Four basic strategies

Midfield and offensive team strategies of Impossibles are in fact generated easily as a
combination of the following basic strategies (Fig. 19).
In Fig. 20 denote midfield and offensive strategies of the team. These strategies are
generated using the above basic strategies. Here we have employed the simplest operation,
i.e. multiplication, to produce midfield and offensive team behaviors.

Fig. 20. Four strategies which generated using combination basic strategic

Emotional Tactics Selection

One of the most important aspects of human decision making is the role of emotions in its
behavior and reactions. Humans choose their actions and make their decisions due to
several internal variables called emotions. Emotional decision making is employed by
humankind to avoid time-consuming and computationally-expensive approaches, e.g. using
mathematical equations in decision making, to optimize the final result in critical
circumstances such as danger (Locus et al., 2002).
In order to reduce the computation burden of the team behavior generation, we exploit
Emotional Tactics Selection (ETS) approach. As presented in, agents’ Emotional Decision
Making (EDM) is based on their different states, called emotions. Up to now the robots have

Robotic Soccer 514

calculated the fuzzy emotional Fear-Relax (FR) degree of the whole team. Given this degree,
robots are to compute the team strategy, i.e. a linear combination of Team Strategy Database
(TSD) elements. Fundamentally, in, transitions from one emotional state to the other are
thought of being a gradual change, i.e. not suddenly, as it is done in real world animals and
human. Therefore, we avoid quantization of the given FR degree. In contrast, based on the
given FR degree, a linear combination of the strategies in TSD is computed as the whole
team behavior, i.e. team strategy.

6.2 Individual Behaviors (Techniques)

Impossibles AIBO robots make use of a priority-based selection approach to choose the most
proper action in various situations. In other words, after calculating some mathematical
equations, each possible action is assigned to have a score; then, the most appropriate action
is chosen. For instance, a player, who has the ball ownership, can select one of the following
actions: (1) Moving with ball, (2) Passing to a teammate player, (3) Shooting toward the
opponent team’s goal, or (4) Looking around. In this section, different individual behaviors
are explained logically. A lower level design is provided in Motion Controller (MC) section.

Predefined Dynamic Assigned Regions
Generally, in multi-agent systems, decision making can be accomplished using one of these
four solutions (Habibi & Nayeri, 2006): (1) No Sharing Decision Making, (2) Information
Sharing Decision Making, (3) Centralized Decision Making, (4) Fully Centralized Decision
making. Impossibles AIBO robots use the second approach. In this method, communication is
employed just for transporting the information; therefore, neither commands nor decisions
made by center are transmitted.
With us using Information Sharing decision making solution, the most critical problem was
similar behaviors of the robots in the same situations. So robots are assigned predefined
roles as in real world soccer.
Players are assumed to have tendency toward their dynamically assigned regions. This
tendency is represented by a simple spring; hence, there will be a linear dependency

(1=α) between the player’s tendency and the distance from its current location to its

assigned region.

() () ()()α

iii
PPKP egionAssigned_R,LocationdistanceTendency ×= (19)

Where ‘ K ’ is a positive constant which can be learned. Experiences show that setting ‘α ’ to

be 1.3 results in the best known outcome.

Outputs as Decision Making-Motion Engine Interface
Last of all, having logically produced Individual Behaviors (IB) of the players, Decision
Making (DM) module passes IBs to the lower level module, i.e. Motion Controller (MC);
therefore, IBs are considered to the interfaces between the DM and MC modules. In this
section the employed Individual Behaviors are explained logically.
1. Looking: The objects stored in World Model (WM) own a saved parameter called

Update Time (UT). It denotes the last time when a particular object has been seen by an

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 515

agent. So it may be necessary for agents to refresh their knowledge about their
surroundings limited to their vision capability, i.e. approximately 1.5 meters.

2. Running: Walking and Running as two basic categorizations of motion should be
implemented efficiently because of their importance. A lot of learning algorithms on
AIBOs have been presented during the past few years (Kohl & Stone, 2004).

3. Ball Grabbing: In order to get the ball ownership, Decision Making (DM) module of a
player passes ‘GRAB’ to the lower level module, i.e. Motion Controller (MC).

4. Shooting & Passing
5. Blocking

7. Motion

Different approaches can be considered as the way to make AIBOs move in a proper order,
all accompanied by number of advantages and disadvantages. Enhancing robot’s movement
by restricting it to mathematical formulas and geometrical models, dividing motion skills
into some predefined and atomic consecutive series of actions, using simulation results for
realistic environment, eliciting models for each of the skills based on experimental data and
learning algorithms, and so on, are instances of how to obtain methods for robot’s motion.
Studies conducted on all approaches, led us to a hybrid, innovative method with the most
consistency to other modules, chiefly Decision Making.
We divided motion skills into two categories based on their usage: Blocking Skills and Non-
Blocking Skills. While performing a non-blocking skill, Decision Making (DM) module can
make new decisions if necessary, and send an interrupt to Motion Controller module. Thus,
Motion Controller will preempt or halt the previous action and start performing new
commands. Walk and rotate are basic actions included in non-blocking skills. On the other
hand, Blocking Skills are smallest consecutive segments done atomically. Different kinds of
shoots as well as ball blocking actions are examples of blocking skills.
We mapped the movement of robot’s joints, while running, to a geometrical space so to have
a complete set of parameters for Machine Learning techniques. The geometrical shape to
which we modeled robot’s movement was an ellipse. As a result, the main task of this
module is done through some offline processes to improve ellipse’s parameters in a way to
reach a better speed and increase the accuracy of walks.

7.1 Architecture

This module, Motion Controller (MC), provides an interface of high level commands for DM
module, such as walk, look, localSearch, ballGrab, defend, block, etc. When these high-level
commands are received from DM module, a planning algorithm is used to break them into a
series of low-level commands to satisfy the robot’s conditions and team strategy. Finally, all
generated data are converted to physical joint values inside the Motion Maker layer. Based
on the attributes of each skill, the final data will be put in Motion Queues with the special
characteristics of Blocking or Non-Blocking actions. Data inside the queue are considered as
segments.
Segments are treated as atomic actions. These include some points in a 3D coordinating
system, for example the coordinate of paws, or the camera in relation to body’s center. So, in
order to convert these points to joint values, we used Inverse Kinematics functions for both
head and legs.

Robotic Soccer 516

Based on aforementioned architecture, design and implementation of the MC in layers can
avoid complexity and will increase simplicity of defining new skills. Fig. 21 shows the
architecture of MC module in brief.

Planner Layer

High Level Commands

Interface

Kinematics Layer

Motion Maker Layer

D
M

 C
o
m

m
an

d
s

Fig. 21 Architecture of Motion Controller Module

7.2 Blocking Action

Blocking Skills are smallest consecutive segments which can not be preempted or halted
while being processed. So Decision Making should use them in suitable situations. These
actions contain consecutive value of joints which can be utilized from a static look up table
that does not change during the game. We use our structure to store these date in files;
therefore we have separate configuration files for each blocking skill. These actions contain
all types of shoots, blockings by goalie and stopping the ball.

7.3 Non-Blocking Action

None-Blocking skills are those who accept interruptions. While Aibo is processing and
running non-blocking commands, DM module can decide new actions and send them to the
robot. In this case, the robot will halt the current job and start new task. These actions are
necessary due to uncertain conditions of a soccer game. Walking and ball grabbing are
simple non-blocking actions.

7.4 Movement Parameter

We modeled the movement of a robot to the movement of AIBO's paws on the perimeter of
an ellipse. Although the Aibo leg’s degrees of freedom are less than natural animals, this
model resembles the natural walk of them more.
To form the ellipse based on which the robot plans to move, walk needs number of
parameters. These parameters are as follows:

− Semi-major axis of the ellipse, with the symbolic name of a, for both front and rear legs

− Semi-minor axis of the ellipse, with the symbolic name of b, for both front and rear
legs

− Coordination (x0, y0, z0) of the center of the ellipses for all legs in relation to body’s
coordinating system.

− Angles alpha, beta and theta which gives the ellipse all degrees of freedom. So we can
rotate the ellipse around each of the 3D coordinating system’s axis.

Formulating movements of joints has additional advantages affecting the performance of
other modules, especially Localization. By the use of geometrical models an increase in

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 517

accuracy of estimations is gained, although most of estimations are based on experimental
data. This estimation helps Localization module to localize the robots without the use of
camera or other sensors in an average period.
Computation of new walk parameters and constructing new motion skills by combining the
previous motion skills is also another advantage of formulation. Based on some predefined
parameters for basic skills in addition to mathematical models for skill combinations, there
would be a chance to gain new motions. For instance, by merging the parameters for a
simple forward walk and anticlockwise rotation, a new motion can be constructed to
circulate around a circle with specific radius; this skill, with the radius as an input
parameter, can be used in ball grabbling action.

7.5 Estimation

Since repetition of intricate geometrical solutions based on image processing algorithms
may appear expensive in many cases, motion approximations for movements may be used
to increase the accuracy of total estimations, and to lessen the cost of localization methods.
The mechanism for motion estimations is based on robot’s movement, in any of the
directions, rotations and mixture of all couples of skills.
For each of the basic skills, X movement (dx), Y movement (dy) and angular movement (dt)
are estimated and written as attitudes for their own parameters. Whenever a skill is being
performed by the robot, these movements will be calculated for each time slice first and
finally will be calculated for robot’s total walk. A simple way of calculating the estimations
based on dx, dy, dt is shown in Equation (20). Then all these factors are reported to
Localization module to estimate the location of the robot.

Dx(S) = dx(S) * tp(S) , Dy(S) = dy(S) * tp(S) , Dt(S) = dt(S) * tp(S) (20)

These estimations cause some problems in some cases. Disadvantages of this method
appears when each skill is performed for short time slices –a result of quick changes in
decisions- or when there is a great change –unsmooth field for example- in the soccer field.
Therefore deciding when to use these estimations can be critical and they can cause failures
or inaccurate localization. So, to prevent these problems, we can avoid estimating quick
actions (performed less than a specific amount of time) and to make robots learn the
parameters of the skills when the condition is changed.
Estimation, in the case of great reliability, can be considered as a helpful component for
localization and it is worthwhile working on motion estimations in the future.

8. Tools & Debugging

Running compiled code on AIBO is time-consuming and inefficient in many cases. Thus,
lack of debugging software and simulator for testing and debugging purposes is felt and the
need is obvious.
Therefore, Impossibles spent time on writing tools which let us debug the codes running on
Aibo platform and simulate some geometrical codes without having robots available. These
tools consist of AIBO Controller and AIBO Geometrical Simulator.

Robotic Soccer 518

8.1 Aibo Controller

This software is divided into two units cooperating with each other. A DEBUG module
which is written into memory stick (which can be accompanied by other soccer modules and
run in parallel with them) and a client application which runs on the PC.
DEBUG module sends collected data to the client program. Data consist of all internal states
of other soccer or non-soccer modules (provided for other challenges) in addition to other
internal representations of the robot (including joint data, images, body sensor data, world
states, perceptions, etc.)
On the other side, the client application receives the data and makes it possible to visualize
and analyze them via different internal implemented algorithms and other user defined
ones. This will give us opportunity to run vast of algorithms and methods in different fields
(Image Processing, Motion, etc.) based on data collected.
On the other direction, since reaching to the state which revealed bugs in a
nondeterministic and real environment is somehow impossible, setting parameters to
return back to the desired state, can be found in our controller application.
Channel between DEBUG module and the client program is a wireless connection. Results
from experimental statistical analysis of protocols in a wireless communication system led
us to choose packet sizes and protocols in a way to achieve higher throughput.
To conclude, a list of features provided by AIBO Controller is followed:

− Visualization and analysis of data, especially intermediate representations of other
modules running in the robot.

− Turning on or off different algorithms and parts of the code for debugging purposes.

− Modification of robot’s state and parameters to algorithms.

− Run different algorithms solely on the collected data on the client side instead of the
robot itself.

− Designing new blocking skills by reaching to desired and discrete states.

8.2 Aibo Geometrical Simulation

Writing codes to memory stick after each change and waiting for the robot to load modules,
all occur for several times and all slow down the process of code development. Thus, a
simulator was developed by Impossibles to simulate some special purpose codes on the PC
instead of the Aibo itself.
One of the most time-consuming processes is the geometrical challenges of robot.
Geometrical Simulator makes it possible to simulate motion’s geometrical space on the client
side instead of the robot itself. This will give us features to develop forward and inverse
kinematics methods for any kind of robots, simulating and collecting the results of any kind
of movements, and, designing in companion with testing the movement of robot’s joints
during blocking actions.

Fig. 22. Aibo model in Geometrical Simulator

Impossibles: A Fully Autonomous 4-legged Robot Soccer Team 519

This software is fed by the codes generating motion steps as inputs and the output will be
the graphical movements of our Aibo model’s legs and head. The Aibo model in our
simulator is shown in Fig. 22.

8.3 Code Interpreter

Most of the codes in a soccer module are dependant on the condition in which the robots are
playing. These include game strategies, player’s roles and some complex decision making
commands. Therefore in order to make the code flexible and prevent changes in the
hardcode each time one of the above alters, converting hardcode into scripts which can be
interpreted by the AIBO is an essence.
Scripts facilitate programming Aibos when accompanied by a high-level interpreter module,
which runs inside the robots. When the fundamental parts of a soccer software is
developed, the codes for decision making methods, determination of player’s roles and
game strategies are written in a simple scripting language and all are stored in memory stick
as a raw text file. An interpreter module is in charge of translating the scripts into standard
codes for Aibos and running them logically and consecutively.
These scripts use a high level interface provided by the main modules in our architecture, as
mentioned earlier in this chapter, to fulfill the need of a potent access to hardcode. In
addition to the interface of the main modules, our interpreter supports structural statements
such as loops and conditional statements. There are some data structures provided for better
manipulation of collected data from camera, joints and other sensors.
Players change roles dynamically, so putting them in hardcode would be bothersome. Some
predefined functions in our interpreter make it feasible to distribute roles among players
dynamically and prevent any sort of conflictions. This way even if the team strategy is
changing dynamically in a specific game, responsibilities are assigned to players in a correct
manner. Taking absence of players into account –when penalized- is another specification of
those predefined functions.
Complex decisions can be implemented based on a State Diagram Machine (SDM) in our
script. All decisions are first converted to states for simplicity, and then implemented by the
features available in our scripts. SDM makes it possible to easily change decision steps and
its contents.

9. Conclusion

In this chapter we presented the Impossibles main architecture and its modules to create a
fully autonomous team of 4-legged robots for playing soccer. This architecture includes
different modules such as World Model, Vision, Decision Making, Motion Controller,
Communication, and Localization which are all independent of the robot platform. This
chapter presented the integration of our researches in different fields which came together
to create fully autonomous robots for specific purpose that is playing soccer as humans do.
And this could be a primitive attempt to developing intelligent robots.
Participated in two years of RoboCup competitions in Bremen and Atlanta in RoboCup 2006
and 2007, the team gained some valuable experiences which led to designs of low cost
algorithms. The most probable restriction in this soccer module is the limited resources such
as CPU and memory, therefore developing optimized algorithms is the main target of team
achievements.

Robotic Soccer 520

10. References

Gonzalez, R. C. & Woods, R. E. (2001). Digital Image Processing, Prentice-Hall, 2nd edition.
Gray, A. (1997) Modern Differential Geometry of Curves and Surfaces with Mathematica,

Boca Raton, CRC Press, 1997.
Fox, D. (1998). Markov Localization: A Probabilistic Framework for Mobile Robot Localization and

Navigation. Institute of Computer Science III, University of Bonn, Germany,
Doctoral Thesis, December 1998.

Habibi, J. & Vaezi Joze, H. R. (2005). A new Architecture for Multi Agent System in Rescue
Simulation Environment. the CSI Journal on Computer Science and Engineering, Vol. 3,
No. 2&4, pp. 1-7.

Habibi, J.; Vaezi Joze, H. R.; Aliari Zounoz, S.; Rahbar, S.; Valipour, M. & Fathi, A. (2006)
Impossibles Aibo Four-Legged Team Description Paper RoboCup 2006, RoboCup
2006, Bremen, June 2006.

Habibi, J. & Nayeri P. (2006) Centralized vs. Non-Centralized Decision-Making in Multi-
Agent Environments, 11th CSI computer Conference, January, 2006.

Jain, R.; Kasturi, R. & Schunck, B. G. (1995). Machine Vision, McGraw-Hill.
Kohl, N. & Stone, S. (2004) Machine Learning for Fast Quadrupedal Locomotion, In

Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI), San
Jose, CA, July 2004.

Kortenkamp, D.; Bonasso, R. P. & Murphy, R. (1998). AI-based Mobile Robots: Case studies of
successful robot systems, MIT Press, Cambridge.

Lenser, S. & Veloso., M. (2000). Sensor resetting localization for poorly modelled mobile
robots. Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), San Francisco, 2000.

Locus, C.; Shahmirzadi, D. & Sheikholeslami, N. (2002), Introducing a Controller Based on
Brain Emotional Learning Algorithm: BELBIC (Brain Emotional Learning Based
Intelligent Controller), International Journal of Intelligent Automation and Soft
Computing (AutoSoft), USA, August 2002.

Mokhtarian, K.; Vaezi Joze, H. R. & Habibi, J. (2007). An Inexpensive Approach for Real-
Time Vision on Four-legged Footballer Robots. Proceedings of 12th International CSI
Computer Conference, pp. 1856-1861, February 2007.

Rubin, D.B.; DeGroot, K. M.; Lindley, D. V. & Smith, A. F. M. (1988). Using the SIR
algorithm to simulate posterior distributions. In M.H. Bernardo, Bayesian Statistics
3. Oxford University Press, Oxford, UK.

Sridharan, M. & Stone, P. (2005) Real-Time Vision on a Mobile Robot Platform. Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2148-2153,
August 2005.

Vaezi Joze, H. R.; Habibi, J. & Rahbar S. (2007). Piecewise Linear Probability Distribution
Localization: Fast and Inexpensive Approach for Mobile Robot Localization.
Proceedings of 4th TAROS Conference, wells, September 2007.

Vaezi Joze, H. R.; Mokhtarian, K.; Asadi, N.; Kamali, A.; Zolghadr, N. & Kaffash, S. H.
(2007). Impossibles Aibo Four-Legged Team Description Paper RoboCup 2007,
RoboCup 2007, Atlanta, July 2007.

Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hamid Reza Vaezi Joze, Jafar Habibi and Nima Asadi (2007). Impossibles: A Fully Autonomous Four-Legged

Robot Soccer Team, Robotic Soccer, Pedro Lima (Ed.), ISBN: 978-3-902613-21-9, InTech, Available from:

http://www.intechopen.com/books/robotic_soccer/impossibles__a_fully_autonomous_four-

legged_robot_soccer_team

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

