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Abstract

Nanocarriers have provided the versatile platform for the delivery of various therapeutic 
and diagnostic agents. Liposome, niosomes, polymeric and solid lipid nanoparticles are 
the most promising nanocarriers that have been entered in the clinical trials and become 
commercially available. However, each system has been associated with some problems 
that can be minimized by using the combinatorial approach of hybrid nanocarriers. 
These hybrid systems combine the benefits of different structural components to syner-
gize the outcome of the therapy. In this chapter, the different types of hybrid nanocarriers 
have been described with particular emphasis on the brief rationale for the development 
of these hybrid nanocarriers along with different fabrication approaches with greater 
emphasize on the lipid polymer hybrid nanoparticles. A brief description factors govern-
ing the optimized response characteristics and their potential application of these hybrid 
nanoparticles are also presented.

Keywords: core shell hybrid nanoparticles, drug delivery, hybrid nanoparticles, 

nanoflowers

1. Introduction

In the recent decades, pharmaceutical nanotechnology has opened a new era for the research 

in the design and characterization of drug delivery systems (DDS) and biotechnological 

products. A variety of novel drug delivery systems and strategies emerged for diagnostic 

and therapeutic applications that explored the different structural components, fabrication 
methods and mechanisms of drug delivery and targeting [1]. These DDS emphasized on 
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the use of multiple nanomaterials and therapeutic moieties that renovate the current phar-

maceutical industry and biomedical sciences toward the better drug therapy [2]. These 

nanosized particles were utilized for the delivery of various molecules including different 
drugs, proteins, nucleic acid and other diagnostic agents. Some of these compounds may 

be encapsulated inside while others were adsorbed on the surface of these nanoparticles. 

These nanocarriers can amend the pharmacokinetics and pharmacodynamics of drug by 

enhancing the solubility, permeability and bioavailability in multiple ways. The availability 

of the encapsulated compound depends upon the nature of formulation components and 

the other external stimuli which enable the controlled as well as targeted delivery of these 

encapsulated compounds within the cellular microenvironment [3]. All these parameters 

ultimately achieve the higher concentration of the encapsulated drug that efficiently reaches 
the potential target site without affecting the normal tissues. These nanocarriers also aid 
to implement the concept of rational therapeutics by providing the tunable drug delivery 

systems based on the patient therapeutic demands.

Despite of excellent in-vitro performance, some drugs demonstrate poor in-vivo results 

because of low aqueous solubility, poor membrane penetrability, rapid clearance by the 

reticuloendothelial system, complex pathophysiological states of the disease and uncertain 

plasma levels leading to drug toxicity, thus, requiring such drug delivery systems that over-

come these problems [4]. Latest developments in the material sciences, polymer engineering 

and nanotechnology have enabled multidisciplinary research to formulate and evaluate dif-

ferent novel drug delivery systems that claimed increased drug solubility, penetration and 

retention at the targeted site in the body [5].

Among the different nanoparticulate systems, nanoparticles of different composition and 
lipid based vesicular carriers (liposome, lipid nanocarriers, solid lipid nanoparticles and drug 

lipid conjugates) have been frequently employed for the medical applications. The nanoparti-

cles may provide versatility in terms of composition. As, these include the polymeric nanocar-

riers, mesoporous nanoparticles, metal coated (gold, iron and silver), inorganic nanoparticles, 

quantum dots, carbon nanotubes, dendrimers and magnetic nanoparticles [6, 7]. Furthermore, 

all these systems were modified to mimic the desired therapeutic properties through different 
modification method and ligands such as (i) increase in the retention time and stability of the 
system, (ii) stimuli triggered release, (iii) targeted delivery of various agents and (iv) adminis-

tration of dual modalities simultaneously [8, 9].

Liposomes and niosomes have been considered as most promising domains among the lipid 

vesicular carriers. Liposomes are defined as the lipid vesicles having the single or multiple 
layers of the lipid providing the encapsulation of different therapeutic moieties while nio-

somes have the same morphology but contain nonionic surfactants instead of phospholipids 

as major structural components. They provide the better biocompatibility profile, easy surface 
modification of the vesicles, versatility in the loading of hydrophobic and hydrophilic drugs 
and improved pharmacokinetic properties [10, 11]. However, drug leakage or fast release 

from the system, reproducibility, poor physical and chemical stability on storage, higher cost 

and scale up issues are the major drawbacks associated with the vesicular systems [12, 13].
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Nanoparticles (polymeric, organic/inorganic, mesoporous silica, calcium carbonate and dif-

ferent metals, i.e., iron, silver and gold) established the second domain of the nanocarriers. 

These systems prove superiority in terms of smaller particle size, structural integrity, versatil-

ity in the polymeric materials, improved drug loading and release profile. They also provide 
the targeting capabilities in the case of magnetic iron oxide nanoparticles and better cellular 
interactions in case of organic and inorganic nanoparticles [14]. Similar to that of vesicular 

systems, these polymeric nanoparticles have some limitations in term of polymer toxicity, 

presence of toxic organic solvents, poor entrapment of hydrophilic drugs, polymer degrada-

tion and drug leakage before reaching the site of action [15].

The problems associated with the liposomes, polymeric nanoparticles and other carrier 

systems can be reduced by using a novel combinatorial approach of “hybrid nanoparti-

cles” (HNPs) that utilizes the positive attributes of two different components. These hybrid 
nanoparticles (HNPs) exploit the benefits of both systems (lipid and polymer/organic and 
inorganic materials) and the release profile of drug is based on the erosion and degrada-

tion of the core material by hydrolysis with in turn determined by water permeation into 

the outer shell layer and composition of the polymer. The core materials may be protected 

by the application of multiple layers of the shell materials and the interface of these layer 

acts as a site for the functionalization of the carrier system for the dual modalities of treat-

ment and diagnosis [16].

Similarly, core shell hybrid nanoparticles using different oils, metal oxides, organic and inor-

ganic components also provide newer system that has multilayered structure having the 

inner core outer shell with a suitable lipid or oil at the interface to develop a core shell hybrid 

structure. Recently, use of green approach offer more facile and potentially successful system 
with the added advantage of solvent-free nanohybrids with greater efficiency.

Such novel system consists of three different structural components as follows:

(i) The inner most core made up of different polymers (poly-lactic-co-glycolic acid [PLGA], 
polycaprolactone [PCL] and chitosan), lipids (cationic, anionic, zwitterion and neutral 
phospholipids and nonionic surfactants), inorganic materials (silica, iron oxide) and or-

ganic materials (polysaccharides) that encapsulate the therapeutically active moiety.

(ii) The intermediate lipid layer that covers the polymeric/inorganic core and enhance the 

biocompatibility of that system. It also acts as barrier to minimize the drug leakage and 

control the rate of polymer/inorganic core degradation by controlling the water permea-

tion into the core.

(iii) The outer most lipid or polymer-conjugate which act as a layer for functionalization of 

the system by making it target specific through the use of different ligands or increased 
its circulation and retention time by coating with the PEG. This layer may be modified 
with a suitably charged moiety to attach the antibodies, aptamer and other such mol-
ecules by electrostatic forces [17]. Different types of the hybrid nanocarriers having dif-
ferent morphology and different structural components Figure 1.

Hybrid Nano-carriers for Potential Drug Delivery
http://dx.doi.org/10.5772/66466

55



In this chapter, the different types of hybrid nanocarriers have been described with particu-

lar emphasis on the brief rationale for the development of these hybrid nanocarriers along 

with different fabrication approaches with greater emphasize on the lipid polymer hybrid 
nanoparticles. A brief description factors governing the optimized response characteristics 

and their potential application of these hybrid nanoparticles are also presented.

2. Method of preparation

Different methods have been employed for the fabrication of hybrid nanocarriers depend-

ing upon their chemical composition and applications. The lipid-polymer hybrid, polymer-

inorganic hybrid, metal (gold, silver or iron) polymer, silica (SiO
2
) based hybrid nanosystems 

and hybrid polymeric nanocarriers have been most widely investigated [18]. Most of these 

hybrid carriers utilized two distinctive fabrication approaches. First, a two-step conventional 

approach process, in which the inner core and outer shell are prepared separately and then 

are coincubated for the formation of hybrid nanoparticle. The second approach is the single 

step, in which various state-of-the art techniques of the self-assembling are being incorpo-

rated. These processes are further modified with different chemical moieties to obtain ver-

satile hybrid nanoparticles meeting specific need of therapy [19]. In the present chapter, we 

will focus on the two step conventional as well as single step formulation approaches along 

Figure 1. Structure of lipid-polymer hybrid nanoparticles; (a) polymer core-lipid shell hybrid, (b) 3 layers polymer-lipid 

hybrid nanoparticles consisting of polymeric core (1) and two lipid layers (2,3) shell, (c) 4 layers hollow core lipid-

polymer hybrid, consisting of hollow core (1) covered by reverse surfactant layer (2), polymeric shell (3), and outer shells 

of two lipids (4). (d) organic core-inorganic shell and inorganic core-organic shell hybrid, (e) inorganic (metallic)-protein 

hybrid nanoflowers, and (f) graphene oxide coated mesoporous silica-inorganic hybrid nanoparticles.
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with recent innovations have been presented in order to prepare the hybrid nanocarriers with 

versatile characteristics.

2.1. Conventional two-step method

It was the first technique employed for the fabrication of hybrid nanocarriers. The inner core 
and outer shell components are prepared in two separate steps employing suitable polymers 

and chemicals and are then combined to form the hybrid nanoparticle [17]. The foremost type 

of core shell hybrid nanoparticles contained a core of the polymeric nanoparticles and an outer 

shell of preformed lipid component such as liposome or lipoparticles in appropriate ratios 

[20]. Further, the single or multilayered shell is prepared with other techniques such as sonica-

tion [21], extrusion or high pressure homogenization and vortexing [22]. The polymeric core 

is prepared by emulsification-solvent evaporation or solvent diffusion [23], desolvation [24], 

nanoprecipitation [25, 26], sonication [27] and high pressure homogenization [28] depending 

upon the hydrophobicity of the loading drugs, their applications [29] and the size of the core.

The single step method is applied when the core materials such as polymers, silica and organic 

substances are miscible with the drug payload and also are solubilized in the organic sol-

vent [30, 31]. The double emulsification step is employed when the compound is immiscible 
with the organic solvents and does not form covalent linkage with the core material. As this 

method requires multiple steps for mixing of different components, relatively larger hybrid 
nanoparticles are produced [32]. Further, any of the suitable technique such as ultrasonication 

or extrusion by high pressure homogenization also reduces the particle size as the polymer 

solution is passed through the nozzle under high pressure. Furthermore, the freeze drying or 

cooling at normal temperature produced free flowing characteristic particles [33, 34]. Another 

recent innovation is the application of nanoprecipitation method for the preparation of poly-

meric core. The polymer is dissolve in the suitable solvent and then precipitated by using the 

nonsolvent component [26].

The formed polymeric core and lipid vesicles are mixed by vortexing, extrusion, film hydra-

tion and ultrasonication techniques in order to formulate the hybrid nanoparticles. The mix-

ing processes provide the energy for the fusion or adsorption of the shell on the inner core 

material. Additionally, the electrostatic forces among these components also play their role for 

fabrication of hybrid nanoparticles [35]. It is worth mentioning here that mixing process must 

be carried out above the phase transition temperature of the lipid component. The formed 

hybrid nanoparticles are separated by the ultracentrifugation process [36, 37]. Different 
investigators such as Liang et al. [38] and Zhao et al. [39] prepared the hybrid nanoparticles 

and nanocells by the emulsification solvent evaporation technique employing the paclitaxel 
loaded polymeric nanoparticles as core and the PEG or folic acid conjugated octadecyl-qua-

ternary lysine-modified chitosan and cholesterol as lipid shell [38, 39].

2.2. Modified two-step methods

The modifications to the conventional two step method such as spray drying and litho-

graphic molding processes have also been employed for fabrication of hybrid nanoparticles 

[29]. The inner core is prepared by the spray drying which is dispersed in an appropriate 
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solvent containing the lipid, polymer or any inorganic material. The spray dried lipid coated 

core shell hybrid nanoparticles were collected after the completion [17].

Freeze or spray dried inhalation hybrid nanoparticles of levofloxacin, ciprofloxacin and iso-

niazid coated with multiple layers of the lipids were prepared using double emulsion solvent 

evaporation technique. These hybrid nanoparticles showed better inhalation efficiency, emitted 
particle size and diameter compared to the conventional two step methods [37, 40]. Another 

investigations employed nanospray drying for fabrication of hybrid nanoparticles using poly-

glutamic acid, poly lysine nanoparticles coated with the lipid materials [41]. Recently, Keloglu et 

al. [42] employed jet spray drying technique for the fabrication of hybrid microfibers-nanoparti-
cles having low density and greater strength using PLGA and poly lactic acid (PLA) [42].

A soft lithography particle molding technique was also utilized for the preparation of hybrid 

nanocarriers for the delivery of genes to various diseases. De Simon and his coworkers prepared 

the nanosized particles using the particle replication approach on the silicon wafers. The tech-

nique was referred to as Particle Replication in Nonwetting Templates (PRINT) [43]. The process 

involve the dissolution of the polymer (e.g., PLGA, PLA) in an organic solvents such as dimethyl 
formamide, methyl acetate and/or dimethyl sulfoxide along with the material to be encapsu-

lated. The PRINT molding device was employed to fabricate the nanoparticles which later were 

harvested with the help of polyethylene terephthalate sheet [43]. It produces the particles of 

different shapes and a wide size range depending upon the size of the molding cavities [44].

2.3. Single-step preparation methods

The low encapsulation efficiency due to the leakage of the drugs from the inner core during 

second step, batch variability and large time consumption are the common problems associ-

ated with the conventional two step methods [45]. These constraints can be overcome by 

designing the simple method that utilized the single step approach and also provide better 
control on the content uniformity, reproducibility and other characteristics of the system. 

The method involves the mixing of two different solutions containing the polymer and lipid 
that self-assembled to form the particles with the core shell hybrid structure [46]. The poly-

mer is dissolved in an appropriate organic solvent while the lipid solution is prepared in the 

water that may utilize the small fraction of organic solvent as solubilizing agent. The solution 

containing polymer is added to the lipid phase where the polymer precipitate to formed the 

nanoparticles and the lipid is self-assembled at the surface to form the hybrid nanoparti-

cles. Single-step preparation is usually achieved by nanoprecipitation, emulsification-solvent 
evaporation and solvent diffusion methods. These methods and their appropriate modifica-

tions are discussed here.

2.3.1. Emulsification solvent evaporation method

Emulsification solvent evaporation method is the most commonly employed single step 
approach for the fabrication of hybrid nanocarriers. The single emulsification solvent evapo-

ration [47] and double emulsification solvent evaporation (DESE) techniques are employed 
depending upon the nature and solubility of encapsulating drug. In the ESE method, the oil 

phase is formed by dissolving the polymer and the drug in the water immiscible organic  solvent. 
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The aqueous solution containing the lipid portion which act as a stabilizer itself during the self-

assembling process [48, 49]. The organic phase is then added dropwise into the aqueous phase 

under the sonication or stirring at the constant speed that results in the formation oil in water 

emulsion. During the emulsification process, the hydrophobic part of the lipid is adsorbed on 
the inner core material while the hydrophilic parts arrange themselves toward the aqueous 

medium forming the lipid coated hybrid nanoparticles [45, 50].

The single ESE method is employed for the encapsulation of hydrophobic drugs with low 

aqueous solubility [51]. Recently, the folate conjugated lipid polymer hybrid nanoparticles 

have been prepared by the emulsification solvent diffusion method for the targeted delivery 
of the doxorubicin using phosphatidylcholine (lecithin 99%) and 1,2-distearoyl-sn-glycero-

3-phosphoethanolamine (DPSE)-PEG-COOH as lipid portion and PLGA as a polymeric por-

tion [52]. The ESE method was also employed to formulate duel ligand hybrid nanocarriers 

for the targeted delivery of docetaxel. The hybrid nanoparticles possessed a uniform mono-

layer of the lipid over the polymeric core. The cell interaction studies revealed better endo-

cytosis profile with sustained release of the drug by preventing the diffusion of the aqueous 
medium in the polymeric core. However, the particle were relative larger compared to that 

prepared by the nanoprecipitation method. This might be attributed to higher drug loading  
that maintained the therapeutic concentration for the longer period of time [53].

The double emulsification solvent evaporation (DESE) has been employed for the hydrophilic 
drugs and nucleic acid such as siRNA (small interfering ribonucleic acid) which are not dis-

solved in different organic solvents along with the other suitable polymers or the core/shell 
materials [54]. The aqueous solution of desired substance is prepared and is then emulsified 
in the organic/oil phase containing the lipid and polymer. The resultant primary emulsion 

is again added to another aqueous solution containing the lipid (lecithin, phosphatidylcho-

line or DSPE) or surface ligand (PEG, half antibodies, aptamer) and a water-in-oil-in-water 
(w/o/w) multiple emulsion is prepared. The evaporation of the organic phase results in the 

formation of hybrid nanoparticles [55]. The particles with hollow core covered with an appro-

priate shell provide the space for the internalization of hydrophilic and small molecules. The 

evaporation of the organic solvent provides the multilayered shell which has larger size as 

compared to the other methods [17].

Su et al. [56] prepared the reduction sensitive hybrid nanoparticles of doxorubicin using chi-

tosan with the sodium dodecyl sulfate employing the double emulsification solvent evap-

oration method. The amphiphilic chitosan and lipid base micelles core provided a unique 

nanoconfiguration that is enveloped by the triglycerides which enhanced the loading effi-

ciency and provided the drug release profile up to eight folds [56].

2.3.2. Nanoprecipitation

This method is also known as salting out method. It is a well known method for fabrication 

of hybrid nanoparticles of size less than 100 nm. This method employs two miscible solvents 

with different solubilizing capacity for the polymer. First, the polymer core is formed by solu-

bilizing in solvent of greater solubility designated as good solvent which is then added to less 

soluble solvent designated as poor solvent. The two solutions are mixed by dropwise addition, 
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stirring or sonication. Good solvent being miscible with poor solvent diffuses into later, leav-

ing behind the core nanoparticles due to the precipitation of the polymer [19].

The core forming polymer and lipophilic drug are solubilized in a water-miscible organic sol-

vent like acetone, acetonitrile or ethanol [57]. The lipids, inorganic salts or silica are dispersed 

in water with moderate heating (~60–75°C) and/or addition of hydroalcoholic mixtures for 

proper dispersion of the lipids.

The hydrophilic drugs are added to the aqueous phase containing dispersed lipids [58]. 

The polymer containing organic phase is then added dropwise to lipid dispersion with con-

tinuous stirring to precipitate the polymer into nanoparticles. The monodispersed hybrid 

nanoparticles are collected after suitable application of vortexing, homogenization or 

ultrasonication [55, 59]. Concurrent to the precipitation process, the self-assembly of lipid 

molecules around the polymer molecules occurs due to the hydrophobic interactions. The 

polymer core captures the hydrophobic tails of lipid while the heads are facing toward the 

aqueous phase [17, 60]. Continuous stirring of dispersion for several hours is helpful in uni-

form lipid coating of hybrid nanoparticles and to ensure the complete removal of organic 

solvent [55]. Rotary evaporator may also be helpful for the removal of organic solvents [58].

The literature suggests 10% ethanolic solution is employed for solubilization of lipids and 

PEG may enhance the stability of hybrid nanoparticles [61]. According to the study of Ling 

et al. [58], dextran sulfate and lecithin/PEG-PLGA hybrid nanoparticles can entrap higher 

amounts of hydrophilic moiety, the vincristine.

Wang et al. [62] developed PLGA/TPGS-lecithin hybrid nanoparticles using a modified nano-

precipitation method. The PLGA was dissolved in acetone while lipids were dispersed in either 
aqueous or 4% ethanolic aqueous solution. An inverse-phase nanoprecipitation method (i.e. 

aqueous phase was added dropwise into organic phase consisting of acetone, the PLGA and 
the paclitaxel). Initially, the formation of hybrid nanoparticles was slow due to the higher pro-

portion of organic phase in the mixture. Continuous stirring and addition of water boosted the 

diffusion which leads to solidification of the hybrid nanoparticles. A stable hybrid nanoparticle 
formulation with low value of PDI (~0.1) was observed at 5:1 aqueous to organic phase ratio [62].

2.3.3. Sonication

Sonication is a fast technique for the fabrication of hybrid nanoparticles which utilizes ultra-

sonic waves rather than vortexing, solvent evaporation or heating. In this method, the two 

solutions designated as organic and aqueous phases lead to formation of inner core (polymer) 

and outer shell or coating materials (lipids), respectively. The sonication has been employed 

by Fang et al. [63] for the fabrication of hybrid nanoparticles of lecithin-PEG and PLGA by 
using this approach. The PLGA was dissolved in acetonitrile while the lecithin and the PEG 
were added in 4% ethanol solution. The former solution was carefully pipetted into the hydro 
alcoholic solution (aqueous to organic ratio was kept as 10:1). The hybrid nanoparticles were 
produced as this ‘cocktail’ mixture was placed in sonicator bath for five minutes at a frequency 
of 42 kHz and a power of 100 W. The main advantage of this technique is the formation of 

stable hybrid nanoparticles with short processing time and production rate is 20 times than 

other processes [63].
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The sonication technique has been employed for PLGA and docetaxel hybrid nanoparticles by 
Liu et al. [64]. In another study, Mandal et al. [65] developed erlotinib loaded hybrid nanopar-

ticles of PCL in which erlotinib and PCL were dissolved in acetone and added to the aqueous 

phase containing lipids. Hybrid nanoparticles were produced after sonication for 10 minutes 

at a frequency of 67 kHz and a power of 200 W [65].

A unique method using the combination of modified nanoprecipitation and sonication meth-

ods is presented for the fabrication of hybrid nanoparticles. In this method, the lipids melt 

was mixed with ethanolic solution of Elacridar, a chemosensitizer, and placed in vacuum 

oven until complete removal of solvents. The doxorubicin being hydrophilic drug was added 

in water with surfactant (Pluronic-F68) and heated (72–74°C). The drug and surfactant disper-

sion was mixed with Elacridar-lipid mixture. The whole mixture was stirred for 10 min and 

then ultrasonicated for two cycles of three minutes. It produced submicron sized lipid emul-

sion which was dispersed in 4–9 times higher volume of cold water (maintained 4°C) which 

leads to the formation of hybrid nanoparticles [66, 67].

2.3.4. Green technology for the preparation of hybrid nanocarriers

The use of green technology has revolutionized the synthesis of hybrid nanocarriers due to 

the ecofriendly procedures that mitigate the threats of toxic impurities and use of the organic 

solvents. These ecofriendly approaches also provided low operating cost, better stability, 
compatibility and minimum health hazards [68]. The literature has suggested the successful 

implementation of solvent free approaches to formulate nanosized systems for the targeted 

delivery of different therapeutic and diagnostic moieties.

The heat chill method has been employed to prepare micelles using the amphiphilic diblock 

and triblock copolymers of polycaprolactone (PCL) for the encapsulation of insulin without 

using any organic solvent and has provide better stability of the entrapped proteins which are 
liable to denaturation in the presence of different organic solvents [69].

Kumar et al. prepared the green PLGA-oil hybrid nanoparticles of resveratrol employing the 
acrysol oil (a derivative of castor oil) as nontoxic solvent. The nanoparticles have a smooth 

outer morphology with improved drug release and stability profile [70].

2.3.5. Preparation of organic/inorganic hybrid nanoparticles

The concept of combining the characteristics of organic and inorganic components is quite old 

since the time of Egyptian inks. However, the modern organic-inorganic hybrid systems are 

not prepared by simple mixing these materials but may involve the weak electrostatic link-

ages (H-bonding or van der Waals forces) or strong chemical bonds, i.e., covalent bonds [71]. 

Multiple strategies are employed for the preparation of these hybrid particles. These include 

(i) polymerization of the different monomers, organosilanes and the metal oxides, (ii) self-
assembly of different structural components at nanoblock level with different organic and 
metal components, (iii) the functionalization of preformed nanocarriers with different organic 
compounds and (iv) making the core with organic materials and coating with the silica and 

different metallic components [72, 73].
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Structural components Physicochemical properties Application References

Size (nm) Zeta potential 

(mV)

Entrapment 

efficiency (%)

PLA

DPPC

PEG-PE

278 ± 16 (+) 20 to 50 N/A Steric stabilization of hybrid nanoparticles was enhanced at least up to 

150 mM NaCl (for more than 1 year at 4°C).

[27]

Paclitaxel

PLGA
PEGylated  
octadecyl-quaternized lysine 

modified chitosan

194 ± 7 22 ± 4 87 ± 2 Folic acid modified polymer core lipid shell hybrid carrier for targeted 
anti-cancer therapy. Higher internalization up to 14.8 folds was 

observed in flow cytometry.
It also showed higher cytotoxicity than commercial preparation 

(Taxol®). After 2 hours administration, it showed 3.70 fold higher bio 

distribution than Paclitaxel injection.

[39]

Levofloxacin
Ciprofloxacin
Ofloxacin 
PLGA
Phosphatidylcholine (PC), 

Stearic Acid (SA)

420

260

360

-26

+26

-22

19

4

5

The amount of the polymer and lipid were optimized for highly 

efficient hybrid system. Hybrid nanoparticles showed higher size and 
drug encapsulation in comparison to polymeric carriers. Different 
antibiotics like levofloxacin, ciprofloxacin and ofloxacin were 
encapsulated. Ciprofloxacin showed less EE due to less lipophilicity. 
Oppositely charged drug and lipid prevented nanoparticle formation 

which was remedied by the addition of counter ionic surfactant.

[45]

Doxorubicin

PLGA
DEPE-PEG
Lecithin

118.7 ± 

0.75

15.19 ± 3.85 45.76 ± 6.58 Folate receptor mediated drug delivery of anti-cancer agent, 

doxorubicin, resulted in higher cell internalization and enhanced cell-

killing effect toward MCF-7 cells with a significantly lower IC50.

[52]

PLGA
DSPE-PEG
Poly (β-aminoester) poly-1

280 ± 70 (+) 40 ± 7 N/A mRNA loaded pH sensitive particles reached cytosol offering low 
cytotoxicity followed by translation at a frequency of ∼30%. Intranasal 

administration of abovementioned system led to in vivo expression of 

protein as soon as 6 hours after administration.

[57]

Vincristine

PLGA
Poly ethylene glycol (PEG)
Dextran sulfate

121.8–133 -8.5 to -14.6 64.7 to 93.6 Vincristine loaded hybrid nanocarriers resulted in 3.3-fold increase in 

apparent bioavailability, while its uptake was 12.4-fold higher than 

plain drug solution.

[58]

A
dvanced Technology for D

elivering Therapeutics
62



Structural components Physicochemical properties Application References

Size (nm) Zeta potential 

(mV)

Entrapment 

efficiency (%)

Docetaxel

PLGA
Lecithin

PEG

70–80 -30 to -35 59 ± 4 Docetaxel loaded Hybrid nanoparticle exhibited 20 hourrs as T
5o

. These 

carriers also exhibited good stability in 10% bovine serum albumin and 

in 10% plasma solution.

[59]

Paclitaxel

PLGA
Soybean lecithin

D-α-tocopheryl polyethylene 
glycol 1000 succinate (TPGS)

120–150 -15 to -20 >80 Developed carriers provided sustained release up to 8 days with a high 

tumor targeting potential through EPR effect. It also showed superior 
antitumor efficacy by inhibiting 58.8% volume of tumor at day 28.

[62]

PLGA
DSPE-PEG

65 -47.7 N/A A new quick single step preparation method is reported which needs 

5 min to get accomplished. This method increased the production 

rate 20-fold without compromising determinant features of hybrid 

particles. Particles developed such exhibited good colloidal stability in 

PBS and serum over 5 days.

[63]

Docetaxel

PLGA
DEPE-PEG

2000

263.6 -20.74 66.88 Folic acid conjugation increased 38.2% for 0.5 hour incubation and 54% 

increase for 2 hours incubation during cell uptake study. Cell viability 

studies showed that formulation was 93.65% more effective than 
commercial preparation Taxotere®.

[64]

Erlotinib

DEPE-PEG
2000

Dipalmitoylphosphatidylcholine 

(DPPC)

N-[1-(2,3-Dioleoyloxy)

propyl]-N,N,N-

trimethylammonium methyl-

sulfate (DOTAP)

161–271 -47 77.18 Erlotinib loaded Core Shell Lipid Polymer Hybrid Nanoparticles 

demonstrated 170 nm size with 66% Entrapment efficiency and greater 
uptake and efficiency in A549 cells.

[65]

Doxorubicin

Elacridar

Pluronic F-68

187–272 -19.7 to -22.9 71.2–89.3 Formulation shows up to 89% encapsulation efficiencies of Dox and 
GG918 in PLN with more uptake and cytotoxicity of Dox to MDR cells

[67]
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Structural components Physicochemical properties Application References

Size (nm) Zeta potential 

(mV)

Entrapment 

efficiency (%)

Resveratrol

PLGA
375 ± 13 -22 ± 1.6 76 ± 4.2 G-PONHs have higher biocompatibility and stability, but moderate 

cytotoxicity compared to standard NPs. It also involves the application 

green synthesis approach for the hybrid nanocarriers

[70]

Paclitaxel

Poly-lactic-co-glycolic acid 

(PLGA)
Soybean lecithin

1,2-Distearoyl-sn-glycero-3-

phosphoethanolamine 

(DSPE-PEG)

186.9 ± 

8.52

-29.5 ± 2.0 81.34 ± 3.41 More drug reaches target site crossing Blood brain barrier and 

survival time for mice was PtxR-FPLNs (42 days), Ptx-FPLNs (38 days) 

compared to PtxR (18 days) and Paclitaxal (14 days)

[76]

Melatonin

Poly lactic acid (PLA)

Didodecyldimethylammonium 

bromide (DDAB)

Cetyltrimethylammonium 

bromide (CTAB)

180–218 +15.4 to -36.1 90.35 Coating with cationic lipids provides sustained and prolonged drug 

release, a pronounced benefit in ophthalmic application
[77]

Docetaxel

PLGA
DEPE-PEG

2000

Soybean lecithin

60–70 -40 to -60 ∼62 The system provides 62% entrapment efficiency and almost 50% drug 
release in 20 hours. The incorporation of PEG provides stability over 
120 hours. TC 50 value ranged between 4.58 and 5.55 mg.

[78]

PLGA
DSPE-PEG

50–150 N/A N/A Different lipid ratios were evaluated for the entrapment, particle size, 
stability of the system. The current system provides that pH sensitive 

release and targeting which aggregate the drug in the acidic tumor 

microenvironment.

[79]

Poly caprolacton (PCL)

Glyceryl tripalmitate
58–2009 -5.82 to -46.31 5.81–60.32 The system indicates biphasic release of the drug in which the burst 

release id presented in the initial hour. The cellular uptake was 83.3% 

in L929 cells. It also provides better colloidal stability over 120 hours.

[81]

Human IgG
Poloxamer-188

135–799 +16.7 to +17.9 30.3–60 The system was loaded with the SiRNA. Which show the loading 

capacity of up to 2.04%, entrapment efficiency 60% in the optimized 
formulation. It provides the targetibility with the antibody and the 

sustain release was demonstrated by 20% release over the study time.

[82]
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Structural components Physicochemical properties Application References

Size (nm) Zeta potential 

(mV)

Entrapment 

efficiency (%)

PCL

Grape leaf extract
Curcumin

∼291 -24.3 The resulting drug delivery system improves the antimicrobial efficacy 
against two bacterial strains in addition to antifungal activity and can 

be an alternative approach to antibacterial agents.

[83]

Doxorubicin

Epoxidized soybean oil

Pluronic F68

200–350 -23.1 70 to 80 The system promotes cytotoxicity of DOX against MDR to about 

eightfolds. Uptake and retention of drug by MDR was also significantly 
increased.

[84]

Carboxymethyl chitosan

Calcium phosphate

PEG

102 ± 1.7 -8.25 ± 0.76 78 It gives excellent delivery of siRNA to cancer proximity through EPR 

effect. Particularly hTERT containing nanoparticles promotes silencing 
of hTERT expression and induction of cell apoptosis pathways.

[85]

Doxorubicin

Sorafenib

126.3 ± 

16.4

-21.4 ± 4.6 90.5 ± 3.4 and 

70.8 ± 2.8

DOX-SOR combination in iRGD conjugated HNPs produces more 
apoptotic rates up to 44.7% than 33.4% with plain drug combinations 

or 37% with HNPs without iRGD.

[86]

Doxorubicin

Mitomycin C

∼150 ∼ -25 >90 Co delivery of anticancer agents using HNPs is more effective than 
simple combination therapy with advantages of high local delivery. It 

provides the 2–4 fold increase in the cellular uptake of the drug in the 

cancer cells.

[87]

Lipid modified PEG 24 ± 5 -38 ± 1 N/A The system describes engineering of functionalized lipid conjugated 

polymeric nanoparticles with more specific targeting approach and 
imaging and bio sensing based on fluorescence.

[88]

Doxorubicin

Combretastatin A4

PLGA
PC

DSPE-PEG
Cholesterol

180–200 N/A N/A The system contains two different therapeutic agents which provide 
the site targeted release of the anti-angiogenesis agent and the anti-

cancer drugs.

[89]

Curcumin

PLGA
DPPC

DSPE-PEG

171.6 ± 8.2 N/A N/A By treating the metastatic breast cancer cells with the lipid-polymer 

hybrid nanoparticles of Curcumin decreased the adhesion onto tumor 

necrosis factor by 70% in capillary flow.

[90]
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Structural components Physicochemical properties Application References

Size (nm) Zeta potential 

(mV)

Entrapment 

efficiency (%)

Docetaxel

PLA

Chitosan

208–255.7 -21.3 to + 52.4 75.9 PLA/chitosan nanoparticles provide rapid initial release of 40% drug in 

5 hours and 70% cumulative release in 24 hours.

[91]

Docetaxel

Curcumin

PLGA

169.6 ± 4.6 -35.7 ± 1.9 89.8 ± 3.1 and 

81.9 ±5.6

The drugs loaded hybrid nanoparticles showed enhanced cytotoxicity 

and tumor growth inhibition.

[92]

Docetaxel

DSPE-PEG
PLGA

110 ± 13.5 -25.67 ± 1.45 77.65 ± 0.57 The system increases the cellular update of docetaxel 2.5 folds and 

anti-proliferative activity 2.69–4.23 folds.

[93]

Doxorubicin

Chitosan

Hyaluronic acid

264 ± 2.2 -12.3 ± 2.0 97.8 ± 1.3 It is used to deliver anticancer drugs which results in enhanced 

circulation half-life and reduce the elimination of drug

[94]

Table 1. Hybrid nanoparticles with different structural components and their applications.
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In conventional sol-gel approach, the hydrolysis process is used to obtain the hybrid system. 

The reaction involves the organically modified metal oxides which crosslinks with the poly-

mers of multiple functionalities. These components may or may not be present in the organic 

solvents and possibly trapped within the inorganic material. However, use of self-assembling 

procedures in last few decades provided new methods for the fabrication. During the process, 

the inorganic materials (triblocks) were arranged by the use of organic surfactants. The prepa-

ration of the mesoporous hybrid with multiple functionalities provide highly porous surface 

which further modified based on the applications [74].

Shen and Shi [75] reported a method for preparation of  the organic/inorganic hybrid based 

dendrimers. The metal or inorganic nanoparticles were entrapped in the dendrimers template 

to provide a modified surface morphology which can be tuned by different functional compo-

nents to provide the biocompatibility and better colloidal stability [75] (Table 1).

3. Factors affecting hybrid nanocarriers

Hybrid nanoparticles are trimmed to an acceptable level of particle size, drug carrying capac-

ity and site specificity through incorporation and adjustment of ratios of different chemical 
components. The variations of structural components of HNPs have an obvious influence on 

HNPs’ characteristics [17, 96]. The principal factors of HNPs’ formulation are (i) lipid/poly-

mer ratio, (ii) PEGylation and (iii) polymer nature.

3.1. Lipid/polymer ratio

The lipid covering the polymeric core provides substantial benefits to HNPs and their dis-

tinction over nonhybrid nanoparticles. The ratio of two building blocks (lipid-polymer) of 

hybrid particles have significant role in stabilizing the formulation, monodispersibility and 
encapsulation efficiency [45, 97].

At a lower L/P ratio, the nanoparticle surfaces are not entirely covered with lipids, which can 

form bridges with lipid part of other particles causing aggregation and formation of larger 

particles. At a relative higher lipid concentration, it tends to decrease the production yield as 

whole amount is not incorporated in particles and free lipids will arrange themselves to form 

liposomes can affect the homogeneity of formulation. Therefore, the concentration of lipids 
should be optimized that cover to polymeric core on the basis of particle size and production 

yield [59, 98]. Chew et al. prepared HNPs with PC and PLGA carrying antibiotics with W
PC

/

WPLGA value <15- up to 90%. At lipid amount below 15% larger particles were formed (800–

1000 nm) and a sharp decrease in particle size was observed at an optimum concentration i.e. 

30% lipids, an optimum particle size (260–400 nm) and 80% production yield was achieved. 

The lipid ratio above the optimum concentration i.e. 30% did not reduce particle size but it 

decreased the yield as the entire lipid was not utilized [45].

An optimum lipid to polymer ratio also provides the colloidal stability of HNPs by providing an 

optimum surface charge density which is responsible for electrostatic repulsive forces that prevent 
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particle coalescence and stabilizes the formulation. In case where the lipid part is insufficient and 
the resulting electrostatic repulsive forces are weak, some agents like PEG can be incorporated in 
the formulations to provide steric repulsion and stabilization of the HNPs [52, 80–98].

The charge on lipid part which is responsible for electrostatic repulsion between particles is 

shielded when mixture of cationic and zwitterionic lipids is employed. Anionic heads of zwit-
terionic lipids face outwards which reduces of cationic lipids charge and promotes aggrega-

tion of particles. However, the higher cationic lipid concentration may overcome this charge 

screening and aggregation can be minimized [59, 99]. The zwitterionic lipid such as 1,2-dipal-
mitoyl-sn-glycero-3-phosphocholine (DPPC) produces less aggregation than a cationic lipid, 

1,2-dipalmitoyl-3-trimethylammonium propane (DPTAP). Therefore, it zwitter ionic lipid 
provides more stability than ionic lipids [55, 59].

The two potential benefits that lipid augments to the HNPs are the encapsulation efficiency 
and retardant release of the incorporated drugs. The former is achieved by preventing drug 

leakage during self-assembling process, whereas the latter is due to reduced interaction of 

lipids with dissolution medium [17, 100]. The charge on the surface of lipids and drugs also 

affects the entrapment efficiency due to interaction of surface charge of HNPs and the charge 
of the drug. The loading of ciprofloxacin in the PLGA-PC hybrid system is not successful due 
to the interaction of cationic drug with the anionic lipids [19, 78].

A significant higher percent encapsulation of docetaxel (59 ± 4) was achieved in HNPs 
assembled from lecithin, DSPE-PEG and PLGA i.e. compared to PLGA-PEG nanoparticles 
with 19 ± 3 (mean ± SD). This effect is attributed to the fencing action of lipids which keeps 
hydrophobic drugs within the core and retards water penetration. The lipid-polymer hybrid 

formulations also provide a sustained release of drug when compared with nonhybrid for-

mulation due to less water penetration and reduced escape of drug molecules from poly-

meric core. A consistent 50 % release of docetaxel from lecithin-PLGA hybrid system was 
observed compared to the PLGA-PEG NPs and PLGA NPs released same amount of drug in 
10 hours and 7 hours, respectively. The pH of the dissolution media also affected the encap-

sulation of drugs, for example, the erlotinib EE % was 77.1%, 28.83% and 18.45% at pH values 

of 7.4, 5.4 and 3.4, respectively [55, 59, 78, 100].

3.2. PEGylation

The steric stabilization of HNPs systems to withstand salt solutions, buffer actions and uptake 
by macrophages is provided by the appropriate surface modification by employing PEG. The 
term is called as PEGylation. PEGs can escalate circulation times of HNPs by preventing par-

ticle aggregation, opsonization and adsorption of plasma proteins [27, 78].

Incorporation of PEG-lipid affects the colloidal stability of HNPs by two ways (i) chain length 
of PEG-lipid and (ii) molar Ratio of PEG-lipid. HNPs coated with PEG-lipid longer chains 
exhibited more stability than the shorter chain PEG-lipid coated particles. Similarly, at the 

fixed chain length more PEG-lipid incorporated onto polymer core and thickness of lipid shell 
increased which lowered the zeta potential and hence stability is enhanced [78, 80].
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Yang et al. studied the effect of lipid/polymer ratio and PEGylation on HNPs prepared from 
PLA/mPEG-PLA polymer and BHEM-Chol cationic lipid. HNPS prepared from mPEG-PLA 
were smaller and more stable in PBS at the given lipid/polymer ratio than PLA alone [61].

Fang et al. formulated HNPs using 0.10–0.35 lipid-PEG/PLGA ratios without incorpo-

rating lecithin. Initially particle reduced with increase in lipid amount and optimized at 

0.30 lipid-PEG/PLGA ratio after which further increase in lipids did not affect particle 

size and PDI. At an optimized (0.30 lipid-PEG/PLGA) ratio, lipid-PEG was replaced with 
mole equivalents of lecithin. The stable particles of 60 nm were obtained at 50% lipid-PEG 
replacement. Upon 70% lipid-PEG replacement, the size was increased to 100 nm and at 
80% lipid-PEG replacement with lecithin, the unstable particles were obtained. This insta-

bility of particles is due to the replacement of higher lipid-PEG content, a major stability 
component of HNPs [63].

3.3. Nature of polymer

The characteristics such as density and surface charge play an important role in the fabrica-

tion of HNPs [35]. The density of polymer also has substantial effect on stability and particle 
size [59, 78]. HNPs fabricated from high density polymer are less stable toward increasing 

ionic strength of medium due to the higher sedimentation rate when electrostatic charges 

are shielded. PLA is 1.18 times denser than poly(styrene); hence, HNPs prepared with PLA 

core have less colloidal stability toward increasing ionic strength of medium [35]. Zhang et al. 

evaluated that change in viscosity of PLGA polymer from 0.19 to 0.82 resulted a decrease in 
particle diameter from 92.7 nm to 66.7 nm [59].

Adsorption of lipid over polymeric particle surface to form lipid shell depends upon cur-

vature and surface charge of particle. Cationic lipids exhibit more adsorption than zwitter 
ions toward the anionic polymeric core due to the electrostatic attractions polymeric core 
from anionic polymer PLA has greater affinity for DPTAP cationic lipid than the zwitter-

ionic DPPC. Lipid rearrangement around polymeric core can be quick and complete if the 

affinity between polymer and lipid is high. Larger size distribution and free lipid structures 
are observed when lipids cannot rearrange around polymeric core due to weaker affinity. 
Modification in pH of medium can improve the affinity of polymer for lipid by surface charge 
variation at different pH levels [35, 101, 102].

4. Applications of hybrid nanocarriers

Hybrid systems combine properties of two or more materials, thus, appear superior to indi-

vidual material system. Usually, one component of hybrid system is active, whereas other is 

used to improve biocompatibility, circulation life and targeting. Many new hybrid systems 

use second material to improve efficiency of first materials. By suitable selection of mate-

rials, hybrid systems find wider applications in medical field. Hydrophilic polymers have 
been widely used to impart stealth property to nanoparticles. However, stealth coating does 
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not improve or impart new functional aspect of nanoparticles. Thus, many researchers do 

not regard PEG coated as hybrid systems. Similarly, nanoparticles conjugated with targeting 
ligands cannot be regarded as hybrid system.

4.1. Lipid polymer hybrid nanoparticles (LPHN)

LPHN consists of a drug containing polymeric core which is coated by a lipid shell. In these 

systems, inner polymer core contains drug and lipid shell is used to enhance penetration 

through biological membranes and to control drug release. Polymeric core can be made from 

hydrophilic or hydrophobic polymer. Term lipid-polymer hybrid is also used for systems that 

contain polymer core with lipid coating. Lipid is preferred carrier material for hydrophobic 

drugs due to higher encapsulation efficiency and extended release pattern. A polymeric coat-
ing is applied over lipid core to impart certain characteristics required for novel biomedical 

applications.

In addition of polymeric and lipid layers, surface of LPHN may be modified with different 
materials. In one study, a hydrophobic drug was loaded in a hydrophobic biodegradable 

polymer to enhance encapsulation efficiency of a hydrophobic drug. Then, a lipid layer is 
applied to stabilize core and shell, and to prolong drug release. Finally, hydrophilic poly-

meric layer, consisting of DSPE-PEG (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
carboxy (polyethylene glycol)2000) was applied to improve pharmacokinetics of LPHN. The 

three-layer LPHN showed high encapsulation and sustained release of hydrophilic drug 

[59]. A hydrophilic polymer monolayer may be applied to LPHN to escape phagocytosis 

and early removal from body. Generally, polyethylene glycol (PEG) is used to provide this 
stealth property and enhance circulation time of nanoparticles. PEG will attract water to 
make an aqueous layer which protect LPHN from attachment of opsonin proteins and let it 
escape the uptake by reticuloendothelial (RES) system. Hydrophilic polymer layer can also 

enhance colloidal stability of LPHN due to steric hindrance effect [5]. As stealth layer can 

also hinder interaction with target cells, PEG can be conjugated with other monomers or 
polymers to form block copolymers that are specific to certain stimuli. This approach enables 
long circulating LPHN that can shed stealth layer when come in contact with target cells. 

The stimuli could be intracellular and extracellular protease enzymes, low pH or reducing 

agents [103].

Selection of polymeric matrix plays a major role in drug delivery properties of LPHN. LPHN 

are commonly used for poor water soluble or hydrophobic drugs. A hydrophobic polymer 

core can encapsulate higher amount of hydrophobic drug and vice versa. Two or more drugs 

could also be loaded into the core of LPHN. On the other hand, LPHN with hydrophilic and 

hydrophobic drug could be made to contain one drug in core and the other in shell. Wong 

et al. [67] prepared LPHN containing lipid core to encapsulate hydrophobic drug Elacridar 

(GG918) and hydrophilic shell of hydrolyzed polymer of epoxidized soybean oil (HPESO) to 
encapsulated doxorubicin. They found that both drugs were released in sustained manner 

for more than 72 hours (Figure 2). Simultaneous delivery of chemosensitizer GG918 was able 
to revert multidrug resistance to anticancer drug doxorubicin. These simultaneously loaded 

LPHN showed better efficacy than free drug solution or LPHN of any of the two drugs.
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As a wide variety of polymers and lipids are available, LPHN can be prepared to theoretically 

load any therapeutic moiety. Nucleic acid based therapeutics i.e. plasmid DNA, antisense 

oligonucleotide, small interfering RNA and small hairpin RNA, have shown promise to cure 

many diseases. LPHN have emerged as nonviral carriers for nucleic acid products with low 

toxicity, immunogenicity and cost of production. Cationic polymers and lipids have been 

widely investigated for this purpose. Cationic groups can bind negatively charged nucleic acid 

molecules and deliver to target cells. Zhong et al. [104] prepared LPHN with biodegradable 

PLGA and two cationic lipids i.e. 1, 2-dioleoyl-3-trimethyammonium-propane (DOTAP) or 
3β-[N-(N′,N′-dimethylaminoethane)-carbamyl]cholesterol (DC-Chol). LPHN were prepared 
by two either with cationic lipid core so that DNA is loaded inside core or with cationic lipid 

shell so that DNA is loaded on surface. The in vitro evaluation was done in human embryonic 

kidney cells. They found that LPHN with DNA on surface showed higher transfection effi-

ciency than those with DNA inside core. Next, they prepared LPHN with polymer both inside 

core and on the surface which showed efficiency similar to that of LPHN with DNA on sur-

face. This study concluded that LPHN can show transfection efficiency about 600 times higher 
than unbound DNA. However, cationic lipids and polymers may have some problems on 

their own. They may interact with biological components, be nonbiodegradable or toxic after 

systemic administration. These factors are controlled by hydrophobic chain length, nature of 

cation group and linkage. To solve these problems, Shi et al. [54] prepared novel LPHN with 

four distinct layers. First is a hollow core i.e. aqueous droplet containing nucleic acid which is 

coated by an inner lipid layer of cationic lipid ethylphosphocholine.

The cationic lipid orients itself in such a way that cationic group faces inward and its hydro-

phobic chain faces outward. Third layer is formed by ester terminated PLGA. It is a hydropho-

bic polymer that intermingles with protruding chains of cationic lipid. Finally, self-assembled 

lecithin and DSPE-PEG form outer coating to facilitate transfection and to impart stealth 
property to LPHN. This LPHN system release loaded siRNA in sustained manner up to 6 

days and enhanced gene expression in mice.

Figure 2. Drug release from gold nanoparticles containing solid lipid nanoparticles. F1 (5mg diacerein) and F2 (10 mg 

diacerein) show sustained release of drug for 39 and 48 hours. However, F3 had same composition as F2 but drug release 

was conducted at 40°C. F5 and F6 contained increasing amount of hydrophilic gold nanoparticles with 5 mg diacerein. 

F7 contained gold nanoparticles same as F6 but 10 mg diacerein. Finally, F8 contained lipophilic gold nanoparticles with 

10 mg diacerein. Drug release was faster at higher temperature (F3) as compared to 37°C. Furthermore, hydrophilic 

gold nanoparticles containing formulations F5, F6 and F7 released drug in less than 5 hours, whereas hydrophobic gold 

nanoparticles showed prolonged release up to 25 hours.
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A recent trend in drug delivery research has focused on the development of human-like vesic-

ular drug delivery system. This concept emerged when exosome were found to be responsible 

for cell to cell communication in tumors and regulate tumor microenvironment. It was believed 

that exosomes isolated from patients may be filled with antitumor drugs and injected back 
to the patients for personalized treatment. As isolation of exosomes from patients is compli-

cated and very costly, this dream was realized by synthesizing surface antigens of exosomes 

by genetic engineering and grafting on the surface of drug containing liposomes or other 

vesicular systems [5]. In addition to this, many bacterial and viral antigens have been used. 

These antigens are used for the delivery of vaccine and act as immune adjuvant i.e. enhance 

immune response to vaccine. Moreover, polymeric core produce better adjuvant effects than 
lipid core. Bershteyn et al. [105] prepared PLGA core and phospholipid bilayer coated LPHN 
that were stabilized by PEG for simultaneous loading of antigen and adjuvant. The protein 
adjuvant was covalently bonded on surface and lipophilic adjuvants, such as monophospho-

ryl lipid A and α-galactosylceramide, which were loaded in lipid bilayer. Immune response 
was shown at dose as low as 2.5 ng which was detectable after 100 days. It was also found 

that α-galactosylceramide shows rapid rise in antibody titer whereas monophosphoryl lipid 
A produced response in sustained manner. Interestingly, coloading of both adjuvants with 

antigen further increased antigen titer by 12 fold. These results show that LPHN can reduce 

dose of antigen to reduce cost and side effects.

Term LPHN may also be extended to nanoparticle systems consisting of two or more polymer 

at least one of which is lipophilic. A hydrophilic shell may be applied to drug containing hydro-

phobic (or lipophilic) polymeric core to impart mucoadhesion or to make them stealth. For 

example, PEG or chitosan coating has been widely used to improve circulation life of sustained 
release solid lipid nanoparticles [106]. On the other hand, a hydrophobic polymer shell may be 

formed over hydrophilic polymer core to enhance LPHN absorption through biological mem-

branes. This approach is especially useful for oral administration of therapeutic macromolecules 

[107]. Recently, Liu et al. has synthesized supramolecular vectors for gene delivery. First, ada-

mantyl-terminated polyethyleneimine was admixed with β-cyclodextrin to encapsulate nucleic 
acid, i.e., DNA or siRNA which was further coated with adamantyl-PEG. The supramolecular 
vector was stabilized by host-guest interaction. This LPHN system showed low toxicity and 

high transfection efficiency during in vitro experiments. Graphene is another two-dimensional 
framework of carbon atoms that is investigated for hybrid applications. When treated with suit-

able reagents, it can be oxidized, hydroxylated, carboxylated or halogenated. These functional 

groups can be conjugated with different materials desired for biomedical applications [108].

4.2. Inorganic/organic hybrid nanoparticles (IOHN)

IOHN are synthesized from organic and inorganic materials. Most commonly, core is made 

of inorganic materials and the shell of an organic material is applied to improve its phar-

macokinetic parameters. On the other hand, inorganic shell may be applied to the core of 

organic materials to impart different properties. IOHN are interesting because they offer 
properties of both materials. Like organic polymer, they can be functionalized with different 
groups. Like metallic nanoparticles, inorganic shell provides physical and chemical stability 
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to polymeric core. Generally, the inorganic portion is developed by reduction of metal ions 
to zerovalent state. Inorganic core is synthesized by mixing metal ions solution with a reduc-

ing agent with or without heating. However, inorganic shell may be synthesized either by 

reduction of metal ions on polymeric core or by deposition of preformed metal colloids on 

organic core.

Methods for synthesis of organic core and shell have already been discussed in detail in a 

chapter. We have prepared IOHN consisting of gold core with fatty acid shell. First, gold 
nanoparticles were synthesized with lecithin bilayer (hydrophilic surface) and lecithin 

monolayer by acid treatment (hydrophobic surface). The gold nanoparticles were added 

to molten fatty acids and emulsified with aqueous surfactant solution. Upon cooling, we 
found that gold nanoparticles with hydrophobic surface are more stable as compared to 

gold nanoparticles with hydrophilic surface [109]. The presence of gold nanoparticles in core 

enhanced drug release rate from lipid nanoparticles. This can be attributed to the presence 
of gold nanoparticles that push drug toward periphery and reduce diffusion path length 
(Figure 1). In another study, we prepared an organic core of lecithin and inorganic shell of 

gold nanoparticles. First, lecithin nanoparticles were prepared and loaded with drug. Next, 

preformed gold nanoparticles were adsorbed on its surface. We found that drug release was 

controlled by both gold nanoparticles. Gold nanoparticles retard release of drug due to phys-

ical barrier. Lecithin controlled release of anti-inflammatory drug from core in pH-depen-

dent manner [110]. Gold is also known to possess anti-inflammatory effect. In this study, 
gold shell was found to synergize anti-inflammatory effect of encapsulated drug diacerein 
by many folds (Figure 3).

Various organic materials have been used to prepare IOHN to improve their performance. 

The materials that are used to synthesize or stabilize nanoparticles may impart specific func-

tion. The most pronounced function is enhanced penetration inside target cells which in turn 

controls toxicity of IOHN. Freese et al. [47] studied toxicity of gold nanoparticles with dif-

ferent organic coatings with neutral, positive and negative charge. The results showed that 

IOHN with positive charge coating shows more internalization in cells, and thus, higher tox-

icity. The cell membrane has a negative charge, whereas the IOHN are positively charged 

 particles. This charge difference triggers the rapid binding to the cell surface and internaliza-

tion of these IOHNs. As gold can cause toxicity at higher dose, higher internalization in cell 

will lead to high toxicity [111].

Metallic nanoparticles smaller than 100 nm are usually responsive to different stimuli, a 
technique that has been widely employed in diagnosis and therapy. IOHN with metallic 

core can be used for thermotherapy of cancer whereby IOHN produces heat when exposed 

to external magnetic field. Similarly, metallic moieties, i.e., nanoparticles or tagged poly-

mers, can be bound to core of organic materials. These nanoparticles will be targeted to 

cancerous tissues and magnetic moieties will produce hyperthermia under external stimuli. 

When core of organic material is loaded with drug, inorganic part can release the drug by 

hyperthermia-mediated degradation of core after reaching the target site [5]. In addition 

to magnetic field, inorganic nanoparticles are also responsive to infrared and ultrasound 
waves. This makes IOHN interesting candidates for biomedical imaging of targeted tis-
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sues. More recently, multimodal IOHN have ensured imaging and drug release from the 

same system after systemic administration. This target can be achieved in two ways. First, 

magnetic field of low frequency or intensity is applied for imaging of IOHN. Once in cancer 

Figure 3. Efficacy of anti-inflammatory drug encapsulated in lecithin core-gold shell hybrid nanoparticles; (A) Anti-
inflammatory effect of diacerein is synergized in the presence of gold as compared to pure drug, diacerein. PEG-AuNP 
= PEG coated gold nanoparticles, LD-NP = diacerein loaded lecithin nano[articles, L PEG-AuNP = Lecithin nanoparticles 
surface coated with PEG coated gold nanoparticles, L Cit-AuNP = Lecithin nanoparticles surface coated with citrate 
coated gold nanoparticles, L B-AuNP = Lecithin nanoparticles surface coated with sodium borohydrate coated gold 

nanoparticles, LD PEG-AuNP = L PEG-AuNP loaded with diacerein, LD Cit-AuNP = L Cit-AuNP loaded with diacerein, 
LD B-AuNP = L B-AuNP loaded with diacerein. (B) represents decrease in swelling as measured by Vernier caliper before 

(a, b, c, d, e, f, g) and 3 h after (b´,c´, d´, e´, f´, g´)   from untreated (b), diacerein (c), PEG-Au NPs (d), LD PEG-Au NPs (e), 
LD Cit-Au NPs (f), and LD B-Au NPs (g) treatments groups, while a is normal rat paw.
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tissue, intensity or frequency is increased to produce hyperthermia-based cell killing or 

drug release [112]. Secondly, inorganic materials responsive to more than one stimulus can 

be used. One stimulus aids in imaging, whereas second stimulus will lead to drug release 

or thermotherapy [113].

IOHN have also been prepared with hollow core enclosed inside a hybrid shell. Hollow core 

IOHN can be prepared by many ways. First strategy is to make layer of inorganic or organic 

material which is then stabilized by other component of IOHN system. Similarly, it can con-

sist of a mixed shell of inorganic and organic materials enclosing hollow core. Metal-tagged 

polymers with amphiphilic nature self-assemble to form micelles in aqueous solution or after 

reaching the target microenvironment [114]. Whole virus or virus capsid has been investigated 

as drug delivery systems by many researchers due to its inherent high penetration in cells.

Portney et al. [115] hybridized virus capsid with quantum dots and single-wall carbon nano-

tubes to yield hybrid structures that can find various applications. These hybrid structures 
are very stable to chemical and mechanical stress. IOHN with metallic core and organic 

shells have been widely investigated for diagnostic application. Although, organic shell 

usually employed to improve the pharmacokinetics and targeting properties of the metallic 

nanoparticles but may be beneficial by enhancing the diagnostic efficiency of the system. The 
most prominent example is nucleic acid-based biosensors with metallic core. When metallic 

nanoparticles aggregate, they show blue shift due to increase in size. Metallic core is coated 

with single-stranded DNA (ssDNA) that can identify specific sequence on target DNA and 
bind it. In bioassay, when metallic nanoparticle conjugated ssDNA start bind target DNA, 

they come close to each other and test solution color changes from red to blue. This indicates 

the presence of target DNA as visualized by naked eye or through UV-visible spectropho-

tometer [116].

4.3. Metalloprotein hybrid nanoflowers (MPHNs)

Although MPHN can be categorized as inorganic-organic hybrid NP, they are discussed here 

separately due to difference in structure and many fold increased surface area. The  flower-like 
structure of MPHN is due to the presence of proteins that stabilize metallic crystals in the struc-

ture. Proteins act as glue and hold metallic crystals in a pattern which mimics flower petals. 
Unlike inorganic-organic hybrids, synthesis of MPHN occurs in three stages. First stage is the 

growth stage in which metal ions bond with proteins through amide bond. This acts as nucle-

ation site leading to growth of primary crystals. In the second stage, metalloprotein crystals 

aggregate to form larger structures bearing primary petals like structures. Finally, anisotropic 

growth on metalloprotein aggregates leads to formation of complete petals. Generally, their 
size lies in the range of 2–30 μm which is another reason to differentiate MPHN from OIHN. 
MPHN is mostly used for bioassay whereby desired enzyme is conjugated with metallic part. 

Encapsulation efficiency of enzymes in MPHN has been achieved up to 66%. Enzyme load-

ing above or below this limit decreases encapsulation efficiency. Nevertheless, enzyme effi-

ciency of MPHN varies between 85% and 1000%. Enzyme efficiency higher than free enzyme 
is due to many reasons. MPHN shows high surface area due to petal-like projections. The 

petals also have hole-like spaces between them that may be up to 100 nm in diameter. It is 
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also observed that immobilized enzyme shows cooperative interaction to enhance enzyme effi-

ciency. Similarly, metal ions, such as copper, calcium and manganese, may also help enzyme 

in catalysis. Copper (Cu2+) is the most widely used metal with different enzymes. Cu2+ and lac-

case enzyme MPHN have been developed for detection of phenols. The prepared MPHN was 

adsorbed on filter, and a mixture of phenol and 4-aminoantipyrine was added to it. Laccase-
assisted reaction of both compounds produced red antipyrine dyes in 5 minutes. The changes 

in color will be visible with the naked eye, and UV-visible spectrophotometer can be used for 

quantitative detection. The MPHN-coated filters are reusable and are much faster than chro-

matography and mass spectrometry based methods. Likewise, MPHN of Cu2+ and horseradish 

peroxidase was prepared for detection of phenol and hydrogen peroxide. This MPHN was 

able to detect very low amounts of phenol (1 μM) and hydrogen peroxide (0.5 μM) as change in 

color was observed with the naked eye. It has been found that hydrogen peroxide induces cell 

death at concentration higher than 50 μM and the limit of detection of free enzyme is around 

20 μM. Thus, these MPHNs will be very efficient to detect slight changes in hydrogen peroxide 
efficiently even below its threshold level. Cu2+ and trypsin MPHN have been used to carry out 

proteolysis which is an important step in protein identification. The enzyme efficiency of proteo-

lytic MPHN is similar or superior to free enzyme but are fast and reusable.

Another form of nanoflowers is synthesized using deoxyribonucleic acid (DNA) which, like 
proteins, possesses high number of nitrogen molecules and serves as a template for nano-

flowers. In one study, a drug and a dye molecule was bonded to DNA that was used to 
synthesize nanoflowers. These nanoflowers showed multimodel property of drug delivery 
and imaging by using FRET technology. More recently, capsular MPHNs have been pre-

pared with improved characteristics. This technique involved coating of MPHN with prot-

amine and silica. Then, metallic core is removed from capsular MPHN system. Capsular 

nanoflowers show higher enzyme efficiency and improved stability in harsh environmental 
conditions.

4.4. Mesoporous silica hybrid nanoparticles

Silica has been widely used in drug delivery due to its nontoxic and biocompatible nature. 

Silica shell has been applied to metallic nanoparticles to reduce their toxicity in various bio-

medical applications. Mesoporous silica nanoparticles (MSNPs) are silica materials with 

mesopores of up to 50 nm. They are also termed as hollow mesoporous silica nanoparticles 

due to the fact that mesopores are hollow. The advantages of MSNP are enhanced surface 

area and that hollow mesopores can be loaded with therapeutic molecules. First, MSNPs 

were loaded with drugs. Later, MSNPs were used for the delivery of different dyes and mac-

romolecules such as enzymes. MSNP hybrids have been prepared with both organic and 

inorganic materials. One problem with the use of MSNP is the leakage of drugs from pores. 

Sreejith et al. [117] used graphene oxide (GO) coating on MSNP to prevent leakage of drugs. 
After drug loading, GO coating is applied which acts as blanket to physically block the pores. 
GO coating also prevents encapsulated drug from environmental degradation. In addition to 
applications in drug delivery, MSNPs are also used for diagnosis and imaging.

Maji et al. [118] prepared MSNP-GNP (gold nanoparticle) hybrids for detection of hydrogen 
peroxide. They coated MSNP with graphene oxide, and GNPs were coated on this surface. 
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The hybrids were first used for electrochemical detection of hydrogen peroxide in the pres-

ence of other biological molecules. Later, MSNP-GNPs were successfully used for in vivo 
imaging in mice. MSNP surface can be modified with different functional groups that provide 
opportunities to form hybrid with different materials [118].

5. Conclusion and future prospects

Hybrid nanocarriers provide a novel platform that synergizes the effects of therapeutic and 
diagnostic agents through tunable properties such as particle size, structure, composition, 

preparatory method and easy surface and charge modifications. Here, we describe the dif-
ferent parameters related to development, optimization as well as characterization to obtain 

a robust platform for the drug delivery and other biomedical applications. We can still try to 

focus some unmet challenges of this novel drug delivery system. These challenges include 

development and optimization of the application of target ligands in appropriate ligand den-

sity that will improve the pharmacokinetics as well as pharmacodynamics profiles of all the 
drugs loaded in these hybrid nanoparticles either single or in combination with other thera-

peutic and diagnostic agents. Similarly, development of these hybrid nanocarriers at large 

scale has received less attention. So it is a key parameter to translate the system for large-scale 
applications by using the different methods mentioned in the section of method of prepara-

tion especially the one-step self-assembly method that is likely to improve the production in 

a facile and economic manner.
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