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Abstract

Low-density lipoprotein (LDL) circulating in human bloodstream is the source of lipids 
that accumulate in arterial intimal cells in atherosclerosis. In-vitro–modified LDL (acet-
ylated, exposed to malondialdehyde, oxidized with transition metal ions, etc.) is ath-
erogenic, that is, it causes accumulation of lipids in cultured cells. We have found that 
LDL circulating in the atherosclerosis patients’ blood is atherogenic, while LDL from 
healthy donors is not. Atherogenic LDL was found to be desialylated. Moreover, only the 
desialylated subfraction of human LDL was atherogenic. Desialylated LDL is generally 
denser, smaller, and more electronegative than native LDL. Consequently, these LDL 
types are multiply modified, and according to our observations, desialylation is probably 
the principal and foremost cause of lipoprotein atherogenicity. It was found that desi-
alylated LDL of coronary atherosclerosis patients was also oxidized. Complex formation 
further increases LDL atherogenicity, with LDL associates, immune complexes with anti-
bodies recognizing modified LDL and complexes with extracellular matrix components 
being most atherogenic. We hypothesized that a nonlipid factor might be extracted from 
the blood serum using a column with immobilized LDL. This treatment not only allowed 
revealing the nonlipid factor of blood atherogenicity but also opened the prospect for 
reducing atherogenicity in patients.
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circulating immune complexes, therapeutic approach
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1. Introduction

Early stages of atherosclerosis development are characterized by abnormally high lipid accu-

mulation in the arterial intima [1]. Formation of foam cells filled with lipids may be con-

sidered as the onset of the disease [2]. Low-density lipoprotein (LDL) circulating in human 

bloodstream is the origin of lipids that accumulate in the arterial intima cells [3]. However, 

intracellular cholesteryl ester accumulation could not be induced in vitro by native LDL [4]. On 

the other hand, in vitro –modified LDLs (acetylated, exposed to malondialdehyde, oxidized 
with transition metal ions, etc.) were demonstrated to cause lipid accumulation in cultured 

cells [5, 6]. Moreover, the question whether the modified LDL forms obtained in vitro fully 

correspond to the profile of modified LDL existing in vivo remains controversial. Therefore, 

the research community faces here a paradox: on one hand, a well-grounded opinion indi-

cates LDL as the main source of lipid accumulation in the arterial wall, and on the other hand, 

native LDL failed to induce intracellular lipid accumulation in cultured cells. At the same 

time, in vitro–modified LDL was found to be atherogenic. However, detection of modified 
LDL in the bloodstream appeared to be challenging: acetylated LDL could not be found in the 

bloodstream, and the existence of oxidized LDL in vivo could not be demonstrated directly. 

Auto-antibodies against LDL modified by malondialdehyde, which is considered as a model 
of oxidized LDL, have been found in circulation [7]. It has to be kept in mind, however, that 

LDL conjugated with malondialdehyde (MDA-LDL) is a purely artificial modification, which 
cannot form in a living organism. Despite the fact that oxidized LDL has not been found in the 

bloodstream, the occurrence of antibodies against MDA-LDL is usually regarded as evidence 

of the existence of oxidized LDL in vivo [7].

2. Discovery of desialylated LDL in blood

In order to study modified LDL in atherosclerosis, we isolated LDL fraction from the blood 
of healthy subjects and atherosclerotic patients. We aimed to demonstrate that LDL from ath-

erosclerotic patients can induce lipid accumulation in cultured cells. As a model, we used 

smooth muscle α-actin-positive cells, isolated from the intima of human aorta. These cells 
have been demonstrated to deposit lipids in atherosclerotic lesions in situ [8]. The method 

for isolation and cultivation of these cells has been previously established by our group [8]. 

After being cultured for 7 days, smooth muscle α-actin-positive cells (SMA(+) cells) origi-
nating from uninvolved intima of human aorta were subjected to a 24-hour incubation in 

Medium 199 supplemented with 10% lipoprotein depleted serum from a normal subject, as 

well as with LDL fraction with concentration 5–500 μg of apolipoprotein B (apo B)/ml. In the 

majority of experiments with the LDL samples isolated from normal subjects, there was no 

significant intracellular accumulation of phospholipids and neutral lipids [9]. By contrast, in 

the majority of experiments with LDL obtained from the plasma of coronary atherosclerosis 

patients, the intracellular levels of free cholesterol and triglycerides increased by 1.5 times and 

of the level of cholesteryl esters increased 1.5 to 5 times. Higher concentrations of LDL had 

no added effect on the intracellular lipid level. The results of the described experiments have 
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demonstrated that LDL fractions isolated from the blood of patients with atherosclerosis, but 

not from normal subjects, induced deposition of lipids in human vascular cells. This feature 

of LDL was referred to as atherogenicity [10].

What is the possible explanation of LDL atherogenicity? We focused on comparing the prop-

erties of atherogenic LDL circulating in the patients’ blood and nonatherogenic LDL from 

healthy donors. One of the major observations we made was the significantly (2 to 3 times) 
decreased sialic acid (N-acetylneuraminic acid) in LDL isolated from patients with coronary 

atherosclerosis [11]. Sialic acid is a terminal residue of asparagine-bound biantennary carbo-

hydrate chains in LDL glycoconjugate moiety. In case of its removal, galactose becomes the 

terminal exposed residue. It is therefore possible to use Ricinus communis agglutinin (RCA120), 

which has a strong affinity to the terminal galactose to specifically isolate desialylated LDL 
[12]. We applied the total LDL preparation on a column containing CNBr-activated agarose-

bound RCA120. LDL with sialylated carbohydrate chains passed freely through the column, 

while desialylated LDL bound to the lectin sorbent and could later be eluted with 5–50 mM 

galactose. This method allowed us extracting subfractions of both sialylated and desialylated 

LDL from the total LDL preparation isolated from the blood of patients. Desialylated LDL 

was found to be only a fraction of the total LDL pool circulating in patients’ blood. Using the 

lectin affinity columns and lectin sorbent assay, we demonstrated that the ratio of desialylated 
LDL in blood of patients with coronary atherosclerosis was 20–60% of the total LDL level, 

while for normolipidemic subjects, desialylated LDL accounted for 5–15% [89]. The sialic acid 

content in desialylated LDL subfraction isolated by lectin chromatography was 2–3 times 

lower than that of sialylated LDL [12].

We next studied the atherogenic properties of desialylated LDL. Cultured SMA(+) cells, 
derived from the intima of human aorta and incubated with sialylated LDL subfraction, had 

unaltered intracellular contents of phospholipids and neutral lipids [12]. By contrast, cells 

incubated with desialylated LDL demonstrated a 1.5- to 2-fold increase in the contents of 

lipids and nonesterified cholesterol, as well as a 2- to 7-fold surge in the cholesteryl esters con-

tent. Therefore, only the desialylated subfraction of human LDL was found to be atherogenic. 

Normally, sialylated LDL had no atherogenic effect and could be regarded as native unmodi-
fied LDL. In summary, we have isolated a subfraction of naturally occurring desialylated LDL 
that was able to induce lipid deposition in human arterial subendothelial cells.

3. Trans-sialydase: the unknown LDL-modifying enzyme

More than 98% of the sialic acid cleaved from LDL is not present in the free form in the blood 

but is transferred to various protein acceptors [13]. Therefore, the enzyme responsible for 

desialylation of LDL works as a trans-sialidase.

We found that, apart from LDL, other lipoproteins, glycoproteins, and gangliosides are also 

affected by the trans-sialidase activity. Free sialic acid can be transferred to glycoproteins and 
sphingolipids of human serum. It can also be transferred to a protein or a lipid moiety of lipo-

protein particles. Both lipoprotein fraction of human blood serum and lipoprotein-deficient 
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serum had sialidase activity, as demonstrated by gel-filtration chromatography. Trans-
sialidase activity was shown to be present in lipoproteins, as well as in a free form. The mech-

anism of trans-sialidase interaction with lipoproteins remains to be elucidated.

Using affinity chromatography, we succeeded in extracting a 65-kDa protein from lipopro-

tein deficient serum, which was a likely candidate to be the trans-sialidase [13]. The isolated 

enzyme was present in quantities from 20 to 200 μg/ml of human serum. The enzyme had 

three pH optima: 3.0, 5.0, and 7.0. The optimal pH spectrum indicated that the trans-sialidase 

would be active both in blood and in cellular organelles with low pH. Calcium and mag-

nesium ions at millimolar concentrations could influence the enzyme activity in vitro. Thiol 

groups were found to be essential for normal enzyme functioning. Various blood proteins 

could serve as substrates for trans-sialidase activity. The enzyme successfully cleaved sialic 

acids from HDL, LDL, IDL, and VLDL particles. Trans-sialidase could also cleave sialic acid 

residues from glycoconjugates found in plasma, proteins (fetuin and transferrin), and gan-

gliosides (GM3, GD3, GM1, GD1a, and GD1b). The rate of sialic acid transfer from these gly-

coconjugates was, however, much slower as compared to LDL. Among the sialylated LDL, 

VLDL, IDL, and HDL, the former has the highest affinity to the trans-sialidase. The mecha-

nism trans-sialidase preference for LDL is unclear. It is possible that trans-sialidase activity is 

affected by the particle volume.

Importantly, isolated naturally occurring trans-sialidase was able to desialylate native LDL, 

which resulted in formation of desialylated LDL, which could induce cholesteryl ester accu-

mulation in SMA(+) human aortic intimal cells [13]. This underscores the possible role of the 

enzyme in foam cell formation.

The role of plasma trans-sialidase remains to be established. Possible functions of trans-siali-

dase may include regulation of plasma proteins activities, cell-to-cell interactions, lifespan of 

glycoproteins, lipoproteins, and cells, etc [14].

Given its role in the formation of modified LDL, trans-sialidase activity may be an important 
component in the onset and progression of atherosclerosis. Trans-sialidase can also affect the 
interaction of lipoproteins with the arterial wall. Lipid accumulation induced by lipoproteins 

processed by trans-sialidase can be associated with the induction of proliferation and extra-

cellular matrix synthesis. In conclusion, trans-sialidase may participate in all currently known 

cellular manifestations of atherosclerosis.

4. Physical properties of desialylated LDL

LDL is defined as a lipoprotein fraction with densities spanning from 1.019 to 1.063 g/l. Using 
ultracentrifugation and gradient gel electrophoresis, LDL particles can be segregated into 

four subfractions, including large, intermediate, small, and very small LDL [15].

4.1. Size and density

We first separated LDL particles based on their flotation rate using analytical ultracentrifuga-

tion [16].

Advances in Lipoprotein Research6



We have determined densities of both native and desialylated LDL using gradient density 

ultracentrifugation [17]. Desialylated LDL fraction tended to have higher density than native 

LDL. Increased density was caused by lower amounts of phospholipids, free and esterified 
cholesteryl, and triglycerides.

Another method of LDL analysis, gradient gel electrophoresis, allows for separation of LDL 

subfractions by their electrophoretic mobility, which depends on the particle size and shape 

[18]. Gradient gel electrophoresis separation allows distinguishing 4 subclasses: large, inter-

mediate, small, and very small LDL [19]. Correlation of LDL particle size and density is 

highly significant, as shown using ultracentrifugation, as well as gradient gel electrophoresis. 
However, these parameters are not always equal. Another method to analyze the weight and 

size of LDL particles is capillary gel electrophoresis is also used [20].

Another relatively new method for analysis of LDL is nuclear magnetic resonance (NMR). 

It is sometimes used for analyzing LDL subfractions in blood plasma, although the results 

obtained using this method cannot be compared directly with those obtained by ultracentri-

fugation of gel electrophoresis [21]. Other available methods of LDL analysis include high-

performance liquid chromatography [22], dynamic light scattering [23], ion mobility analysis 

[24], and homogenous assay analysis [25].

Desialylated and native LDL particle size was estimated by our group using quasi-elastic 

laser scattering in a lipoprotein suspension followed by electrophoresis in polyacrylamide gel 
and scanning densitometry [26]. Native LDL particles from healthy subjects and atheroscle-

rotic patients had sizes of 26.5 and 26.8 nm, respectively. Desialylated LDL of healthy subjects 

and atherosclerotic patients were 24.8 and 24.5 nm, respectively. The results of polyacryl-

amide gel electrophoresis were similar, with average diameters of native LDL being 26.3 and 

26.2 nm for controls and for patients and those of desialylated LDL being 23.5 and 22.9 nm for 

controls and patients, respectively [17]. These results demonstrated that desialylated LDL had 

a reduced particle size in comparison with native LDL.

The origins of LDL subfractions remain unclear. According to Berneis, two types of precursors 

are secreted by the liver: triglyceride-poor apoB and triglyceride-rich apoB [27]. Triglyceride-

poor lipoprotein gives rise to the large LDL subfraction while triglyceride-rich lipoprotein is 

a precursor for small dense LDL. This hypothesis explains the formation of small dense LDL 

from liver-secreted precursors and is supported by clinical results [27].

Genome-wide association studies have been used to search the factors affecting small dense 
LDL production. The available results indicate that small dense LDL metabolism is connected 

to genetic factors that may be considered as potential therapeutic targets for treatment of 

atherosclerosis [24].

Small dense LDL has a higher lifetime than large LDL, which is retrieved from the blood-

stream through the LDL receptor pathway [28]. Small dense LDL tends to have lower levels 
of vitamins and antioxidatants than normal LDL. This means that small dense LDL is more 

oxidation prone than the larger forms of LDL [29].

It has been demonstrated that incubation of native LDL particles with atherosclerosis patients’ 

blood plasma results in a significant decrease of the sialic acid contents [13]. Small dense 

Circulating Atherogenic Multiple-Modified Low-Density Lipoprotein: Pathophysiology and Clinical Applications
http://dx.doi.org/10.5772/67055

7



LDL particles have been shown to contain less sialic acid than larger LDL particles [30]. The 

increased ability of small dense LDL to form complexes with proteoglycans leads to the pro-

longed residence time of these particles in the subendothelial space or the arterial wall, where 

LDL may contribute to the development of atherosclerotic lesion [31]. In summary, LDL par-

ticle density reversely correlates with the particle size and sialic acid contents and directly 

correlates with atherogenicity.

4.2. Electronegativity

Desialylated LDL has been demonstrated to have a 1.2- to 1.4-times increased electrophoretic 

motility in comparison to native LDL [17]. Therefore, desialylated LDL has a lower charge 

than native LDL, that is, is more electronegative.

Agarose gel electrophoresis allows for specific isolation of electronegative LDL (LDL(−)). 
Isotachophoresis or ion exchange chromatography can be used as well [32]. The group of 

Avogaro was the first to discover and isolate atherogenic LDL(−) fraction [32] using ion-

exchange chromatography.

More recent studies have revealed heterogeneity of LDL(−) particles, defining as many as five 
subclasses of LDL(−) [33]. The majority of electronegative subfractions correlated with cardio-

vascular (CV) risks, including, but not limited to hypercholesterolemia, smoking, myocardial 

infarction, and diabetes mellitus type II [34].

Several methods have been developed for isolation and analysis of LDL(−). Capillary iso-

tachophoresis is another method used for LDL(−) extraction and analysis [35]. This technique 

allows for separation of LDL(−) from other LDL particles by its migration rate. Heparin pre-

cipitate LDL(−) was analyzed using capillary isotachophoresis [36]. Monoclonal antibodies 

allow for distinguishing LDL(−) by specific epitopes [37]. LDL(−) ELISA method is based on 
this technique and may prove to be useful in clinical practice [38].

It has been demonstrated that LDL(−) particles tend to aggregate [32], and the LDL particle 

aggregates have been shown to be atherogenic [39]. Gnarled structure of the lipoprotein was 

shown to be the principal cause of LDL(−) association [40]. The secondary structure of apoB 

in LDL(−) appears to be disturbed [70], with tryptophan residues abnormally exposed to the 

aqueous environment [41] and lysine residues having an altered ionization state [42]. Lipid 

moieties of LDL(−) particles also affect their surface tension/fluidity, rendering the particles 
more-aggregation prone [43].

Moreover, improper folding of apolipoprotein of LDL(−) particles affects its affinity to LDL 
receptors, which in turn leads to extended blood circulation times of LDL(−) [44]. On the other 

hand, the most electronegative fraction of LDL(−) is able to bind to lectin-like oxidized LDL 
receptor 1 (LOX-1) [45]. That subfraction of LDL(−) when added to cultured endothelial cells 
is able to increase the production of reactive oxygen species and to upregulate C-reactive 

protein levels via LOX-1 signaling pathway [46].

Therefore, LDL(−) is able to provoke pro-inflammatory and immune responses that contrib-

ute to the progression of atherogenesis. LDL(−) forms complexes with proteoglycans in the 
subendothelial intima where it resides for extended amounts of time. Subendothelial cells 
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take up LDL(−) via scavenger receptors, which leads to saturation of their cytoplasm with 
lipid deposits and results in foam cell formation. Autoantibodies to LDL(−) can contribute 
to the development of atherosclerosis as well [47]. LDL(−) is cytotoxic to endothelial cells, 
inducing apoptosis and provoking production of inflammatory molecules such as IL-8, 
VCAM-1, and MCP-1 [47]. Therefore, LDL(−) was demonstrated to be pro-atherogenic and 
pro-inflammatory.

4.3. Similarity of desialylated LDL with small dense LDL and LDL(−)

As discussed above, small dense LDL and LDL(−) are the forms of modified LDL that have 
been detected in human blood plasma [48]. Our group has performed a series of experiments 

comparing the properties of LDL particles modified in vivo. In a study conducted in collabora-

tion with the group of Avogaro (Italy), we have demonstrated that the more electronegative 

LDL corresponds by its properties to desialylated LDL [49]. Desialylated LDL subfraction also 

turned out to be more electronegative [50]. Therefore, it is likely that desialylated LDL and 

electronegative LDL subfractions are similar if not identical. We have found desialylated LDL 

to be smaller and denser as compared to native LDL. Simultaneously, La Belle and co-authors 
have shown that sialic acid centent was reduced in small dense LDL [51]. Therefore, converg-

ing evidence demonstrates that all modified LDL subfractions isolated by different methods 
may be the same subfraction that underwent multiple modifications.

4.4. Which of the LDL modifications conveys atherogenicity?

Atherogenic LDL naturally present in the blood was found to be small, dense, and highly 

electronegative. Atherogenic LDL is also characterized by altered protein, lipid, and car-

bohydrate compositions. Consequently, these LDL particles can be referred to as multi-

ply modified. To understand which modifications convey LDL atherogenicity, we have 
investigated the relationship between changes in chemical and physical parameters of LDL 

and its ability to induce lipid accumulation in SMA(+) cells of human aortic intima. A sig-

nificant reverse correlation (r = −0.66, p < 0.05) between LDL atherogenicity and the sialic 
acid content was observed. By contrast, no correlation was observed between atherogenic-

ity and the LDL particle size and charge, as well as with the levels of phospholipids and 

neutral lipids. Levels of lipophilic antioxidants, lipid peroxidation products, free lysine 

amino groups, and susceptibility of LDL to oxidation did not correlate with atherogenicity 

significantly [50]. It is therefore likely that desialylation is the principal cause of lipoprotein 

atherogenicity.

5. Is oxidized LDL just a myth?

According to the mainstream current opinion, oxidized LDL is the main trigger of athero-

sclerosis [52]. However, oxidized LDL had never been found in blood. One of the possible 

explanations that has been proposed to explain this discrepancy was that LDL oxidation takes 

place not in the bloodstream but in the arterial wall. The oxidized LDL theory is based on the 

following observations:
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• Antibodies against LDL-oxidized in vitro were able to bind to substrates originating from 

atherosclerotic lesions, where LDL was found to be co-localized with oxidation products 

[53].

• Part of LDL isolated from atherosclerotic plaques corresponds by its properties to oxidized 

LDL [54].

• Autoantibodies recognizing malondialdehyde-LDL have been found in the blood [7].

Worth noting here is the fact that circulating autoantibodies have affinity not to the oxidized 
LDL but rather to MDA-LDL, a model of oxidized LDL. Interestingly, antibodies recognizing 

MDA-LDL were demonstrated to have an even higher affinity to desialylated LDL [55]. It is 

therefore possible that anti-LDL autoantibodies that primarily react with desialylated LDL also 

show cross-reactivity with MDA-LDL. This observation, together with other facts, challenges 

the concept of the oxidative modification of LDL being the principal in vivo modification that 
causes the onset and progression of atherosclerotic lesions. Other modified LDL species that 
have been found in the blood probably deserve more attention from the scientific community.

5.1. Circulating atherogenic desialylated LDL is oxidized

The degree of lipoprotein oxidation is estimated by measuring the contents of hydroperoxides 

or thiobarbituric acid-reactive substances (TBARS). These compounds are usually formed in 
course of lipid peroxidation. However, chemical instability and hydrophilic nature of these 

substances may cause their loss from LDL particles during lipoprotein isolation and purifica-

tion stages. We have established a new technique to evaluate the degree of LDL oxidation based 

on the assumption that chemically active lipid derivatives formed in the process of peroxida-

tion are able to covalently bind to apoprotein B and thus may serve as a marker of lipoperoxi-

dation occurring in vivo in lipoprotein particle [56]. We have discovered sterol and phosphates 

covalently bound to apoB in delipidated preparations of LDL oxidized by copper ions, azo-ini-

tiators, sodium hypochlorite, or cultured cells. Newly extracted and isolated LDL from healthy 

individuals contained no apoB-lipid adducts. It has been revealed that contrary to other param-

eters used to estimate the degree of lipid peroxidation in LDL, the level of cholesterol covalently 

bound to apoB of copper-oxidized LDL rised monotonously during incubation [50]. Therefore, 

the level of apoB-bound cholesterol is a parameter that reflects the degree of LDL oxidation.

Native LDL and desialylated LDL isolated from healthy subjects had apoB-bound cholesterol 

levels of 0.25 ± 0.08 and 0.28 ± 0.05 mol/mol apoB, respectively. ApoB-bound cholesterol level 

in native LDL of atherosclerotic patients did not differ significantly from its level in native 
LDL of healthy individuals. The content of apoB-bound cholesterol in desialylated LDL of 

patients was 7 times higher than in native LDL. Therefore, we have shown that desialylated 

LDL of coronary atherosclerosis patients is oxidized.

5.2. Desialylated LDL is oxidation prone

Desialylated LDL contains 2- to 4-fold more oxysterols compared to native LDL [17], which 

indicates the increased susceptibility of desialylated LDL to oxidation.
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In addition to a high degree of in vivo oxidation, desialylated LDL possesses a higher sus-

ceptibility to in vitro oxidation, which was evaluated using the duration of lag-phase upon 

oxidation by copper ions [57]. Average duration of lag-phase of native LDL isolated from 

atherosclerotic patients did not differ from that of native LDL taken from healthy individuals. 
The lag-phase of desialylated LDL of healthy subjects and patients was significantly shorter 
(3- and 6-fold, respectively) than that of native LDL, indicating a higher in vitro proneness to 

oxidation of desialylated LDL. It should be noted that proneness to oxidation of total LDL 

preparations from healthy subjects and patients positively correlates with the proportion of 

desialylated LDL in the lipoprotein preparation.

In an attempt to find out the causes of increased degrees of in vivo oxidation and proneness 

to oxidation of desialylated LDL, we estimated the contents of major fat-soluble antioxidants 

in lipoprotein particles, analyzed dependences among the levels of tocopherols and carot-

enoids, coenzyme-Q10, and the concentration of cholesterol bound to apoB and duration of 

lag-phase.

The levels of all major antioxidants, including coenzyme Q10, lycopene, α-and y-tocopherols, 
and β-carotene, were 1.5 to 2 times lower in desialylated LDL than in native LDL. The amount 
of cholesterol bound to apoB in desialylated LDL positively correlated with the amount of 

ubiquinone and showed a negative correlation with ubiquinol and β-carotene concentrations. 
At the same time, a positive correlation was found between the amount of cholesterol bound 

to apoB and the ubiquinol level in native LDL. The length of lag-phase for desialylated LDL 

was positively associated with α-tocopherol and β-carotene amounts and negatively associ-
ated with the ubiquinone content. On the other hand, proneness to oxidation of native LDL 

positively correlated with ubiquinone level.

Based on these observations, we hypothesized that a) the levels of examined lipophilic anti-

oxidants in desialylated LDL are lower than in native lipoproteins, which leads to the high 

proneness of desialylated LDL to oxidation; b) coenzyme-Q10 might play a pro-oxidational 

role in native LDL; c) in vivo lipid peroxidation in desialylated LDL is enhanced by the 

increased proportion of oxidized form of coenzyme-Q10; and d) the severity of in vivo oxida-

tion in desialylated LDL is associated with oxidation degree of ubiquinoI and the amount of 

carotenoids loss.

6. Mechanisms increasing LDL atherogenicity

Based on the known rates of LDL uptake and degradation by the arterial wall cells, we esti-

mate the time necessary for a normal intimal cell to become a foam cell, give 130 years . 

This estimation implies that there occurs no cholesterol efflux from the cell. The same esti-
mation for desialylated LDL brings the result reduced to 15 years. However, according to 

angiographic and ultrasonographic data, atherosclerotic plaque can reduce the carotid artery 

lumen by one half within several weeks or months. Therefore, the actual rate of foam cell 

formation should be much higher than the estimated one, indicative of some processes that 

enhance the atherogenicity of desialylated LDL.
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6.1. Self-association of LDL

It has been demonstrated that modified LDL particles are susceptible of self-association [58]. 

A positive correlation between atherogenicity of modified LDL and the degree of LDL asso-

ciation was demonstrated [59]. A dramatic increase of lipid accumulation rate by SMA(+) cells 
cultured from human aortic intima was observed upon incubation with lipoprotein associ-

ates. LDL associates removal from the incubation medium by filtration through filters with 
pore diameter 0.1 μm, completely eliminated any intracellular lipid accumulation. Therefore, 

association enhances LDL atherogenicity.

The absorption rate of associated LDL was 5–20 times higher than that of nonassociated LDL 

particles [39]. Latex beads (competiting phagocytic cargo) and cytochalasin B (inhibitor of 

phagocytosis) both inhibited the uptake of LDL associates [39]. It is therefore likely that LDL 

associates are absorbed via phagocytosis. The intracellular degradation rate of associated 

modified LDL apoB was 2–5 times slower than the rate of degradation of apoB of nonassoci-
ated particles. Therefore, high atherogenicity of lipoprotein associates is a result of enhanced 

absorption via phagocytosis and slow intracellular degradation rate.

6.2. LDL complexes with extracellular matrix

We have also demonstrated that LDL can form complexes with collagen, elastin, and proteo-

glycans of human aortic intima, as well as with cellular debris [60]. These complexes, once 

added cell culture, stimulated intracellular accumulation of lipids. Experiments with iodin-

ated LDL have shown an increased absorption and diminished intracellular degradation rate 

of lipoprotein complexes, as compared to individual lipoprotein particles.

6.3. LDL-immune complexes

Multiply-modified lipoproteins are likely to be immunogenic. We succeeded in isolating cir-

culating complexes containing LDL and anti-LDL autoantibodies from the blood of the major-

ity of patients with coronary atherosclerosis [61].

We have observed a positive correlation between the levels of LDL-containing immune com-

plexes in blood serum and the severity of coronary and extra-coronary atherosclerosis [62].

We have extracted LDL from circulating immune complexes by affinity chromatography on aga-

rose with immobilized goat polyclonal antibodies against human LDL [63]. LDL from circulat-

ing immune complexes appeared to be desialylated, small, dense, more electronegative and with 

decreased contents of neutral lipids and phospholipids, as well as neutral saccharides. ApoB ter-

tiary structure was also altered. Therefore, the LDL particles isolated from circulating immune 

complexes were similar if not identical to the desialylated LDL characterized previously.

We isolated antibodies to modified LDL from blood plasma of patients with coronary athero-

sclerosis [55]. These autoantibodies were identified as immunoglobulin G with an isoelectric 
point of about 8.5 (8.1–9.0), capable of interacting with the protein but not the lipid moiety 

of LDL. These autoantibodies were able to interact with native, glycosylated, acetylated, and 
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oxidized LDL, showing the highest affinity for malondialdehyde-treated LDL, desialylated 
LDL, and LDL isolated from patients with coronary atherosclerosis.

Autoantibodies bound to native LDL forming complexes that could induce lipid aggregation 

in SMA(+) cells cultured from uninvolved intima of human aorta. Moreover, autoantibodies 
enhanced the atherogenic properties of desialylated LDL via complex formation [55]. It was 

found that C1q complement component and fibronectin could bind to the LDL-antibody com-

plexes leading to a more pronounced lipid aggregation in SMA(+) human aortic intimal cells. 
C1q complement component is produced by dendritic cells in the spleen, where C1q is binds 

to immune complexes [64]. Antigen-presenting dendritic cells are also present in atheroscle-

rotic plaques [65]. Moreover, dendritic cells expressing C1q have been found in atherosclerotic 

plaques [66]. C1q was also expressed in macrophages, foam cells, and in neovascular endothe-

lial cells [66]. Thus, C1q expression might be an important feature of cells located in the vessel 

wall of atherosclerotic lesions, causing them to capture and retain immune complexes [66].

In vitro interaction of mouse peritoneal and human pericardial macrophages with immune 

complexes isolated from blood serum of ischemic heart disease patients led to the transforma-

tion of macrophages into foam cells [67]. Macrophages incubated with immune complexes for 

3 days acquired cytoplasmic lipid vacuoles, and the cisterns of endoplasmic reticulum (ER) 

in these cells were dramatically enlarged and filled with lipids. The accumulation of lipids 
within ER cisterns in macrophages may be accompanied by ER stress, which also plays a role 

in the development of atherosclerosis [68].

From Alexander N. Orekhov, Alexandra A. Melnichenko, and Igor A. Sobenin, “Approach to 
Reduction of Blood Atherogenicity,” Oxidative Medicine and Cellular Longevity, Vol. 2014, 

Article ID 738679, 8 pages, 2014. doi:10.1155/2014/738679. (This is an open access article dis-

tributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.)

7. Revealing a nonlipid factor of blood atherogenicity

We hypothesized that a nonlipid factor could be extracted from the serum using a column 

with immobilized LDL. We applied atherogenic serum, which has previously been shown to 

induce a nearly 5-fold increase of cholesterol content in cultured cells, to a column with LDL 

covalently bound to agarose. We found that the eluted serum lost its atherogenicity, i.e. it 

failed to induce a statistically significant lipid accumulation in cultured cells (Figure 1, from 

Ref. [69]). The substances retained on the column were eluted with glycine buffer and mixed 
with the sera samples that were previously treated by passing though the column, which 

resulted in the recovery of serum atherogenicity up to the initial level (Figure 1). It is therefore 

likely that patients’ blood serum contains unknown atherogenic factors that can be absorbed 

on immobilized LDL.

We next used this method was to reduce atherogenicity of the blood of patients by extracorpo-

real perfusion. Four male volunteers aged 46–59 years with CHD, normal cholesterol levels, 
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functional class II–III angina pectoris, and angiographically documented stenosis of 2 to 3 

coronary arteries have agreed to take part in the study [69]. Three individuals were smokers, 

and one had mild arterial hypertension. A pronounced decrease of plasma atherogenicity was 

registered after a 2-hour extracorporeal perfusion through a column with autologous LDL 

(Figure 2(a), from Ref. [69]).

The analysis of serum atherogenicity demonstrated that, in all four cases, it was reduced to a 

near-zero level 24 hours after the procedure and then gradually reappeared, reaching a sig-

nificant level within 1 week. Repeated procedure resulted in a pronounced decrease of serum 
atheorgenicity, with the 2nd and the 3rd procedures reducing it for prolonged periods sufficient 
for reducing the frequency of the treatment. When applied once every 2 to 3 weeks, the pro-

cedure provided low levels of plasma atherogenicity for long periods (Figure 2(b), from Ref. 

[69]). The procedure has been applied twice a month in one patient for 9 months and in another 

patient for more than 7 months. Each patient was examined taking into account the general state 

of health, number of angina pectoris episodes, the amount of medicine (nitrates) taken, and 

Figure 1. Elimination of serum atherogenicity with LDL-agarose column. Five milliliters of the serum were passed 

through the LDL sepharose column at a flow rate of 1 ml/min for 30 min. The sorbent was then eluted with 2-ml glycine 
buffer (pH 2.7), and the eluate was dialyzed against a 2000-fold excessive volume of medium 199 for 24 hours at 4°C. 
The cells were cultured in the presence of the initial or treated serum and with the proper volume of the dialyzed eluate.
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capacity for exercise. Bicycle test, 24-hour Holter ECG monitoring, and control of hematological 

and biochemical parameters have been performed every 3 months. During this trial, the patients 

have felt better, moved from functional class III to II (according to Canadian classification), and 
endured greater physical loads in the bicycle test [69]. Arterial blood pressure of patient 1 stabi-

lized and reached a nearly normal level. Both patients have noted a heightened sexual activity 

and have associated this with reduced angina pectoris [69]. The repeated angiograms have been 

assessed after 20–25 months of treatment. There were no new stenoses, 50% stenoses have pro-

gressed, 25% regressed, and 25% remained unchanged. These observations suggest an improved 

disease progression in comparison to the normal course of coronary atherosclerosis [70].

From Alexander N. Orekhov, Alexandra A. Melnichenko, and Igor A. Sobenin, “Approach 
to Reduction of Blood Atherogenicity,” Oxidative Medicine and Cellular Longevity, Vol. 

2014, Article ID 738679, 8 pages, 2014. doi:10.1155/2014/738679. (This is an open access 

article distributed under the Creative Commons Attribution License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited.)

Figure 2. Monitoring of atherogenicity. The patient’s plasma was subjected to 2-hour extracorporeal perfusion through 

a column with 200 mL of the sorbent; the flow rate was 30 ml/min. The total plasma volume of 2–3 liters was perfused 
through the column during the procedure. Blood serum atherogenicity after 3 procedures was assessed daily ((a), patient 

3) and once or twice a week afterwards ((b), patient 1). Ordinate (atherogenicity), percent of cholesterol accumulation in 

the cells cultured in the presence of the serum from the CHD patient.
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8. Multiple-modified LDL: which type of LDL modification occurs early 
in the blood?

What are the mechanisms of multiple modifications of LDL? Do they take place in the 
blood plasma? A round the clock exposure of LDL to hepatocytes, intact endotheliocytes, 

smooth muscle cells, macrophages, or cell homogenates has not affected properties of 
native LDL [13].

After incubation for 24 hours at 37°C with whole blood or plasma taken from patients with 
coronary atherosclerosis, the sialic acid content of LDL became 2 times lower than that of LDL 

incubated with whole blood or plasma obtained from healthy individuals. Incubation with 

red and white blood cells had no effect on the sialic acid content. This points out that LDL 
modification takes place in the blood plasma [13].

A detailed analysis of LDL modification processes has been performed by our group [13]. 

Native LDL was extracted from the blood plasma using ultracentrifugation followed by 

lectin chromatography. Serum was cleared from apoB-containing lipoproteins by defibri-
nation of the remaining LDL-deficient plasma. Afterwards, LDL and serum were reconsti-
tuted in the same proportion in the original plasma and incubated for different time points 
at 37°C.

After incubation, LDL was re-isolated by ultracentrifugation. The described method allowed 

for elimination of the effects of LDL originating from VLDL and IDL in the process of incu-

bation. After 1 hour of incubation of native LDL with autologous plasma samples, a sharp 

decrease of sialic acid content was observed. At the same time, desialylated LDL concentra-

tion increased, as determined by lectin-sorbent chromatography (Table 1, from Ref. [13]). In 

parallel to the decrease of the sialic acid content, LDL acquired capability to induce a pro-

nounced accumulation of cholesterol in SMA(+) cells cultured from unaffected human aortic 
intima. This could be registered as early as after 3 hours of incubation. After 6 hours of incuba-

tion with plasma, a steady decrease of phospholipid and neutral lipid contents, as well as LDL 

particle size could be observed.

After 36 hours of incubation, negative charge of lipoprotein particles became obvious. Longer 

incubation times (48 and 72 hours) led to a loss of α-tocopherol and to an increase of LDL 

1 h 3 h 6 h 12 h 24 h 36 h 48 h

↓Sialic acid
↑% of 

desialylated 

LDL

↑ 

Atherogenicity

↓Free 

cholesterol

↓Size
↓Cholesteryl 

esters

↓Phospholipids

↓Triglycerides ↑ 

Electronegativity

↑Apo B-bound 

cholesterol 

↑Susceptibility 
to oxidation

↑Fluorescence

↓Vitamin E

Table 1. The outline of LDL modification.
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susceptibility to oxidation, as well as to aggregation of cholesterol covalently bound to apoB. 

Degradation of apoB was also registered at this point.

It can be concluded that desialylation is likely to be the primary and most important LDL 

modification that conveys its atherogenicity. Other known modifications may further increase 
the LDL atherogenicity.

9. Conclusion

We have obtained an LDL subfraction that was able to induce accumulation of lipids, primar-

ily cholesteryl esters, in cultured SMA(+) cells. This helped to reconcile the facts that native 
LDL is not atherogenic and in vitro–modified LDL not present in circulation.

We have shown that atherogenic LDL is characterized by numerous alterations of carbo-

hydrate, protein, and lipid moieties, and can therefore be termed multiple-modified LDL. 
Multiple modifications of LDL occur in human blood plasma. It was shown that circulating 
multiple-modified LDL loses the affinity for the B,E-receptor and acquires the ability to inter-

act with a number of other cellular membrane receptors and proteoglycans. The enhanced 

cellular uptake of desialylated LDL, low degradation rate of apolipoprotein and cholesteryl 

esters, as well as stimulation of re-esterification of free cholesterol, cause the intracellular 
accumulation of intracellular-esterified cholesterol.

The formation of LDL-containing large complexes (associates, immune complexes, and com-

plexes with the extracellular matrix components) can stimulate lipid accumulation in intimal 

smooth muscle cells. In addition to cholesteryl ester accumulation, desialylated LDL stimu-

lates cell proliferation and synthesis of the connective tissue matrix.

Therefore, we have been able to obtain and describe naturally occurring multiple-modified 
LDL capable of provoking all atherosclerotic manifestations at the cellular level.

Immune complexes, consisting of LDL and autoantibodies, have been discovered in the human 

blood stream circulation [71]. Amount of LDL-containing circulating immune complexes was 

directly correlated with the severity of atherosclerosis [71]. We hypothesize that anti-LDL auto-

antibodies and circulating immune complexes containing LDL can be the factors that convey blood 

atherogenicity. Although the anti-LDL cannot be proven the only atherogenic factor adsorbed on 

the column with immobilized LDL, the substances binding to LDL should be thoroughly studied. 

Columns with immobilized LDL allowed not only distinguishing and collect nonlipid factors of 

atherogenicity, but also opening a prospect for reducing atherogenicity in patients.

Acknowledgements

We thank Ekaterina Ivanova for assistance in editing the manuscript. This work was sup-

ported by the Russian Foundation for Basic Research (Grant # 15-04-09279).

Circulating Atherogenic Multiple-Modified Low-Density Lipoprotein: Pathophysiology and Clinical Applications
http://dx.doi.org/10.5772/67055

17



Author details

Nikita G. Nikiforov¹,²*, Emile R. Zakiev¹,³, Alexandra A. Melnichenko¹ and Alexander N. 
Orekhov¹,4

*Address all correspondence to: nikiforov.mipt@googlemail.com

1 Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, 

Russia

2 Laboratory of Medical Genetics, A. N. Myasnikov Institute of Clinical Cardiology, Russian 

Cardiology Research and Production Complex, Ministry of Healthcare, Moscow, Russia

3 INSERM UMR_S 1166, University of Pierre and Marie Curie, Paris, France

4 Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia

References

[1] Reynolds T. Cholesteryl ester storage disease: a rare and possibly treatable cause of pre-

mature vascular disease and cirrhosis. J Clin Pathol. 2013;66(11):918-923.

[2] Uitz E, Bahadori B, McCarty MF, et al. Practical strategies for modulating foam cell for-

mation and behavior. World J Clin Cases. 2014;2(10):497-506.

[3] Goldstein JL, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-medi-
ated endocytosis. Nature. 1979;279(5715):679-685.

[4] Brown MS, Goldstein JL, Krieger M, et al. Reversible accumulation of cholesteryl esters 

in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979;82(3):597-613.

[5] Fogelman AM, Shechter I, Seager J, et al. Malondialdehyde alteration of low density 

lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. 

Proc Natl Acad Sci U S A. 1980;77(4):2214-2228.

[6] Steinbrecher UP, Parthasarathy S, Leake DS, et al. Modification of low density lipopro-

tein by endothelial cells involves lipid peroxidation and degradation of low density lipo-

protein phospholipids. Proc Natl Acad Sci U S A. 1984;81(12):3883-3897.

[7] Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes 

oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989;86(4):1372-1376.

[8] Orekhov AN, Tertov VV, Novikov ID, et al. Lipids in cells of atherosclerotic and unin-

volved human aorta. I. Lipid composition of aortic tissue and enzyme-isolated and cul-

tured cells. Exp Mol Pathol. 1985;42(1):117-137.

[9] Orekhov AN, Tertov VV, Pokrovsky SN, et al. Blood serum atherogenicity associ-

ated with coronary atherosclerosis. Evidence for nonlipid factor providing athero-

genicity of low-density lipoproteins and an approach to its elimination. Circ Res. 

1988;62(3):421-429.

Advances in Lipoprotein Research18



[10] Chazov EI, Tertov VV, Orekhov AN, et al. Atherogenicity of blood serum from patients 

with coronary heart disease. Lancet. 1986;2(8507):595-598.

[11] Orekhov AN, Tertov VV, Mukhin DN. Desialylated low density lipoprotein—natu-

rally occurring modified lipoprotein with atherogenic potency. Atherosclerosis. 
1991;86(2–3):153-161.

[12] Tertov VV, Sobenin IA, Tonevitsky AG, et al. Isolation of atherogenic modified (desi-
alylated) low density lipoprotein from blood of atherosclerotic patients: separation 

from native lipoprotein by affinity chromatography. Biochem Biophys Res Commun. 
1990;167(3):1122-1127.

[13] Tertov VV, Kaplun VV, Sobenin IA, et al. Low-density lipoprotein modification occur-

ring in human plasma possible mechanism of in vivo lipoprotein desialylation as a pri-

mary step of atherogenic modification. Atherosclerosis. 1998;138(1):183-195.

[14] Monti E, Bonten E, D’Azzo A, et al. Sialidases in vertebrates: a family of enzymes ailored 
for several cell functions. Adv Carbohydr Chem Biochem. 2010;64:403-479.

[15] Mills EJ, Rachlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events 

with statin treatments: a network meta-analysis involving more than 65,000 patients. J 

Am Coll Cardiol. 2008;52(22):1769-1781.

[16] Krauss RM, Lindgren FT, Ray RM. Interrelationships among subgroups of serum lipo-

proteins in normal human subjects. Clin Chim Acta. 1980;104(3):275-290.

[17] Tertov VV, Orekhov AN. Metabolism of native and naturally occurring multiple modi-

fied low density lipoprotein in smooth muscle cells of human aortic intima. Exp Mol 
Pathol. 1997;64(3):127-145.

[18] Ensign W, Hill N, Heward CB. Disparate LDL phenotypic classification among 4 dif-
ferent methods assessing LDL particle characteristics. Clin Chem. 2006;52(9):1722-1727.

[19] Williams PT, Vranizan KM, Krauss RM. Correlations of plasma lipoproteins with LDL 
subfractions by particle size in men and women. J Lipid Res. 1992;33(5):765-774.

[20] Hoefner DM, Hodel SD, O’Brien JF, et al. Development of a rapid, quantitative method 

for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin 
Chem. 2001;47(2):266-274.

[21] Witte DR, Taskinen MR, Perttunen-Nio H, et al. Study of agreement between LDL size as 
measured by nuclear magnetic resonance and gradient gel electrophoresis. J Lipid Res. 

2004;45(6):1069-1076.

[22] Okazaki M, Usui S, Ishigami M, et al. Identification of unique lipoprotein subclasses for 
visceral obesity by component analysis of cholesterol profile in high-performance liquid 
chromatography. Arterioscler Thromb Vasc Biol. 2005;25(3):578-584.

[23] Sakurai T, Trirongjitmoah S, Nishibata Y, et al. Measurement of lipoprotein particle sizes 

using dynamic light scattering. Ann Clin Biochem. 2010;47(Pt 5):476-481.

Circulating Atherogenic Multiple-Modified Low-Density Lipoprotein: Pathophysiology and Clinical Applications
http://dx.doi.org/10.5772/67055

19



[24] Musunuru K, Orho-Melander M, Caulfield MP, et al. Ion mobility analysis of lipopro-

tein subfractions identifies three independent axes of cardiovascular risk. Arterioscler 
Thromb Vasc Biol. 2009;29(11):1975-1980.

[25] Hirano T, Ito Y, Saegusa H, et al. A novel and simple method for quantification of small, 
dense LDL. J Lipid Res. 2003;44(11):2193-2201.

[26] Orekhov AN, Tertov VV, Kudryashov SA, et al. Triggerlike stimulation of cholesterol 

accumulation and DNA and extracellular matrix synthesis induced by atherogenic 

serum or low density lipoprotein in cultured cells. Circ Res. 1990;66(2):311-320.

[27] Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogene-

ity. J Lipid Res. 2002;43(9):1363-1379.

[28] Packard C, Caslake M, Shepherd J. The role of small, dense low density lipoprotein 
(LDL): a new look. Int J Cardiol. 2000;74 Suppl 1:S17-S22.

[29] Tribble DL, Rizzo M, Chait A, et al. Enhanced oxidative susceptibility and reduced anti-

oxidant content of metabolic precursors of small, dense low-density lipoproteins. Am J 

Med. 2001;110(2):103-110.

[30] La Belle M, Krauss RM. Differences in carbohydrate content of low density lipo-

proteins associated with low density lipoprotein subclass patterns. J Lipid Res. 
1990;31(9):1577-1588.

[31] Anber V, Griffin BA, McConnell M, et al. Influence of plasma lipid and LDL-subfraction 
profile on the interaction between low density lipoprotein with human arterial wall pro-

teoglycans. Atherosclerosis. 1996;124(2):261-271.

[32] Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in 
humans. Arteriosclerosis. 1988;8(1):79-87.

[33] Yang CY, Raya JL, Chen HH, et al. Isolation, characterization, and functional assessment 

of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler 
Thromb Vasc Biol. 2003;23(6):1083-1090.

[34] Tang D, Lu J, Walterscheid JP, et al. Electronegative LDL circulating in smokers impairs 

endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. 
J Lipid Res. 2008;49(1):33-47.

[35] Schmitz G, Mollers C, Richter V. Analytical capillary isotachophoresis of human serum 
lipoproteins. Electrophoresis. 1997;18(10):1807-1813.

[36] Zhang B, Kaneshi T, Ohta T, et al. Relation between insulin resistance and fast-migrat-

ing LDL subfraction as characterized by capillary isotachophoresis. J Lipid Res. 

2005;46(10):2265-2277.

[37] Damasceno NR, Sevanian A, Apolinario E, et al. Detection of electronegative low density 

lipoprotein (LDL-) in plasma and atherosclerotic lesions by monoclonal antibody-based 

immunoassays. Clin Biochem. 2006;39(1):28-38.

Advances in Lipoprotein Research20



[38] Faulin Tdo E, de Sena-Evangelista KC, Pacheco DB, et al. Development of immunoassays 

for anti-electronegative LDL autoantibodies and immune complexes. Clin Chim Acta. 

2012;413(1–2):291-297.

[39] Tertov VV, Orekhov AN, Sobenin IA, et al. Three types of naturally occurring modified 
lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation. Circ 

Res. 1992;71(1):218-228.

[40] Brunelli R, Balogh G, Costa G, et al. Estradiol binding prevents ApoB-100 misfolding in 

electronegative LDL(−). Biochemistry. 2010;49(34):7297-7302.

[41] Parasassi T, Bittolo-Bon G, Brunelli R, et al. Loss of apoB-100 secondary structure and 

conformation in hydroperoxide rich, electronegative LDL(−). Free Radic Biol Med. 
2001;31(1):82-89.

[42] Blanco FJ, Villegas S, Benitez S, et al. 2D-NMR reveals different populations of exposed 
lysine residues in the apoB-100 protein of electronegative and electropositive fractions 

of LDL particles. J Lipid Res. 2010;51(6):1560-1565.

[43] Benitez S, Sanchez-Quesada JL, Lucero L, et al. Changes in low-density lipoprotein elec-

tronegativity and oxidizability after aerobic exercise are related to the increase in associ-

ated non-esterified fatty acids. Atherosclerosis. 2002;160(1):223-232.

[44] Benitez S, Villegas V, Bancells C, et al. Impaired binding affinity of electronegative low-
density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and 
lysophosphatidylcholine content. Biochemistry. 2004;43(50):15863-15872.

[45] Lu J, Yang JH, Burns AR, et al. Mediation of electronegative low-density lipopro-

tein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res. 

2009;104(5):619-627.

[46] Chu CS, Wang YC, Lu LS, et al. Electronegative low-density lipoprotein increases 

C-reactive protein expression in vascular endothelial cells through the LOX-1 receptor. 

PLoS One. 2013;8(8):e70533.

[47] Greco G, Balogh G, Brunelli R, et al. Generation in human plasma of misfolded, aggrega-

tion-prone electronegative low density lipoprotein. Biophys J. 2009;97(2):628-635.

[48] Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipo-

proteins in normal humans. J Lipid Res. 1982;23(1):97-104.

[49] Tertov VV, Bittolo-Bon G, Sobenin IA, et al. Naturally occurring modified low density 
lipoproteins are similar if not identical: more electronegative and desialylated lipopro-

tein subfractions. Exp Mol Pathol. 1995;62(3):166-172.

[50] Tertov VV, Sobenin IA, Orekhov AN. Characterization of desialylated low-den-

sity lipoproteins which cause intracellular lipid accumulation. Int J Tissue React. 

1992;14(4):155-162.

Circulating Atherogenic Multiple-Modified Low-Density Lipoprotein: Pathophysiology and Clinical Applications
http://dx.doi.org/10.5772/67055

21



[51] Tertov VV, Sobenin IA, Orekhov AN. Similarity between naturally occurring modi-
fied desialylated, electronegative and aortic low density lipoprotein. Free Radic Res. 
1996;25(4):313-319.

[52] Arai H. Oxidative modification of lipoproteins. Subcell Biochem. 2014;77:103-114.

[53] Fukuchi M, Watanabe J, Kumagai K, et al. Normal and oxidized low density lipoproteins 

accumulate deep in physiologically thickened intima of human coronary arteries. Lab 

Invest. 2002;82(10):1437-1447.

[54] Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. Lipoproteins in normal and atheroscle-

rotic aorta. Eur Heart J. 1990;11 Suppl E:88-99.

[55] Orekhov AN, Tertov VV, Kabakov AE, et al. Autoantibodies against modified low den-

sity lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation. 

Arterioscler Thromb. 1991;11(2):316-326.

[56] Tertov VV, Kaplun VV, Dvoryantsev SN, et al. Apolipoprotein B-bound lipids as a 

marker for evaluation of low density lipoprotein oxidation in vivo. Biochem Biophys Res 

Commun. 1995;214(2):608-613.

[57] Esterbauer H, Striegl G, Puhl H, et al. Continuous monitoring of in vitro oxidation of 

human low density lipoprotein. Free Radic Res Commun. 1989;6(1):67-75.

[58] Tertov VV, Sobenin IA, Gabbasov ZA, et al. Multiple-modified desialylated low den-

sity lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and 

characterization. Lab Invest. 1992;67(5):665-675.

[59] Tertov VV, Sobenin IA, Gabbasov ZA, et al. Lipoprotein aggregation as an essential con-

dition of intracellular lipid accumulation caused by modified low density lipoproteins. 
Biochem Biophys Res Commun. 1989;163(1):489-494.

[60] Orekhov AN, Tertov VV, Mukhin DN, et al. Association of low-density lipoprotein with 

particulate connective tissue matrix components enhances cholesterol accumulation in 

cultured subendothelial cells of human aorta. Biochim Biophys Acta. 1987;928(3):251-258.

[61] Sobenin IA, Salonen JT, Zhelankin AV, et al. Low density lipoprotein-containing circulat-

ing immune complexes: role in atherosclerosis and diagnostic value. Biomed Res Int. 

2014;2014:205697.

[62] Kacharava AG, Tertov VV, Orekhov AN. Autoantibodies against low-density lipopro-

tein and atherogenic potential of blood. Ann Med. 1993;25(6):551-555.

[63] Tertov VV, Sobenin IA, Orekhov AN, et al. Characteristics of low density lipoprotein 

isolated from circulating immune complexes. Atherosclerosis. 1996;122(2):191-199.

[64] Schwaeble W, Schafer MK, Petry F, et al. Follicular dendritic cells, interdigitating cells, 

and cells of the monocyte-macrophage lineage are the C1q-producing sources in the 

spleen. Identification of specific cell types by in situ hybridization and immunohisto-

chemical analysis. J Immunol. 1995;155(10):4971-4978.

Advances in Lipoprotein Research22



[65] Bobryshev YV, Lord RS. Ultrastructural recognition of cells with dendritic cell mor-

phology in human aortic intima. Contacting interactions of vascular dendritic cells 

in athero-resistant and athero-prone areas of the normal aorta. Arch Histol Cytol. 

1995;58(3):307-322.

[66] Cao W, Bobryshev YV, Lord RS, et al. Dendritic cells in the arterial wall express C1q: 

potential significance in atherogenesis. Cardiovasc Res. 2003;60(1):175-186.

[67] Klimov AN, Denisenko AD, Vinogradov AG, et al. Accumulation of cholesteryl esters 

in macrophages incubated with human lipoprotein-antibody autoimmune complex. 

Atherosclerosis. 1988;74(1–2):41-46.

[68] Chistiakov DA, Sobenin IA, Orekhov AN, et al. Role of endoplasmic reticulum 

stress in atherosclerosis and diabetic macrovascular complications. Biomed Res Int. 

2014;2014:610140.

[69] Orekhov AN, Melnichenko AA, Sobenin IA. Approach to reduction of blood atheroge-

nicity. Oxid Med Cell Longev. 2014;2014:738679.

[70] Loukas M, Sharma A, Blaak C, et al. The clinical anatomy of the coronary arteries. J 

Cardiovasc Transl Res. 2013;6(2):197-207.

[71] Sobenin IA, Karagodin VP, Melnichenko AC, et al. Diagnostic and prognostic value of 

low density lipoprotein-containing circulating immune complexes in atherosclerosis. J 

Clin Immunol. 2013;33(2):489-495.

Circulating Atherogenic Multiple-Modified Low-Density Lipoprotein: Pathophysiology and Clinical Applications
http://dx.doi.org/10.5772/67055

23




