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Abstract

Italian ryegrass has become one of the most common and troublesome weeds of wheat pro-
duction in the Southern United States. There are multiple reports in this region of Italian 
ryegrass herbicide resistance to acetyl-CoA carboxylase (ACCase), acetolactate synthase 
(ALS), and glyphosate herbicides. One commonality for Italian ryegrass resistance in this 
area is that most of these mechanisms of action for these herbicides are all postemergence 
(POST) applied. In order to have profitable soft red winter wheat production, applica-
tions of preemergence (PRE) herbicides with residual control of Italian ryegrass and other 
winter weed species would benefit growers. There are a very limited number of herbicides 
that can be applied at the time of wheat planting, primarily only when pyroxasulfone is 
registered for this timing. Research was conducted to establish weed control information 
when herbicides were applied to soft red winter wheat PRE, at wheat emergence (AE), 
or POST at Feekes stages 1.0–1.9, depending on herbicide label recommendations. Injury 
from any pyroxasulfone PRE treatments up to 120 g a.i. ha−1 was transient and did not 
affect wheat yield for any experiment. Italian ryegrass control was variable depending on 
location and year. Susceptible and diclofop-resistant Italian ryegrass control was 86% or 
greater with pyroxasulfone at 60 g a.i. ha−1 and greater with applied PRE. Italian ryegrass 
control was variable ranging from 27 to 49% with pendimethalin ME-applied PRE, diclo-
fop at Feekes sage 1.0, and pinoxaden applied at Feekes stage 1.9.

Keywords: crop tolerance, Italian ryegrass, wild radish, diclofop, 2,4-diclorophenoxy 
acetic acid, pyroxasulfone, pendimethalin ME, metribuzin, thifensulfuron, tribenuron, 
MCPA, pinoxaden, mesosulfuron

1. Introduction

Information about wheat production in the United States has been recorded since 1867 with 

respect to hectares planted (black dots on Figure 1A) and yield (bars on Figure 1B). While pro-

duction in hectares first increased until 1950, it then decreased as yield in kg per hectare increased. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. Hectares of wheat planted (A) and grain yield (B) in the United States (National Agricultural Statistics Service, 

USDA. Hectare and kg/ha data available at https://www.nass.usda.gov).
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Improved genetics, fertility, disease, insect, and weed control options contributed to increased 

yield. As Figure 1A indicates, hectares planted decreased from 1950 to 1955, then stayed rela-

tively constant until 1980, and then began to decline in 2000 and have continued this downward 

trend into the twenty-first century. However, wheat yield doubled from approximately 1000 to 
2000 kg/ha from 1950 to 1980 (Figure 1B). Then, from 1980 to 2010, yield increased from 2000 to 

3000 kg/ha as the overall number of hectares planted again declined to the 1950s level. The mid-
1950s increase is significant as it occurred with the introduction of herbicides. Multiple weed spe-

cies have become an issue in wheat all across this production region. However, Italian ryegrass 

[Lolium perenne L. ssp. multiflorum (Lam.) Husnot] is one of the most common and troublesome 

weeds in wheat. As a winter forage, Italian ryegrass is planted and then becomes a problematic 

weed in small grains due to escapes [1–3]. While herbicides can be used to control this weed, 

there are also herbicide-resistant issues. There are multiple reports of Italian ryegrass herbicide 

resistance to acetyl CoA carboxylase (ACCase), acetolactate synthase (ALS), and glyphosate 

herbicides [1, 4]. A commonality for Italian ryegrass resistance is that most of these herbicides 

mechanisms of action that have resistance issues are generally all postemergence (POST) applied 

to the weed. In order to have profitable wheat production, applications of preemergence (PRE) 
herbicides with residual control of Italian ryegrass and other winter weed species would benefit 
growers. Currently, there are limited herbicides that can be applied at the time of wheat planting.

2. Importance

Soft red winter wheat is an autumn-seeded crop in the Mid-South and Southeastern United 

States where it is double-cropped with cotton (Gossypium hirsutum L.), peanut (Arachis hypogaea 

L.), or soybean (Glycine max (L.) Merr.). Italian ryegrass is a vigorous erect winter annual native 

to temperate Europe where it was grown as a forage with reports of its presence in France, 

Switzerland, and England from 1818 to 1831 [3]. This use led to its migration to the Western 

Hemisphere with reports by Henderson on its quality [5]. Because of easy establishment, it was 

adapted for forage production. However, volunteer Italian ryegrass seed can become a weedy 

plant in small grains such as wheat [2, 3]. It can grow to over 1 m in height protruding above the 

wheat canopy, producing multiple tillers and seed heads from a single plant (Figure 2). It has 

long, clasping auricles, and awned seeds (Figure 2). Over time, it has become a major weed spe-

cies for this region due to its aggressive growth and seed production. It has consistently ranked 

as being one of the most common and troublesome weeds in small grains and wheat for over 

20 years [6–10]. Stone et al. [11] reported that Italian ryegrass interference with wheat was the 

result of its greater root density relative to the crop, which creates excess competition for mois-

ture and nutrients. With respect to aboveground development, Ball [12] determined that leaf 

production rate was greater for Italian ryegrass as compared to wheat. Liebl and Worsham [13] 

noted that wheat grain yields were reduced by 4% for every ten Italian ryegrass plants per m2 

and that declining yields could be primarily attributed to reductions in crop tillering. According 
to Appleby et al. [14], Italian ryegrass infestations of 29–118 plants per m2 reduced wheat yields 

between 7 and 50%. Italian ryegrass has similar growth stages to soft red winter wheat (Figure 3) 

and thus competes for resources in terms of space, sunlight, nutrients, and moisture.
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Wild radish (Raphanus raphanistrum L.) is another common and troublesome winter annual 

weed in soft red winter wheat production regions of the Southeastern United States [6]. 

Cruciferous species compete vigorously with wheat, and data indicate that significant yield 
losses can occur if these weeds are not controlled soon after crop emergence [15]. Seeds of 

cruciferous species are high in erucic acid and glucosinolates that can pose quality problems 

in harvested wheat [16]. Once wild radish is established in wheat, it can be controlled with 

POST-applied herbicides, but these herbicides are not always used for economic, manage-

ment, or even herbicide-resistant reasons [17–19]. Other winter weeds in soft red winter 

wheat production include henbit (Lamium amplexicaule L.), swine cress [Coronopus didymus 

(L.) Sm.], and cutleaf evening primrose (Oenothera laciniata Hill.) [6].

Figure 2. Italian ryegrass [Lolium multiflorum L. ssp. multiflorum (Lam.) Husnot] in soft red winter wheat field, spikelet, 
and single seed, respectively (photos by Sidney Cromer).

Figure 3. Italian ryegrass [Lolium multiflorum L. ssp. multiflorum (Lam.) Husnot] in seedling, tillering, and reproductive 
phases, respectively [photos by Timothy Grey (center) and Sidney Cromer (left and right)].
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3. Background information on wheat herbicides

As the records for the US wheat production indicated in Figure 1, yield and hectares increased 

from the 1870s to the 1950s due to improved agronomic practices. Herbicides were introduced 
in small grain production in the 1940s for broadleaf weed control [20] and marked the begin-

ning for the trend of reduced hectares producing greater yields. These two facts are born out 

in regression of the data over this era, with a negative regression for hectares planted begin-

ning in the 1960s. In contrast, yield in kg per ha has maintained a positive slope, with slight 

declines in production during the 1930’s Dust Bowl. With the introduction of improved farm-

ing techniques, pesticides, fertility, and improved cultivars, wheat production after World War 

II began to increase significantly as herbicides were incorporated into production practices.

3.1. Herbicides

Herbicides are used for PRE and POST control of grass and broadleaf weed species in wheat. 

However, control with POST herbicide applications is often the most commonly used as noted 

by Figure 4. Herbicide-applied POST can have less than desired weed control. Reduced efficacy 
has been associated with variables such as delayed application, suboptimum rates, not includ-

ing a suitable adjuvant, including in tank mixture with other herbicides that are antagonistic, or 

during environmentally induced plant stress. The second factor that contributes to control fail-

ure is herbicide-resistant weeds. Herbicides that inhibit ACCase include the aryloxyphenoxy-

propionates and cyclohexanediones. Within the United States, there has been a rapid increase 

in ACCase-resistant Italian ryegrass biotypes since 1990 [21]. For example, Italian ryegrass resis-

tant to diclofop was first reported in 1987 in Oregon [22, 23]. It has subsequently been reported 

in the Southeastern United States [21] and throughout the world [22, 24–27]. The widespread 

development of herbicide resistance in Italian ryegrass will reduce control options in wheat. 

While wild radish herbicide resistance has been reported in multiple wheat production regions 

including Australia, Brazil, and South Africa [4], no reports have occurred in North America.

3.2. Synthetic auxin herbicides

The first herbicide to be introduced for chemical weed control in any crop was 2,4-(dichloro-

phenoxy)acetic acid (2,4-D). Reports of the plant growth regulatory effects were first noted 
by Marth and Mitchell [25] in the journal Botanical Gazette. They reported via a personal com-

munication that 2,4-D could potentially be used for weed control. Marth and Mitchell [28] 

reported on the delivery of 2,4-D specifically via POST aqueous spray solutions at 500 and 
1000 ppm, with efficacy on several broadleaf weed species including dandelion (Taraxacum 

officinale F.H. Wigg.) and plantain (Plantago lanceolata L.) that were controlled in Kentucky 

bluegrass (Poa pratensis L.). Klingman [29] experimented with wheat and noted 2,4-D tol-

erance when applied with postemergence to the crop. After decades of further research on 

wheat evaluating rate and timing of applications, 2,4-D became a standard herbicide used for 

broadleaf weed control and is still currently used as a POST treatment. Other auxin herbicides 

which used POST in wheat for broadleaf weed control include (4-chloro-2-methylphenoxy)

acetic acid (MCPA) and 3,6-dichloro-2-methoxybenzoic acid (dicamba). These herbicides have 
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had consistent use patterns for the past 25 years in winter wheat with 2,4-D averaging over 
1,000,000 kg applied in the United States annually (Figure 4). Dicamba and MCPA have aver-

aged between 200,000 and 400,000 kg annually since 2006 (Figure 4) in winter wheat [30].

Figure 4. Herbicide use in winter wheat from 1990 to 2012 in the United States for multiple mechanisms of action. Data 

available at http://www.nass.usda.gov/Statistics_by_Subject/Environmental/index.asp.
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3.3. Photosystem II herbicides

Photosystem II (PS II) herbicides used in winter wheat include metribuzin and bromoxynil 

and are utilized in the Southeastern United States [16]. Metribuzin can be POST applied 

to winter wheat for control of annual grasses and dicot weeds including Italian ryegrass 

and wild radish [16] just as the coleoptile is emerging from soil. While metribuzin can con-

trol Italian ryegrass effectively, careful management, including cultivar selection and timely 
application, is required to achieve acceptable crop tolerance and weed control. Many agro-

nomically desirable, high-yielding wheat cultivars are sensitive to metribuzin and can-

not be planted if metribuzin is to be applied and some cultivars are extremely sensitive 

[31–33]. Bromoxynil in wheat will control wild radish but is ineffective on Italian ryegrass. 
Bromoxynil use in soft red winter wheat has averaged over 200,000 kg in the United States 

since 2006 (Figure 4).

3.4. Acetolactate synthase (ALS) herbicides

Sulfonylurea (SU) herbicides were first synthesized by E.I. DuPont Corp. in the mid-1950s 
and screened for pesticide properties, but first attempts revealed no significant biological 
activity [34]. It was not until the 1970s that the analogs of SUs began to be synthesized and 

their herbicidal activity evaluated. Prior to this there was no precedence for high potency 

and extremely low use rates in the g ha−1 range for weed control. One example described by 

Bhardwaj [34] was that university researchers would move the decimal two places as they 

could not believe that herbicides could be effectively applied at g ha−1, rather than kg ha−1. 

The result was that weeds would not grow in treated test plots after 2 years, despite half-

lives of 6–8 weeks. Thus, the potency of the SUs was recognized, and their use in plant 

production systems, including wheat, was quickly established. The key components to SUs 

are two moieties (R1 and R2) on either side of a sulfonylurea bridge. Generally, the moieties 

are composed of an aryl group, a pyrimidine ring, or a triazine ring [35, 36]. Variation in 

herbicidal activity occurs by substitutions made to branches on these rings. Chlorsulfuron 

was the first SU herbicide released by E.I. DuPont for weed control in small grains [37]. 

LaRossa and Schloss [38] reported that sulfometuron methyl was a potent acetolactate syn-

thase (ALS) isozyme II inhibitor by testing of Salmonella typhimurium. Since then, all SUs have 

been identified as ALS inhibitors [39]. There are currently several SUs used in wheat weed 

control including chlorsulfuron, metsulfuron, sulfosulfuron, mesosulfuron, thifensulfuron, 

and tribenuron. Use rates vary but fall primarily within a range of 4–280 g ha−1. These use 

patterns are reflected in the masses of herbicides used when comparing the auxin and PS II 
inhibitors combined to average over 2,450,000 kg in 2012, versus the ALS herbicides at 53,000 
kg (Figure 4): a 46 times greater application mass. This comparison reflects the potency and 
reduces environmental impact aspect of the ALS herbicides. Another POST ALS wheat her-

bicide is the triazolopyrimidine pyroxsulam that is specifically preferred in the Southeastern 
United States because it controls Italian ryegrass and wild radish. However, there are multi-

ple reports of ALS resistance in Italian ryegrass that make these herbicides less viable options 

and essentially render those useless [40].
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3.5. Soil residual herbicides

New herbicide chemistries and new formulations of older compounds are available for weed 

control in soft red winter wheat. These include options for grass and broadleaf weed species. 

Pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dintrobenzenamine] formulated as a micro-

encapsulated (ME) aqueous capsule suspension contains 38.7% (0.47 kg L−1) active ingredient and 

can be applied after wheat has the first true leaf. This will provide residual weed control to later 
emerging weeds, but does not overcome the issue of weeds emerging right after wheat planting.

Pyroxasulfone (3-[5-(difluoromethoxy)-1methyl-3-(trifluoromethyl)pyrazol-4-ylmethylsulfo-

nyl-4,5-dihydro-5,5-dimethy-1,2-oxazole) is an isoxazoline PRE soil residual herbicide reg-

istered for soft red winter wheat since 2014 in the United States [41]. It has been researched 

and registered in multiple wheat production regions of the world including Australia [42], 

Japan, Canada, Saudi Arabia, South Africa, and the United States [43]. Pyroxasulfone inhib-

its the biosynthesis of very-long-chain fatty acids (VLCFAs) leading to the buildup of fatty 
acid precursors, specifically inhibiting many elongation steps catalyzed by VLCFA elongases, 
as a Group 15 (WSSA)/Group K

3
 (HRAC) herbicide [39, 44]. Nakatani et al. [43] noted that 

the herbicide benthiocarb (S-[(4-chlorophenyl)methyl]diethylcarbamothioate) was used as 

the basis for research development of pyroxasulfone by developing a novel chemical struc-

ture by using various substitutions. This resulted in a compound with low water solubil-

ity (3.49 mg L−1), no pKa, and hydrolytically stable at all pH values at 25 C, allowing less 
susceptibility to decomposition and thus providing extended soil residual activity [39, 43]. 

Dissipation rates (DT50) for pyroxasulfone have ranged from 8 to 71 days in the top 8 cm of 

Tennessee soils [45] and 54 to 94 days in the top 7.5 cm of Colorado soils [46]. Pyroxasulfone’s 

soil residual activity and utility have allowed it to be registered for multiple uses including 

corn (field, sweet, and pop) (Zea mays L.), soybean, cotton, fallow land, and non-crop areas 
[47–49]. Winter wheat tolerance has been well documented with only minor injury in the form 

of stunting with no negative effects on yield [50–52]. With PRE soil activity on broadleaf and 

grass species including ALS- [52], ACCase- [41], and glyphosate- [1] resistant Italian ryegrass 

biotypes, pyroxasulfone use in wheat will afford growers an early season weed control option 
that was previously unavailable.

4. Research

While auxins, PS IIs, and SUs are effective in wheat production, they have traditionally been 
POST applied for weeds that have already emerged. By applying after the crops emergence, 

the potential for weed infestation increases leading to a greater production costs, resulting in 

yield loss and potential quality issues. By utilizing herbicides either as PRE or soon after emer-

gence, weed control could be enhanced in soft red winter wheat. Pyroxasulfone is labeled for 

delayed PRE or early POST application. The registrations for application of pyroxasulfone 

differ by company. One company defines that applications of pyroxasulfone must be delayed 
PRE as to when wheat has 80% germinated seed with a 1.2 cm long shoot, as well as having 

an early POST from spike to the fourth tiller timing [44]. Other companies have regional and 

state requirements that wheat must be planted 2.5–3 cm deep for PRE application (Pacific 
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north western region of the United States) [45] but can also have POST applications for spe-

cific states [46]. Therefore, this chapter will emphasize pyroxasulfone, pendimethalin ME, 

and other herbicides for PRE and POST weed control and wheat response.

4.1. Field studies

Field studies were conducted to evaluate herbicides used for soft red winter wheat production 

focusing on residual and contact active ingredients, as well as timing when applied either PRE 

or POST with respect to crop emergence. All studies were conducted as described in Table 1 for 

soil nomenclature, soil texture, soil pH, organic matter content, wheat cultivar, and dates asso-

ciated with seeding, herbicide application timings, and harvest. Experiments were conducted 

from autumn to spring in 2009–2010 (Table 2), 2010–2011 (Tables 2 and 3), 2011–2012 (Tables 2 

and 3), 2012–2013 (Tables 4 and 5), and 2013–2014 (Table 4). Experiments were conducted 

on the University of Georgia property at the Bledsoe Research Farm near Williamson, at the 

Southwest Georgia Branch Experiment Station located near Plains, or at the Ponder and Lang 

Research Farms near Tifton. Treated plots included eight rows of wheat on 19 cm spacing (1.8 

m wide), in plots 7.6 or 9.1 m long, with wheat seeding rates of 90 kg ha−1. A randomized com-

plete block design with four replications was used for all experiments. Herbicides were applied 

with a CO2-pressurized sprayer calibrated to deliver 187 L ha−1 at 210 kPa for all experiments. 

PRE applications were made prior to wheat emergence; at emergence (AE) applications were 

made at Feekes 0.9 [53] when the coleoptile was soil emerged. POST applications were applied 

between Feekes 1.0 and 1.9. Fertilizer and liming requirements were based on the University 

of Georgia Extension recommendations for wheat. Insects and plant diseases were monitored 

and sprayed when necessary. Wheat stand counts were made multiple times during the sea-

son on 1 m of length of row. Wheat injury and natural infestations of weeds were evaluated 

for each location at multiple times during the growing season. Wheat injury and weed control 

were visually estimated on a scale of 0 (no injury) to 100% (death). Data for experiments that 

were identical were combined for analysis. Weed control, wheat stand counts, wheat injury, 

and wheat yield were subjected to mixed model analysis of variance (ANOVA) in SAS 9.2 [54]. 

Complete treatment description for all 15 experiments is listed in Table 1.

Griffin Plains Tifton Plains Tifton

2009–2010 2010–2011 2009–2010 2010–2011 2009–2010 2010–2011 2010–2011 2011–2012 2010–2011

Soil nomen-

clature
Clayey, kaolinitic, 

thermic, Typic 

Hapludult

Clayey, kaolinitic, 

thermic, Typic 

Kandiudults

Fine-loamy, 

kaolinitic, thermic, 

Plinthic Kandiudult

Clayey, kaolinitic, 

thermic, Typic 

Kandiudults

Fine-loamy, 

kaolinitic, 

thermic, 

Plinthic 

Kandiudult

Soil texture Cecil sandy clay 

loam

Faceville sandy 

loam

Tifton loamy sand Faceville sandy 

loam

Tifton 

loamy sand

Soil pH 6.3 6.2 6.0 6.2 5.9 6.1 6.2 5.9 6.2

Organic 

matter (%)
1.5 1.0 1.0 0.5 1.1 0.5 1.0 1.3 0.5

Wheat 

cultivar

AGS 

2031

AGS 

2026

AGS 

2000

AGS 

2020

Gore AGS  

2031

Gore CL 7 AGS  

2020
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Griffin Plains Tifton Plains Tifton

2009–2010 2010–2011 2009–2010 2010–2011 2009–2010 2010–2011 2010–2011 2011–2012 2010–2011

Seeding 

date

5 Nov 
2009

2 Nov 

2010

18 Nov 

2009

19 Nov 

2010

5 Nov 
2009

2 Nov 

2010

19 Nov 

2010

22 Nov 

2011

23 Nov 

2010

Number of 

treatments

12 12 12 12 12 12 14 14 14

PRE  

applic-

ation(s)

7 Nov 

2009

8 Nov 

2010

18 Nov 

2009

19 Nov 

2010

6 Nov 

2009

8 Nov 

2010

8 Nov 

2010

9 Nov 

2011

12 Nov 

2010

_______ _______ _______ _______ _______ _______ 19 Nov 

2010

22 Nov 

2011

23 Nov 

2010

POST 

applic-

ation(s)

14 Jan 

2010

17 Jan 

2011

13 Jan 

2010

24 Jan 

2011

12 Jan 

2010

17 Jan 

2010

26 Nov 

2010

1 Dec 

2011

3 Dec 2010

_______ _______ _______ _______ _______ _______ 24 Jan 

2011

14 Dec 

2011

10 Jan 2011

Harvest 

date

4 June 

2010

NYa 27 May 

2010

6 June 

2011

28 May 

2010

2 June 

2010

12 May 

2011

1 May 

2012

6 June 2011

Griffin Plains Tifton Griffin Plains

2012–2013 2013–2014 2012–2013 2012–2013 2012–2013 2012–2013

Soil name Clayey, kaolinitic, thermic, 

Typic Hapludult

Clayey, 

kaolinitic, 

thermic, Typic 

Kandiudults

Fine-loamy, 

kaolinitic, 

thermic 

Plinthic 

Kandiudult

Clayey, 

kaolinitic, 

thermic, Typic 

Hapludult

Clayey, 

kaolinitic, 

thermic, Typic 

Kandiudults

Soil texture Cecil sandy clay loam Faceville 

sandy loam

Tifton loamy 

sand

Cecil sandy 

clay loam

Faceville 

sandy loam

Soil pH 6.0 6.3 6.5 5.9 6.0 6.5

Organic matter 1.0 1.5 2.0 1.1 1.0 2.0

Wheat cultivar SS 8641 SS8461 AGS 3035 AGS 2020 SS 8641 AGS 3035

Seeding date 1 Nov 2012 31 Oct 2013 20 Nov 2012 14 Nov 2012 1 Nov 2012 20 Nov 2012

Number of 

treatments

15 15 15 15 10 10

PRE 

application

2 Nov 2012 4 Nov 2013 20 Nov 2012 14 Nov 2012 2 Nov 2012 20 Nov 2012

POST 

application(s)

13 Nov 2012 9 Nov 2013 3 Dec 2012 26 Nov 2012 13 Nov 2012 3 Dec 2012

6 Dec 2012 20 Nov 2013 14 Dec 2012 18 Dec 2012 6 Dec 2012 14 Dec 2012

_______ _______ _______ _______ 15 Jan 2013 11 Jan 2013

Harvest date NYa NY 28 May 2013 29 May 2013 NY 28 May 2013

a No yield (NY) taken as natural infestations of ryegrass populations made harvest impossible.

Table 1. Location information by table for soft red winter wheat herbicide trials and weed control evaluations in Georgia.
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Herbicide Timing Rate 

(g a.i. ha−1)b

Injury (%) Italian ryegrass (%) Yield (kg ha−1)

15 DAP 90 DAP 30 DAP 175 DAP

Nontreated control 0 c 0 e 0 e 0 e 3730 a

Pyroxasulfone PRE 40 0 c 4 cde 72 abc 75 bc 4110 a

Pyroxasulfone PRE 60 3 c 8 bcd 83 abc 90 ab 4230 a

Pyroxasulfone PRE 80 9 b 14 b 91 ab 92 ab 4180 a

Pyroxasulfone PRE 160 20 a 23 a 93 a 97 a 4000 a

Pendimethalin ME PRE 1064 3 c 5 cd 66 c 54 cd 4050 a

Pinoxaden POST 119 __ __ 11 bc 75 abc 57 cd 3930 a

Pendimethalin ME 

+ pinoxaden

POST 1064 + 119 __ __ 8 bcd 84 abc 51 cd 4000 a

Pyroxasulfone + 

pinoxaden

POST 40 + 119 __ __ 5 cd 70 bc 96 a 4110 a

Diclofop POST 559 __ __ 6 cd 27 d 50 d 3970 a

Pyroxsulam POST 18 __ __ 6 b 92 ab 86 ab 3987 a

Mesosulfuron POST 15 __ __ 9 bcd 94 a 79 ab 3970 a

a Site-year locations: Griffin, Plains, and Tifton, Georgia
b Abbreviations: a.i., active ingredient; DAP, days after planting; ME, microencapsulated; PRE, preemergence; POST, 
postemergence applied 65–70 DAP at Feekes scale 1.5–1.9

Table 2. Herbicide, rates, and timing of applications for evaluating weed control and soft red winter wheat growth 

response in Georgia, 2010–2011 and 2011–2012: data represents six site-year locationsa.

Herbicide Timing Rate 

(g a.i.  
ha−1)b

Injury (%) Italian ryegrass (%) Henbitc Yield (kg ha−1)

14 DAP 28 DAP 30 DAP 175 DAP 30 DAP

Nontreated control 0 b 0 d 0 d 0 h 0 b 4370 a

Pyroxasulfone 12 DPRE 40 0 b 1 cd 88 a 55 def 95 a 4570 a

Pyroxasulfone 12 DPRE 60 0 b 2 cd 98 a 35 fg 97 a 4810 a

Pyroxasulfone 12 DPRE 80 4 b 5 bc 97 a 74 abcd 98 a 4600 a

Pyroxasulfone 12 DPRE 100 5 b 5 bc 98 a 66 bcd 97 a 4670 a

Pyroxasulfone 12 DPRE 120 11 a 7 ab 98 a 65 bcd 99 a 4760 a

Pyroxasulfone PRE 40 3 b 2 cd 88 a 63 bcd 91 a 4620 a

Pyroxasulfone PRE 60 3 b 1 cd 96 a 84 abc 91 a 4660 a

Pyroxasulfone PRE 80 2 b 3 bcd 96 a 91 a 98 a 4860 a

Pyroxasulfone PRE 100 10 a 9 a 98 a 92 a 98 a 4650 a

Pyroxasulfone PRE 120 14 a 10 a 99 a 87 ab 91 a 4590 a

Saflufenacil PRE 60 1 b 2 cd 97 a 54 def 98 a 4740 a
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Herbicide Timing Rate 

(g a.i. ha−1)b

Injury (%) Italian ryegrass (%) Henbitc Yield (kg ha−1)

30 DAP 75 DAP 175 DAP 30 DAP

Nontreated control 0 b 0 f 0 h 0 f 5120 b

Pyroxasulfone PRE 60 0 b 95 a 93 a 75 e 5680 ab

Pyroxasulfone PRE 80 1 b 95 a 95 a 69 e 5762 ab

Pyroxasulfone + 

saflufenacil
PRE 60+119 0 b 95 a 92 ab 95 ab 6080 a

Pyroxasulfone + 

saflufenacil
PRE 80+119 3 b 97 a 96 a 90 abcd 6310 a

Pyroxasulfone AE 60 0 a 74 bcd 54 efg 75 e 6070 a

Pyroxasulfone AE 80 0 b 78 bc 72 cde 81 bcde 6320 a

Metribuzin AE 476 18 a 85 abc 73 cde 97 a 5670 ab

Pyroxasulfone + 

pendimethalin ME

AE 60+1064 0 b 74 cde 69 ed 98 a 6160 a

Pyroxasulfone + 

pendimethalin ME

AE 80+1064 0 76 bcd 67 edf 98 a 6440 a

Metribuzin + 

pendimethalin ME

AE 476+1064 17 a 87 ab 75 bcd 98 a 5350 b

Pyroxasulfone POST 60 0 b 60 de 50 fg 76 de 6260 a

Pyroxasulfone POST 80 0 b 70 cde 62 ed 78 cde 6020 a

Diclofop POST 840 6 b 58 e 42 g 0 f 5750 ab

Pyroxsulam POST 18 0 b 62 de 49 fg 92 abc 6330 a

a Site-year locations: Tifton and Griffin, Georgia.
b Abbreviations: a.i., active ingredient; DAP, days after planting; ME, microencapsulated; 12 DPRE, 12 days before 
planting; PRE, preemergence; AE, at wheat emergence; POST, postemergence applied 65–70 DAP at Feekes scale 1.5–1.9.
c Henbit at Griffin location 2012–2013 and 2013–2014.

Table 4. Herbicide, rates, and timing of applications for evaluating weed control and soft red winter wheat growth 

response in Georgia, 2012–2013 and 2013–2014: data represents four site-year locationsa.

Herbicide Timing Rate 

(g a.i.  
ha−1)b

Injury (%) Italian ryegrass (%) Henbitc Yield (kg ha−1)

14 DAP 28 DAP 30 DAP 175 DAP 30 DAP

Pendimethalin  

ME

AE 1064 0 b 1 cd 48 c 27 g 91 a 4650 a

Pinoxaden POST 119 0 b 3 bcd 68 b 40 efg 0 b 4450 a

a Site-year locations: Griffin, Plains, and Tifton, Georgia
b Abbreviations: a.i., active ingredient; DAP, days after planting; ME, microencapsulated; 12 DPRE, 12 days before 
planting; PRE, preemergence; AE, at wheat emergence; POST, postemergence applied 65–70 DAP at Feekes scale 1.5–1.9
c Henbit at Plains location 2010–2011 and 2011–2012

Table 3. Herbicide, rates, and timing of applications for evaluating weed control and soft red winter wheat growth 

response in Georgia, 2010–2011 and 2011–2012: data represents three site-year locationsa.

Wheat Improvement, Management and Utilization202



5. Crop response and weed control

Treatments were applied at times typically occurring in Georgia soft red winter wheat pro-

duction (Table 1) and are thus representative of producer practices and label recommenda-

tions for the PRE herbicides evaluated. For AE and POST herbicide treatments, applications 

that included surfactants when needed were made based on label recommendations.

An important factor for any PRE-applied herbicide in soft red winter wheat is stand establish-

ment. Crop injury or stand reduction can lead to weed infestations, promote disease prolifera-

tion, and thus reduce yield and quality. Three herbicides were PRE applied over the course of 

Herbicide Timing Rate (g a.i. ha−1) Injury (%) Italian ryegrass (%) Yield (kg ha−1)

30 DAP 75 DAP 175 DAP

Nontreated control 0 b 0 d 0 e 6750 bcd

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

PREb POST 45
17.5+4.3+420

0 b 88 ab 74 ab 7180 abc

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

PRE POST 60

17.5+4.3+420
0 b 95 a 94 a 6500 cd

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

PRE POST 120

17.5+4.3+420
0 b 97 a 95 a 6660 cd

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

AE

POST

45
17.5+4.3+420

0 b 40 c 16 de 7410 a

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

AE

POST

60

17.5+4.3+420
0 a 53 c 26 d 7150 abc

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

AE

POST

120

17.5+4.3+420
0 b 74 b 54 bc 7130 abc

Pinoxaden

Thifensulfuron + 

Tribenuron + MCPA

EPOST

POST

60

17.5+4.3+420
6 a 77 b 54 bc 7290 ab

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

EPOST

POST

60

17.5+4.3+420
0 b 42 c 34 cd 7370 a

Pyroxasulfone

Thifensulfuron + 

Tribenuron + MCPA

EPOST

POST

120

17.5+4.3+420
0 b 47 c 38 cd 7200 abc

a Site year locations: Plains and Griffin, Georgia.
b Abbreviations: a.i., active ingredient; DAP, days after planting; PRE, preemergence; AE, at wheat emergence; POST, 
postemergence applied 65–70 DAP at Feekes scale 1.5–1.9.

Table 5. Herbicide, rates, and timing of applications for evaluating weed control and soft red winter wheat growth 

response in Georgia, 2012–2013: data represents two site-year locationsa.
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these experiments: pyroxasulfone (40 to 160 g ha−1), pendimethalin microencapsulated (ME) 

(1064 g ha−1), and saflufenacil (60 g ha−1). There was no stand reduction in any of the experi-

ments for any PRE herbicide treatment where the average wheat stand was 21 (Table 2), 21 

(Table 3), 22 (Table 4), and 24 (Table 5) plants per meter of row (data not shown). Even when 

pyroxasulfone was applied 12 days PRE (12 DPRE), no reduction in stands occurred (Table 3) 

(data not shown). These data indicate the crop safety which these herbicides, pyroxasulfone, 

pendimethalin ME, and saflufenacil PRE, have toward soft red winter wheat in this region. 
The AE and POST for these herbicide applications did not affect wheat stand.

Soft red winter wheat injury ranged from 0 to 20% across PRE treatment timings for all studies 

when evaluated at 14, 15, or 30 DAP (Tables 2–5). Pyroxasulfone PRE at 160 or 120 g/ha injured 

wheat 20 and 11% (Tables 2 and 3), respectively. This injury was in the form of stunting. Some 

stunting from pyroxasulfone was still visible at 90 DAP for the 80 and 160 g ha−1 rates (Table 2). 

However, this injury was transient by the end of the season and not observed. Metribuzin 

applied alone or in combination with pendimethalin ME at emergence resulted in significant 
injury, 18%, at 30 DAP (Table 4). The soils for the present studies were a sandy loam, loamy 

sand, or sandy clay loam with less than 2.0% organic matter. Hulting et al. [52] noted 3% or less 

wheat injury from pyroxasulfone rates up to 100 g ha−1 on a silt loam soil. Previous research 

indicated decreased pyroxasulfone injury with legumes grown in soils with greater clay con-

tents [19]. Canadian dry bean research indicated that pyroxasulfone injury at 210 g/ha was 11% 

or less [55]. These data indicate that at rates up to 160 g ha−1 wheat had tolerance in sandy loam, 

loamy sand, and sandy clay loam soils of the Southeastern United States. When pyroxasulfone 

was POST applied at Feekes scale 1.0–1.9 (Tables 2, 4, and 5), no injury was ever observed. 

Pyroxasulfone has limited POST activity but can be applied after wheat emergence per label 

recommendation [47–49]. This will provide growers an opportunity to incorporate a residual 

herbicide to promote weed control. When pinoxaden, diclofop, or mesosulfuron was POST 

applied, wheat injury did occur but was consistently less than 9% (Tables 2–4).

Wheat yield varied by location and by year (Tables 2–5). There were no differences for yield 
when pyroxasulfone was PRE applied (Table 2) or 12DPRE and PRE (Table 3) as compared to 

AE or POST applications of diclofop, pyroxsulam, mesosulfuron, or pinoxaden. For these exper-

iments, yield exceeded 4000 kg ha−1 for all pyroxasulfone treatments and was always greater 

than the nontreated control. There was no rate response for wheat yield for pyroxasulfone rates 

of 40, 60, 80, 100, or 120 g ha−1 (Tables 2 and 3). There were no differences in wheat yield as com-

pared to the nontreated control when pyroxasulfone was applied alone or in combination with 

saflufenacil PRE, AE, or POST (Table 4). Wheat yields in this set of experiments (four totals) 

were consistent with early season injury, in that metribuzin alone or in combination with pendi-

methalin ME-applied AE had significant injury 30 DAP, and this translated into reduced yields 
of 5670 and 5350 kg ha−1, respectively. Previous research indicated that metribuzin reduced yield 

demonstrating the risks growers take when using this herbicide for weed control [16, 31, 33].

Early-season Italian ryegrass control for pyroxasulfone application at 40 to 160 g ha−1 12DPRE 

or PRE was 72 to 99% when evaluated at 30 DAP (Tables 2–4). However, by 175 DAP Italian 
ryegrass control began to decline to 83% and less for the 40 and 60 g ha−1 rates of pyroxasulfone. 

Pyroxasulfone at 80 g ha−1 or greater provided 87% or greater season-long control (Tables 2–4). 

Previous research has noted similar Italian ryegrass response to pyroxasulfone at 50–150 g/ha 
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with control ranging from 63 to 100% [52]. Bond et al. [1] noted a significant difference of 37 ver-

sus 99% control of glyphosate-resistant Italian ryegrass for pyroxasulfone at 50 versus 160 g ha−1, 

respectively. These data indicate that for season-long Italian ryegrass control, pyroxasulfone at 

100 g/ha will be required in the Southeastern US soft red winter wheat production. As a PRE her-

bicide, soil dissipation of pyroxasulfone will occur over time [45, 46], thus requiring the appro-

priate rate to be utilized for season-long weed control. Applying pyroxasulfone 12DPRE prior to 

wheat planting resulted in 74% and less Italian ryegrass control. This could be potentially con-

tributed to soil disruption in the planting process via the tractor wheels and planter disk blades.

Although no attempt was made to quantify the level of herbicide resistance in these Italian 
ryegrass populations, ACCase resistance is suspected in the Griffin GA population (unpub-

lished data). Diclofop and pinoxaden are ACCase herbicides that failed to control Italian 

ryegrass effectively (Tables 2–4) when POST applied. Similarly, the ALS herbicide pyrox-

sulam exhibited variable Italian ryegrass control at 86 and 49% at 175 DAP (Tables 2 and 4, 

respectively) indicating potential ALS-susceptible and potential ALS-resistant populations. 

This was established even further when the ALS herbicides thifensulfuron plus tribenuron 

were used as sequential POST applications following AE or POST pinoxaden applications in 

that Italian ryegrass control was 54% at 175 DAP (Table 5). Multiple herbicide-resistant Italian 

ryegrasses to ALS and ACCase herbicides have been confirmed in Georgia [4]. Previously, 

growers relied on AE or POST herbicide combinations for weed control, but the addition of 

pyroxasulfone for PRE application in soft red winter wheat will provide much greater poten-

tial for successful crop production. However, pyroxasulfone must be applied prior to Italian 

ryegrass establishment, as noted by AE and POST applications in Tables 4 and 5. Italian rye-

grass control declined significantly to 72% and less for any rate of pyroxasulfone AE or POST 
alone or when used with other POST-applied herbicides at 175 DAP.

Pyroxasulfone PRE controlled henbit 91% and greater (Table 3) or provided suppression 

(Table 4). Combinations with other herbicides improved control of this winter annual species 

(Table 4). These data indicate that henbit can be controlled with currently registered herbi-

cides for wheat production. There is limited information about pyroxasulfone winter weed 

species control in wheat, other than Italian ryegrass, in the literature.

The complexity and difficulty of managing winter weed species in soft red winter wheat have 
increased with the discovery of herbicide-resistant weeds, specifically ACCase- and ALS-resistant 
Italian ryegrass [4]. Additionally, glyphosate-resistant Italian ryegrass is now an issue in this same 

region [1]. Successful management of Italian ryegrass resistant to multiple mechanisms of action 

will require diligent control programs utilizing PRE residual herbicides prior to wheat emer-

gence, during the cropping season, and after crop rotation, in order to extend the use of pyroxa-

sulfone’s mechanism of action, which is different from all other previous wheat herbicides.

6. Conclusion/recommendations

This research indicated that using the appropriate rates of pyroxasulfone PRE could pro-

vide season-long control of Italian ryegrass in wheat. However, variability in Italian ryegrass 

control was observed when low rates or improper timing of application were used, which 
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indicates the need for further development as growers incorporate this herbicide. Eight dif-

ferent soft red winter wheat cultivars were used in this research, and all exhibited tolerance 

to pyroxasulfone alone and with other herbicide combinations. Future research should be 

conducted with the currently evaluated herbicides for control of other weed species. Italian 

ryegrass control was attained and maintained with the appropriate herbicide applications, 
but variability can be an issue if proper rates and timings are not adhered to. This should be 

considered as an area for future research efforts in soft red winter wheat production using 
combinations of these herbicides. Growers should follow registration recommendations for 

the herbicides evaluated in this research, along with crop rotation and using different mecha-

nisms of action herbicides to limit exposure and reduce potential for resistance to proliferate.
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