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Abstract

This chapter exposes the important connection between ratio control and the state
control reflecting equality constraint for linear discrete-time systems, which allows
significant reduction in computational complexity and efforts. Based on an enhanced
bounded real lemma form, to outperform known approaches, the existence of the state
feedback for such defined singular task is proven, and the design procedure based on
the linear matrix inequalities is provided. The proposed principle, guaranteeing feasibil-
ity of the set of inequalities, improves steady-state accuracy of the ratio control and
essentially reduces the design effort. The approach is illustrated on simulation examples,
where the validity of the proposed method is demonstrated.

Keywords: discrete-time systems, ratio control, state feedback, equality constraint, sin-
gular systems, linear matrix inequalities

1. Introduction

The problem of the ratio feedback control is one of the specific topics in the theory of control
synthesis. It is well practically motivated by applied realizations but not favorable developed
in a state control technique or in combination with the state estimation theory. However, a
considerable number of problems in the ratio control design have to deal with systems
subjected to constraint conditions, which are other than linear, or directly formulated as
singular constrained tasks. In the typical case [1, 2] where the system state reflects certain
physical entities, constraints usually prescribe the system state, the region of technological
conditions. If the ratio control is not formulated as a task with the equality constraints, the
application requires further procedures of controlling the evolution of the set-valued ratio.
Notably, a special form of the problems can be defined while the system state variables satisfy
constraints and interpreted as descriptor systems [3-6]; but, the system with state equality

I NT E C H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited.



78 Dynamical Systems - Analytical and Computational Techniques

constraints generally does not satisfy the conditions under which the results of descriptor
systems can be used. Moreover, if the design task is interpreted as a singular problem, con-
straint associated methods have to be developed to design the controller.

In principle, it is possible to design the controller that stabilizes a system and simultaneously
forces its closed-loop properties to satisfy given constraints [7, 8]. Following the idea of linear
quadratic (LQ) control application, these approaches heavily rely on set-valued calculus as
well as on min-max theory [9, 10], which are not simple and lead to rather cumbersome
technical and numerical procedures. A more simple technique, using equality constraints
formulation for discrete-time multiinput/multioutput (MIMO) systems, is introduced in Refs.
[11, 12]. Based on the eigenstructure assignment principle, a slight modification of equality
constraint technique is presented in Ref. [13].

Many tasks that arise in state-feedback control formulation can be reduced to standard convex
problems that involve matrix inequalities. Generally, optimal solutions of such problems can
be computed by using the interior point method [14], which converges in polynomial time
with respect to the problem size. A review of the progress made in this field can be found in
Refs. [15-17] and the references therein. In the given sense, the stability conditions are
expressed in terms of linear matrix inequalities (LMI), which have a notable practical interest
due to the existence of numerical LMI solvers [18, 19].

The chapter devotes the design conditions to obtain a closed-loop system in which minimally
two state variables are rebind by the prescribed ratio. The generalized ratio control principle is
reformulated as the full-state feedback control with one equality constraint. Solving this
problem, the technique for an enhanced BRL representation [20, 21] is exploited, to circumvent
potentially ill-conditioned singular task concerning the discrete-time systems control design
with state equality constraints [22]. Due to application of the enhanced BRL, which decouple
the Lyapunov matrix and the system matrices, the design task stays well-conditioned. These
conditions impose such control that assures asymptotic stability for time-invariant discrete
control under defined equality constraints. The presented way, based on projecting the target
state variables into a subset of the system state space, adapts the idea of performing the LQ
control principle in the fault tolerant control and the constraint control of discrete-time sto-
chastic systems [23, 24].

The outline of this chapter is as follows. Continuing the introduction outlines in Section 1, the
problem formulation is principally presented in Section 2. Section 3 is dedicated to the math-
ematical backgrounds supporting the problem solution and the exploited discrete-time LMI
modifications are given in Section 4. These results are used in Section 5 to examine the
linearization problems in bilinear matrix inequalities, so that in Section 5, these results can be
given with convex formulation of control design condition, guaranteeing a feasible solution of
the generally singular design task. Subsequently, numerical examples to illustrate basic prop-
erties of the proposed method are presented in Section 6, and Section 7 is finally devoted to a
brief concluding remarks.

Throughout the chapter, the following notations are used: x' and X' denote the transpose of
the vector x and matrix X, respectively, for a square matrix X < 0 that X is a symmetric
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negative definite matrix, the symbol I,, represents the nth order unit matrix, ¥ ©' denotes the
Moore-Penrose pseudoinverse of a nonsquare Y, || - || represents the Euclidean norm for vectors
and the spectral norm for matrices, R denotes the set of real numbers and R" * " the set of all
n x r real matrices.

2. Problem formulation

Through this chapter, the task is concerned with design of the full-state feedback control to
discrete-time linear dynamic systems in such a way that the closed-loop system state variables
are constrained in the prescribed ratio. The systems are defined by the set of state equations

q(i +1) = Fq(i) + Gu(i), ()
y(i) = Cq(i), )

where g(i) € R" is the vector of the state variables, u(i) € R is the vector of the input variables,
y(i) € R"™ is the vector of the output variables, and nominal system matrices FE R" ", Ge R" ",
and C € R™ “ " are real matrices, and i € Z,.

The discrete transfer function matrix of dimension m x r, associated with the system Egs. (1)
and (2) is defined as

(z

4

gt

H(z)=C(zI -F)'G = (3)

=
—~

~—

where I, € R" " is the identity matrix, #j(z) and #i(z) stand for the Z transform of m dimen-
sional output vector and r dimensional input vector, respectively, and a complex number z is
the transform variable of the Z transform [25].

In practice, the ratio control maintains the relationship between two state variables [26, 27] and
is defined for alli € Z as

828 ap-enteno

Assuming the parameter vector e, the task can be expressed by using the system state vector
qi+1)as

erq(i+1) =0, (5)

where
el =[01 - 1y o —ay - 0], (6)
g i+1)=[q(i+1) -~ q(+1) -~ g{+1) - q,(G+1)] (7)

It is evident that the generalized ratio control can be defined by a composed structure of e, as
well as by a structured matrix E [28].
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The task formulated above means the design problem that can be generally defined as the
stable closed-loop system synthesis using the linear full-state feedback controller of the form

u(i) = —Kq(i), (8)

where K € R" ™ " is the controller feedback gain matrix, and the design constraint is considered
in the general matrix equality form

Eq(i+1) =0, (9)

with E € R? *", rank E = p <r. In general, the matrix E reflects prescribed fixed ratio of two or
more state variables. The equality Eq. (9) evidently implies AEq(i + 1) =0, where A € R” *?is an
arbitrary matrix.

It is considered in the following the discrete-time system is controllable and observable that is,
rank(zI — F,G) =n Vz€C and rank(zI — FT, CT) =n VzeC(, respectively [29], and that all
state variables are measurable.

3. Basic preliminaries

Proposition 1. (Matrix pseudoinverse) Let ® is a matrix variable and A, B, and Il are known
nonsquare matrices of appropriate dimensions such that

A®B =1I1. (10)
Then all solution to ® means that
® = A®'AB®! + @° — A®'AO°BB®!, (11)
where
A®' = AT(aA"), B = (B'B)'B, (12)

while A® ' is the left Moore-Penrose pseudoinverse of A, B® ' is the right Moore-Penrose pseudoinverse
of B and ®° is an arbitrary matrix of appropriate dimension.

Proof. (see, e.g., Ref. [15])

Proposition 2. Let E € R" ™ " is a real square matrix with nonrepeated eigenvalues, satisfying the
equality constraint

BT

[x

=0, (13)

then one from its eigenvalues is zero, and the (normalized) vector e’ is the left raw eigenvector of &
associated with the zero eigenvalue.
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Proof. If 2 € R" ™ " is a real square matrix satisfying the above given eigenvalues limitation,
then the eigenvalue decomposition of Z takes the following form

E=NIM', (14)
N=[n - mn], M=[m - m,], MIN=I X=diag[z; - z.], (15)
where 1, is the right eigenvector and m! is the left eigenvector associated with the eigenvalue z

of B, and {z;, I =1, 2,...n} is the set of the eigenvalues of E. Then Eq. (13) can be rewritten as
follows:

0=e'[ny - my - mn,)diaglz;y - z - z, M. (16)

If e’ = m/, then orthogonal property Eq. (15) implies
0=1[0; - 1, -- 0,]diag[z; - z - z,|M" (17)

and it is evident that Eq. (17) can be satisfied only if z, = 0. This concludes the proof. O

Proposition 3. (Quadratic performance) Given a stable system of the structure Eqs. (1) and (2), then it
yields

ST (D) — Y2 Du(d) >0, a8)
=0

where y.. € R is the H.. norm of the transfer function matrix of the system Eq. (3).
Proof. Since Eq. (3) implies

y(z) = H(2)u(2), (19)
then, evidently,

1y @ <[H(2)]]2||u ()], (20)

where || H(z) || is H» norm of the discrete transfer function matrix H(z).
Since the H.. norm property states
1

T IH(2)ll < IH(2) < VFIIH(2)]l.., 21)

using the notation || H(z) ||.. = ¥, then Eq. (21) can be naturally rewritten as

L, LlyG)l

vm oy a2l

s;nH@msﬁ. (22)

Thus, based on the Parseval’s theorem, Eq. (22) gives
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i >_y" (@)
R AT TR )
) Veor [ D_u" (@)u(i)
i=0

and using squares of the elements, the inequality Eq. (23) subsequently results in

>y Dy(i) =2 u(@u(i) > 0. (24)

i=0 i=0
Thus, Eq. (24) implies Eq. (18). This concludes the proof. O

If it is not in contradiction with other design constraints, Eq. (18) can be used as the extension
to a Lyapunov function candidate for linear discrete-time systems, since it is positive.

4. Quadratic performances

The above presented assumptions are imposed to obtain LMI structures exploiting H.. norm,
known as the bounded real lemma LMIs. To simplify proofs of theorems in following, proof
sketches of the BRL are presented, since more versions of BRL can be constructed.

Proposition 4. (Bounded real lemma) The autonomous system Eqs. (1) and (2) is stable with the
quadratic performance y.., if there exist a symmetric positive definite matrix P € R" ™ " and a positive
scalar y.. € R such that

P=Pr >0, y. >0, (25)
—P * * %
F'p -p * *
G’ o —yp1 « |0 (26)
0 C 0 —y Ly

where I, € R" ™" and I, € R™ ™ " are identity matrices, respectively.
Hereafter, * denotes the symmetric item in a symmetric matrix.

Proof. (compare, e.g., Refs. [16] and [23]) Defining the Lyapunov function candidate as follows:

1

-1
o(q(i)) = 4" ()Pq(i) +y=' ) (y" Dy() — y2u Qu(l)) >0, (27)
1=0

then Eq. (18) implies that with the H., norm y.. of the transform function matrix Eq. (3), the
inequality Eq. (27) is positive. The forward difference of Eq. (27) along a solution of the
autonomous system Eq. (1) can be written as
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Av(g(i)) = o(q(i +1)) - v(4(7) 08)
=q'(i+1Pq(i+1) — 4" ([()Pq(i) + y'y" Dy (i) — y.u' (uli) <0
and, using the description of the state system Egs. (1) and (2), the inequality Eq. (28) becomes

Av(q(i)) = q" (i) (y='C"C — P + F'PF)q(i) + u" (i)G' PFq(i)

+q" (i))F"PGu(i) + u” (i) (G' PG — y_I,)u(i) < 0. 29)
Thus, introducing the notation
q: () = [q"() ()], (30)
it is obtained
Av(q.(0)) = 4; ()Peq. (i) < O, (31)
where
P. = F P +gf:11,§TC -r GTIf;P_GyW Ir] <o. (32)

Since, using the Schur complement property with respect to the matrix element y_'C’C,
Eq. (32) can be rewritten as

P 0 c’ F'p
P.=|0 —yI 0 |+|GP|P'PF PG 0]<0, (33)
C 0 —VoIm 0

then, applying the dual Schur complement property, Eq. (33) implies Eq. (26). This concludes
the proof. m

Direct application of the second Lyapunov method [30, 31] and BRL in the structure given by
Egs. (25) and (26) for affine uncertain systems as well as in constrained control design is in
general ill-conditioned owing to singular design conditions [13]. To circumvent this problem,
an enhanced LMI representation of BRL is proposed, where design condition proof is based on
another form of LMIs.

Proposition 5. (Enhanced LMI representation of BRL) The autonomous system Egs. (1) and (2) is
stable with the quadratic performance y.., if there exist a symmetric positive definite matrix P € R" ™",
a regular square matrix Q € R" ™", and a positive scalar y.. € R such that

P=P" >0, vy, >0, (34)
P-Q-Q7 =« * *
FTQT —P * *
0 C 0 —VoIm

where I, € R"* " and I, € R™ ™ ™ are identity matrices.
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Proof. Since, Eq. (1) can be rewritten as
Fq(i) + Gu(i) —gq(i+1) =0, (36)
with an arbitrary square matrix Q € R" ™", it yields
q" (i +1)Q(Fq(i) + Gu(i) — q(i+ 1)) = 0. (37)

Now, not substituting Eq. (1) into Eq. (28), but adding Eq. (37) and its transposition to Eq. (28),
it can be obtained that
Av(q(i)) = q" (i + 1)Pq(i+ 1) — " ())Pq(i) + y'y" ()y(i) — yu' (Du(i)
+ (Fq(i) + Gu(i) — q(i+1))"Q"q(i + 1) (38)
+q" (i + 1)Q(Fq(i) + Gu(i) — g(i + 1)) < 0.

Thus, considering Eq. (2), then Eq. (38) can be rewritten as

q°" (i)P°q°(i) <0, (39)
where
g (i) = [q"() q"(i+1) u"(i)] (40)
and
~P+yZ!IC'C F'Q’ 0
pe = QF P-Q-Q" QG | <o (41)
0 G'Q" —y I,
Since Eq. (41) can be written as
—-P FTQ! 0 ol
P°=|QF P-Q-Q" QG +ym1[0}[c 0 0]<0, (42)
0 GTQT —)/ooIr 0

then, using the dual Schur complement property, Eq. (43) can be transformed in the form

—y I, C 0 0
ct -p FTQT 0
Q T <0. (43)
0 QF P-Q-Q" QG
0 0 G'Q" —y I,

To obtain a LMI structure visually comparable with Eq. (26), the following block permutation
matrix is defined
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0o o0 I, O
0o I, 0 O
T.°— n 44
! 0o 0 0 I, (44)
L, 0 0 O

Then, premultiplying the left side of Eq. (43) by T,° and postmultiplying the right side of
Eq. (43) by the transposition of T,° lead to the inequality in Eq. (35). This concludes the proof.o

It is evident that Lyapunov matrix P is separated from the matrix parameters of the system F,
G, and C, i.e,, there are no terms containing the product of P and any of them. By introducing
the slack variable matrix Q, the product forms are relaxed to new products QF and QG, where
Q needs not be symmetric and positive definite. This enables a robust BRL, which can be
obtained to deal with linear systems with parametric uncertainties, as well as with singular
system matrices.

Considering a symmetric positive definite matrix Q € R" * ", the following symmetric enhanced
LMI representation of BRL is evidently obtained.

Corollary 1. (Enhanced symmetric LMI representation of BRL) The autonomous system Egs. (1) and
(2) is stable with the quadratic performance .., if there exist symmetric positive definite matrices
P, Q € R" ™" and a positive scalar y.. € R such that

P=P'>0, Q=Q">0, y.>0, (45)
P-2Q =« * *
F' P« s
TQ <0, (46)
G Q 0o —.I *
0 C 0 —y.I,

where I, € R" ™7, I,, € R™ ™™ are identity matrices.

Note, Corollary 1 provides the identical condition of existence to Proposition 4, if the equality
P=Q is set.

5. Control law parameter design

The state-feedback control problem is finding, for an optimized (or prescribed) scalar y > 0, the
state-feedback gain K such that the control law guarantees an upper bound of y.. of the closed-
loop transfer function, while the closed-loop is stable. Note, all the above presented BRL
structures applied in the control law synthesis lead to bilinear matrix inequalities and have to
be linearized.

Theorem 1. System Eqs. (1) and (2) under control Eq. (3) is stable with quadratic performance y.., if
there exist a positive definite symmetric matrix R € R" ™", a matrix Y € R" ™", and a positive scalar
Ve € R such that

85
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R=R">0, y_ >0, (47)
—R % % *
RFT - Y'GT -R " s
0 CR 0 o

When these inequalities are satisfied, the control law gain matrix is given as

K=YR (49)

Proof. Since P is positive definite, the transform matrix T.. can be defined as follows:

T. =diaglR R I, I,], R=P7" (50)
Then, premultiplying the left side of Eq. (35) and postmultiplying the right side of Eq. (35) by
T.. gives

R FR G 0
RFT —-R 0 RCT

GT 0 -y 0 <0. (51)
0 CR 0 Vo dm
Inserting F < F. = (F — GK) into Eq. (51) gives
—R (F— GK)R G 0
R(F - GK)" -R 0 RCT
E—F5 . R B (52)
0 CR 0 Vo1
and with
Y = KR (53)
Eq. (63) implies Eq. (48). This concludes the proof. O

Theorem 2. System Eqs. (1) and (2) under control Eq. (3) is stable with quadratic performance y.., if
there exist positive definite symmetric matrices S, O € R" ™", a matrix Y € R" ™", and a positive scalar
Ve € R such that

§=8">0, 0=0">0, y_ >0, (54)
0 -2§ o * %
SFT —Y'G" -0 =« *
G’ 0 —y. I, ast <0 (53)
0 cs 0 -y,

When these inequalities are satisfied, the control law gain matrix is given as
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K=YS (56)

Proof. Considering that Q is positive definite, the transform matrix T, can be defined as
follows:
T, =diag[S S I, I,], S=Q" (57)

Therefore, premultiplying the left side of Eq. (46) and postmultiplying the right side of Eq. (46)
by the matrix T, gives

SPS—-2S FS G 0
SF"  -SpPS 0 sc’
. 58
G7 o —y1 o |=° (58)
0 csS 0 —y.I,
Substituting F < F. = (F — GK) into Eq. (58) gives
SPS—-2S (F-GK)S G 0
S(F-GK)"  -SPS 0o sc’
( T ) < 0. (59)
G 0 ~Volr 0
0 CS 0 —VoIm
and with
Y =KQ, O =SPS, (60)
Eq. (59) implies Eq. (55). This concludes the proof. O

6. Ratio control design

Using the control law Eq. (3), the closed-loop system equations take the form
q(i+1) = (F = GK)q(i), (61)
y(i) = Cq(i). (62)

Prescribed by a matrix E€ R” *", rank E=p <r, itis considered the design constraint Eq. (9) for
all nonzero natural numbers i. From Proposition 2, it is clear that such kind of design is a
singular task, where Eq. (9) gives

Eq(i+1) = E(F — GK)q(i) = 0, (63)

which evidently implies

E(F — GK) = 0. (64)

87
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Evidently, the equality

EF = EGK (65)
can be satisfied, as well as the closed-loop system matrix F. = F — GK has to stable (all its
eigenvalues are from the unit circle in the complex plane Z).

Lemma 1.The equivalent state-space description of the system Eqs. (1) and (2) under control Eq. (3),
in which closed-loop state variables satisfying the condition Eq. (9) is

q(i+1) = (F - GK)q(i), (66)
y(i) = Cq(i), (67)

where
K=J+LK’, J=(EG)®EF, L=1I,— (EG) (EG(EG)T) kG (68)

while L € R" " is the projection matrix (the orthogonal projector of EG onto the null space N'gg [23])
and K° € R" ™" is the ratio control gain matrix.

Proof. Premultiplying the left side of Eq. (65) by the identity matrix, it yields

EG(EG)" (EG(EG)T) “EF — EGK, (69)

which implies the particular solution

K = (EG)®'EF, (70)
where

(£G)®" = (EG)" (EG(EG)") (71)

is the left Moore-Penrose pseudoinverse of EG.

Using the equality Eq. (65), then Eq. (69) can be also written as
T 7\ !
EG(EG) (EG(EG) ) EGK = EGK, (72)
which implies

EG (L — (EG)” (EG(EG)T) _1EG> K =0, (73)

EG (L - (EG)elEG)K —0, (74)
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respectively, where I, € R” * 7 is the identity matrix. It is evident that Eq. (74) can be satisfied
only if

I, — (EG)®'EG = 0. (75)

Thus, Eq. (11) implies all solutions of K as follows

K = (EG)®'EF + (Ir - (EG)elEG)K°, (76)

where K° is an arbitrary matrix with appropriate dimension, and evidently Eq. (76) gives
Eq. (68). This concludes the proof. O

Considering the model involving the given ratio constraint on the closed-loop system state
variables Egs. (66)—(68), the design conditions are presented in the following theorems.

Theorem 3. System Eqgs. (1) and (2) under the control (3), and satisfying the constraint Eq. (4) is
stable with the quadratic performance y.., if there exist positive definite matrices S, O € R" ™", a matrix
Y° e R" ™", and a positive scalar y.. € R such that

§=8">0, 0=0">0, y.>0, (77)
O-2§ * * %
SF-GN" —YTL'G" -0 =« %
T < 0. (78)
G 0o —y.IL *
0 CS 0 —VwIm

When these inequalities are satisfied, the control law gain matrices are given as

K°=Y°S™!, K=J+LK°, (79)

where ], L are defined in Eq. (68).
Proof. Substituting Eq. (68) into Eq. (59) gives

O -2S (F — GL — GLK"°)S G 0
S(F — GJ — GLK®)" —0 0 scT

( J o ) < 0. (80)

G 0 —v. I 0

0 CS 0 —v. I
Using the notation

Y°=K°S (81)
Eq. (80) implies Eq. (78). This concludes the proof. 0

The ratio control does not exclude a forced regime given by the control law

89
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u(i) = —Kq(i) + Ww(i), (82)

where w(i) € R" is desired output signal vector and W € R™ * ™ is the signal gain matrix. Using
the static decoupling principle, the conditions to design the signal gain matrix W can be
proven.

Lemma 2. If the system Eqs. (1) and (2) is square, which is stabilizable by the control policy Eq. (82)
and Ref. [32]

F G
mnk{c 0]—n+m, (83)
then the matrix W takes the form
-1 -1
W= (C(I,, — (F - GK)) G) , (84)

where I, € R" ™" is the identity matrix.

Proof. In a steady state, the system equations Egs. (1) and (2), and the control law Eq. (82) imply
q, = (F = GK)q, + GWuw,, (85)

where g,, w, are the steady-state values of the vectors q(i), w(i), respectively. Since from
Eq. (85), it can be derived that

q, = (I, — (F— GK)) ' GWuw, (86)

and
y, = C(I, — (F— GK)) "' GWuw,, (87)
considering y, = w,, Eq. (87) implies Eq. (84). This concludes the proof. m

Theorem 4. If the closed-loop system state variables satisfy the state constraint Eq. (63), then the
common state variable vector q,(i) = Eq(i), g,(i) € R* attains the steady-state value

9., = EGWw,. (88)
Proof. Using the control policy Eq. (82), then
Eq(i+1) = E(F — GK)q(i) + EGWw(i). (89)
Since K satisfies Eq. (65), then Eq. (89) implies
Eq(i+ 1) = EGWw(i) (90)

and it is evident that the tied state variable g4(i) of the closed-loop system in a steady state is
proportional to the steady state of the desired signal w, and takes the value Eq. (88). This
concludes the proof. m
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7. Illustrative examples

To demonstrate properties of proposed approach, the classical example for a helicopter control
[33] is taken, where the discrete-time state-space representation Eqs. (1) and (2) for the sam-
pling period At = 0.05s consists of the following parameters

0.9982 0.0013  0.0004 —0.0229 0.0221  0.0086
F_ | 00023 09507 —00048 01962 . _ | 01733 —0.3705
~ 100049 00176 09670 00679 | | -02697 02173’
0.0001 0.0004 0.0492  1.0017 ~0.0068  0.0055
0100
c_[l 0 0 0} (91)

The state constraint, defining the ratio control of two state system variables, is specified as

~—

NG

)

~15 =E=[-15 0 0 1 (92)
(1) [ |
and subsequently it yields
o [-2417371 . [ 00332 —0.1793
(EG) _[ —4.4828]’ L= {—0.1793 0.9668}’ (©3)
[ [36.1914 00372 11753 —25.047 )
= | 67113 00069 —02179 —4.6443|°

Solving Egs. (77) and (78) using self-dual-minimization (SeDuMi) package for Matlab [19], the
feedback gain matrix design problem in the constrained control is feasible with the results

29027  0.2117  0.1103 —1.7595
02117 13174 -0.1751 —-0.1245

Pz 0.1103 —-0.1751  0.4162  0.0060 |’
—-1.7595 —-0.1245  0.0060  3.2464
24910 0.1375  0.0792 —1.4957
S— 0.1375  1.0779 —-0.0910 —0.0030 (95)
- 0.0792 —-0.0910 03735 —0.0348 |’
—1.4957 —0.0030 —-0.0348  3.0926
o | —22113 0.2435 -0.0819  1.4281 _
Yo = 11.9245 -1.3129 04416 -—-7.7011 |’ Ve = 8:5565. (%)

Inserting Y° and S into Eq. (79), the gain matrix K°is computed as
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Ko | —0-8887  0.3441 0.0562  0.0329 ©7)
| 47926 —-1.8555 —0.3028 —0.1775
and Eq. (79) implies the full-state feedback gain matrix values
K — 353027 03813 -1.1191 250117 (93)
- | 11.5040 —1.8486 —0.5208 —4.8217 |
It can be easily verified that the closed-loop system matrix takes the format
0.1179 0.0088  0.0296  0.5722
F.—F_ GK— —1.8528 0.1997 —-0.0038  2.3515 (99)

7.0258 0.5223  0.7783 —5.6297 |’
0.1768 0.0132  0.0444  0.8583

while the ratio control law rises up the stable closed-loop system with the closed-loop system
matrix eigenvalues spectrum

p(F.) = {09527, 0.7566, 0.0000, 0.2449 1. (100)

Note that one from the resulting eigenvalue of F. is zero (rank(E) = 1)), because Proposition 2
prescribes this constrained design task as a singular problem. Using the connection between
the eigenvector matrix N and M as given by Eq. (17), it is possible to show that this instance is
documented also by the structure of M, while

—-0.3109 —-0.1105 —-0.0800 —0.0184
—0.6937 —0.3384 —0.4690 —0.7382

0.4522 09197 0.8793  0.6738
—0.4664 —0.1657 —0.0218 —-0.0276

b

(101)
34197 —0.3938 —05157  0.2213
102685  1.3777 14844 —7.4555
~15.2705  0.0000  0.0000 10.1803 |’
82076 —1.6162 —0.1958 —3.2577

where the structure of the third row of M correspondents to the structure of the constraint
vector E, while ay = m}(1)/ml(4) = —1.5.

To illustrate the closed-loop system property in the forced mode, the signal gain matrix W is
computed by using Eq. (84) as follows

1.4575 35.9137
W= —-1.7651 11.6521 | (102)
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Therefore, according to Theorem 4, the constraint given on the states of the system under study
is satisfied with zero offset in the autonomous regime and with offset value equal g4, in the
forced mode, i.e.,

9, =0, 44, =EGWuw, =3.0001, (103)
while

w(i) = {_ﬂ for all i. (104)

The simulation results of the closed-loop system response in the autonomous and forced mode
are presented, where Figure 1 is concerned with the system state variables response in the
autonomous regime and Figure 2 with the system state variables response in the forced mode.
It is evident that the condition Eq. (9) is satisfied at all time instant, except initial time instant in
the above given way (see the time response of the additive of variable, which is included as
74(i) in the figures).

For comparison, an example is given for default design of state feedback gain matrix using
BRL structure of LMIs. Solving Egs. (54) and (55), the task is feasible with the Lyapunov matrix
variables

a, (1)
a,(1)
08} g4(i) [1
a,(0)
a4
06l v
04}
%
0.2} 1

c’_

0.5 1.0 1.5 20 25 3.0 35 4.0 45
t[s], Ts=005s

Figure 1. State response in autonomous regime.
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16

a, (i)
14} a,(0) |
a,(i)
a,() H
a,(i)

12

qfi)
(3]

0 05 1.0 1.5 2.0 2.5 30 3.5 4.0 4.5
t[s], Ts=0.05s

Figure 2. State response in forced mode.

0.1438 —-0.1090 -0.1619 —-0.2191
—-0.1090  1.5603 —0.2198  0.2945
—0.1619 —-0.2198  1.6006 —0.4711 |’
—-0.2191  0.2945 —-0.4711 1.8586

o =

0.1338 —0.0840 —0.1490 —0.1928
S — —0.0840 1.2736 —0.2314  0.2439 (105)
- | —0.1490 —-0.2314 1.6729 —0.5520 |’

—0.1928  0.2439 —-0.5520  1.8296

and parameter matrix variable

y — 0.6210 —0.8607 —2.6800 —0.7582
- 104017 —-2.6793 —0.3804 0.1788

], y. = 3.1301. (106)

Therefore, using Eq. (56), the nominal control law gain matrix K is computed as

(107)

K— 0.8951 —-0.8107 —1.8928 —0.7830
- | 24671 —-2.0742 —0.0947  0.6056 |’

the closed-loop system matrix takes the form
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0.9571 0.0371 0.0431 —-0.0108

0.7613 0.3227 0.2881  0.1639
Fe=F-GK= —0.2898 0.2498 0.4771 —0.2749 |’ (108)

—0.0073 0.0063 0.0368  0.9931

while the closed-loop system matrix eigenvalues spectrum is

p(F.) = {0.1207, 0.6570, 0.9733, 0.9990}. (109)

To apply in the forced mode, the signal gain matrix W is now computed by using Eq. (84) as
follows:

| —0.8296 0.9567

W= —2.2360 2.4922 |°

(110)

The simulation results of the nominal closed-loop system response are illustrated in Figures 3
and 4, where Figure 3 is concerned with the system state variables response in the autonomous
regime and Figure 4 with the system state variables response in the forced mode.

Since these two control structures are of interest in the context of full-state control design,
matching the presented results, it is evident that the system dynamics in both cases are
comparable.

0.6 T T T T T T T T

a,(i)
a,(0) |
| : | | a,()
04t : el e . - : q4(i) 5

0.5H

T
lﬁ
’
|
[

_{]_4 i i i i i i i i
0 05 1.0 15 20 25 30 35 4.0 45
t[s], Ts=005s

Figure 3. State response in autonomous regime.
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| b 94 |
a,(i)

a,(i) ||
~q,()

25

1.5H 4 .

a(i)

_1 L i i 1
0 05 1.0 15 20 25 3.0 35 4.0 45
tls], Ts=005s

Figure 4. State response in forced mode.

8. Concluding Remarks

In this chapter, an extended method is presented, based on the classical memoryless feedback
H.. control principle of discrete-time systems, if the ratio control is reformulated by an equality
constraint setting on associated state variables. The asymptotic stability of the control scheme
is guaranteed in the sense of the enhanced representation of BRL, while resulting LMIs
are linear with respect to the system state variables, and does not involve products of the
Lyapunov matrix and the system matrix parameters, which provides one way of solving
the singular LMI problem. Moreover, formulated as a stabilization problem with the full-state
feedback controller, the control gain matrix takes no special structure. The formulation allows
to find a solution without restrictive assumptions and additional specifications on the design
parameters. It is clear from Theorem 4 that the control law strictly solves the problem even in
the unforced mode. The validity of the proposed method is demonstrated by numerical
examples.
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