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Abstract

This chapter exposes the important connection between ratio control and the state
control reflecting equality constraint for linear discrete-time systems, which allows
significant reduction in computational complexity and efforts. Based on an enhanced
bounded real lemma form, to outperform known approaches, the existence of the state
feedback for such defined singular task is proven, and the design procedure based on
the linear matrix inequalities is provided. The proposed principle, guaranteeing feasibil-
ity of the set of inequalities, improves steady-state accuracy of the ratio control and
essentially reduces the design effort. The approach is illustrated on simulation examples,
where the validity of the proposed method is demonstrated.

Keywords: discrete-time systems, ratio control, state feedback, equality constraint, sin-
gular systems, linear matrix inequalities

1. Introduction

The problem of the ratio feedback control is one of the specific topics in the theory of control

synthesis. It is well practically motivated by applied realizations but not favorable developed

in a state control technique or in combination with the state estimation theory. However, a

considerable number of problems in the ratio control design have to deal with systems

subjected to constraint conditions, which are other than linear, or directly formulated as

singular constrained tasks. In the typical case [1, 2] where the system state reflects certain

physical entities, constraints usually prescribe the system state, the region of technological

conditions. If the ratio control is not formulated as a task with the equality constraints, the

application requires further procedures of controlling the evolution of the set-valued ratio.

Notably, a special form of the problems can be defined while the system state variables satisfy

constraints and interpreted as descriptor systems [3–6]; but, the system with state equality
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constraints generally does not satisfy the conditions under which the results of descriptor

systems can be used. Moreover, if the design task is interpreted as a singular problem, con-

straint associated methods have to be developed to design the controller.

In principle, it is possible to design the controller that stabilizes a system and simultaneously

forces its closed-loop properties to satisfy given constraints [7, 8]. Following the idea of linear

quadratic (LQ) control application, these approaches heavily rely on set-valued calculus as

well as on min-max theory [9, 10], which are not simple and lead to rather cumbersome

technical and numerical procedures. A more simple technique, using equality constraints

formulation for discrete-time multiinput/multioutput (MIMO) systems, is introduced in Refs.

[11, 12]. Based on the eigenstructure assignment principle, a slight modification of equality

constraint technique is presented in Ref. [13].

Many tasks that arise in state-feedback control formulation can be reduced to standard convex

problems that involve matrix inequalities. Generally, optimal solutions of such problems can

be computed by using the interior point method [14], which converges in polynomial time

with respect to the problem size. A review of the progress made in this field can be found in

Refs. [15–17] and the references therein. In the given sense, the stability conditions are

expressed in terms of linear matrix inequalities (LMI), which have a notable practical interest

due to the existence of numerical LMI solvers [18, 19].

The chapter devotes the design conditions to obtain a closed-loop system in which minimally

two state variables are rebind by the prescribed ratio. The generalized ratio control principle is

reformulated as the full-state feedback control with one equality constraint. Solving this

problem, the technique for an enhanced BRL representation [20, 21] is exploited, to circumvent

potentially ill-conditioned singular task concerning the discrete-time systems control design

with state equality constraints [22]. Due to application of the enhanced BRL, which decouple

the Lyapunov matrix and the system matrices, the design task stays well-conditioned. These

conditions impose such control that assures asymptotic stability for time-invariant discrete

control under defined equality constraints. The presented way, based on projecting the target

state variables into a subset of the system state space, adapts the idea of performing the LQ

control principle in the fault tolerant control and the constraint control of discrete-time sto-

chastic systems [23, 24].

The outline of this chapter is as follows. Continuing the introduction outlines in Section 1, the

problem formulation is principally presented in Section 2. Section 3 is dedicated to the math-

ematical backgrounds supporting the problem solution and the exploited discrete-time LMI

modifications are given in Section 4. These results are used in Section 5 to examine the

linearization problems in bilinear matrix inequalities, so that in Section 5, these results can be

given with convex formulation of control design condition, guaranteeing a feasible solution of

the generally singular design task. Subsequently, numerical examples to illustrate basic prop-

erties of the proposed method are presented in Section 6, and Section 7 is finally devoted to a

brief concluding remarks.

Throughout the chapter, the following notations are used: xT and X
T denote the transpose of

the vector x and matrix X, respectively, for a square matrix X < 0 that X is a symmetric
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negative definite matrix, the symbol In represents the nth order unit matrix, Y ⊝1 denotes the

Moore-Penrose pseudoinverse of a nonsquare Y, ∥ � ∥ represents the Euclidean norm for vectors

and the spectral norm for matrices, IR denotes the set of real numbers and IRn × r the set of all

n × r real matrices.

2. Problem formulation

Through this chapter, the task is concerned with design of the full-state feedback control to

discrete-time linear dynamic systems in such a way that the closed-loop system state variables

are constrained in the prescribed ratio. The systems are defined by the set of state equations

q iþ 1ð Þ ¼ Fq ið Þ þGu ið Þ; (1)

y ið Þ ¼ Cq ið Þ; (2)

where q(i) ∈ IRn is the vector of the state variables, u(i) ∈ IRr is the vector of the input variables,

y(i)∈ IRm is the vector of the output variables, and nominal systemmatrices F∈ IRn × n,G ∈ IRn × r,

and C ∈ IRm × n are real matrices, and i ∈ Z+.

The discrete transfer function matrix of dimension m × r, associated with the system Eqs. (1)

and (2) is defined as

H zð Þ ¼ C zI � Fð Þ�1G ¼
~y zð Þ

~u zð Þ
(3)

where In ∈ IRn × n is the identity matrix, ỹ(z) and ũ(z) stand for the Z transform of m dimen-

sional output vector and r dimensional input vector, respectively, and a complex number z is

the transform variable of the Z transform [25].

In practice, the ratio control maintains the relationship between two state variables [26, 27] and

is defined for all i ∈ Z as

qh iþ 1ð Þ

qk iþ 1ð Þ
¼ ah ) qh iþ 1ð Þ � ahqk iþ 1ð Þ ¼ 0 : (4)

Assuming the parameter vector eh, the task can be expressed by using the system state vector

q(i + 1) as

eTh q iþ 1ð Þ ¼ 0; (5)

where

eTh ¼ 01 ⋯ 1h ⋯ �ah ⋯ 0n½ �; (6)

qT iþ 1ð Þ ¼ q1 iþ 1ð Þ ⋯ qh iþ 1ð Þ ⋯ qk iþ 1ð Þ ⋯ qn iþ 1ð Þ
� �

: (7)

It is evident that the generalized ratio control can be defined by a composed structure of e, as

well as by a structured matrix E [28].
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The task formulated above means the design problem that can be generally defined as the

stable closed-loop system synthesis using the linear full-state feedback controller of the form

u ið Þ ¼ �Kq ið Þ; (8)

where K ∈ IRr × n is the controller feedback gain matrix, and the design constraint is considered

in the general matrix equality form

Eq iþ 1ð Þ ¼ 0; (9)

with E ∈ IRp × n, rank E = p ≤ r. In general, the matrix E reflects prescribed fixed ratio of two or

more state variables. The equality Eq. (9) evidently impliesΛEq(i + 1) = 0, whereΛ ∈ IRp × p is an

arbitrary matrix.

It is considered in the following the discrete-time system is controllable and observable that is,

rank zI � F,Gð Þ ¼ n ∀z∈ C and rank zI � FT ,CT
� �

¼ n ∀z∈ C, respectively [29], and that all

state variables are measurable.

3. Basic preliminaries

Proposition 1. (Matrix pseudoinverse) Let Θ is a matrix variable and A, B, and Π are known

nonsquare matrices of appropriate dimensions such that

AΘB ¼ Π: (10)

Then all solution to Θ means that

Θ ¼ A⊝1
ΛB⊝1 þΘ° � A⊝1AΘ°BB⊝1

; (11)

where

A⊝1 ¼ AT AAT
� ��1

, B⊝1 ¼ BTB
� ��1

BT
; (12)

while A⊝ 1 is the left Moore-Penrose pseudoinverse of A, B⊝ 1 is the right Moore-Penrose pseudoinverse

of B and Θ° is an arbitrary matrix of appropriate dimension.

Proof. (see, e.g., Ref. [15])

Proposition 2. Let Ξ ∈ IRn × n is a real square matrix with nonrepeated eigenvalues, satisfying the

equality constraint

eTΞ ¼ 0; (13)

then one from its eigenvalues is zero, and the (normalized) vector eT is the left raw eigenvector of Ξ

associated with the zero eigenvalue.
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Proof. If Ξ ∈ IRn × n is a real square matrix satisfying the above given eigenvalues limitation,

then the eigenvalue decomposition of Ξ takes the following form

Ξ ¼ NΣMT
; (14)

N ¼ n1 ⋯ nn½ �, M ¼ m1 ⋯ mn½ �, MTN ¼ I, Σ ¼ diag z1 ⋯ zn½ �; (15)

where nl is the right eigenvector andmT
l is the left eigenvector associated with the eigenvalue zl

of Ξ, and {zl, l = 1, 2,…n} is the set of the eigenvalues of Ξ. Then Eq. (13) can be rewritten as

follows:

0 ¼ eT n1 ⋯ nh ⋯ nn½ �diag z1 ⋯ zh ⋯ zn½ �MT
: (16)

If eT ¼ mT
h , then orthogonal property Eq. (15) implies

0 ¼ 01 ⋯ 1h ⋯ 0n½ �diag z1 ⋯ zh ⋯ zn½ �MT (17)

and it is evident that Eq. (17) can be satisfied only if zh = 0. This concludes the proof. □

Proposition 3. (Quadratic performance) Given a stable system of the structure Eqs. (1) and (2), then it

yields

X

∞

l¼0

yT lð Þy lð Þ � γ
2
∞
uT lð Þu lð Þ

� �

> 0; (18)

where γ∞ ∈ IR is the H∞ norm of the transfer function matrix of the system Eq. (3).

Proof. Since Eq. (3) implies

~y zð Þ ¼ H zð Þ~u zð Þ; (19)

then, evidently,

jj~y zð Þjj ≤ jjH zð Þjj2jj~u zð Þjj; (20)

where ∥ H(z) ∥ is H2 norm of the discrete transfer function matrix H(z).

Since the H∞ norm property states

1
ffiffiffiffi

m
p ∥H zð Þ∥

∞
≤ ∥H zð Þ∥2 ≤

ffiffi

r
p

∥H zð Þ∥
∞
; (21)

using the notation ∥ H(z) ∥∞ = γ∞, then Eq. (21) can be naturally rewritten as

1
ffiffiffiffi

m
p ≤ 1 <

1

γ
∞

∥~y zð Þ∥
∥~u zð Þ∥ ≤

1

γ
∞

∥H zð Þ∥2 ≤
ffiffi

r
p

: (22)

Thus, based on the Parseval’s theorem, Eq. (22) gives
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1 <
∥~y zð Þ∥

γ
∞
∥~u zð Þ∥

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

∞

i¼0

yT ið Þy ið Þ

s

γ
∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

∞

i¼0

uT ið Þu ið Þ

s (23)

and using squares of the elements, the inequality Eq. (23) subsequently results in

X

∞

i¼0

yT ið Þy ið Þ � γ
2
∞

X

∞

i¼0

uT ið Þu ið Þ > 0: (24)

Thus, Eq. (24) implies Eq. (18). This concludes the proof. □

If it is not in contradiction with other design constraints, Eq. (18) can be used as the extension

to a Lyapunov function candidate for linear discrete-time systems, since it is positive.

4. Quadratic performances

The above presented assumptions are imposed to obtain LMI structures exploiting H
∞
norm,

known as the bounded real lemma LMIs. To simplify proofs of theorems in following, proof

sketches of the BRL are presented, since more versions of BRL can be constructed.

Proposition 4. (Bounded real lemma) The autonomous system Eqs. (1) and (2) is stable with the

quadratic performance γ
∞
, if there exist a symmetric positive definite matrix P ∈ IRn × n and a positive

scalar γ
∞
∈ IR such that

P ¼ PT
> 0, γ

∞
> 0; (25)

�P ∗ ∗ ∗

FTP �P ∗ ∗

GTP 0 �γ
∞
Ir ∗

0 C 0 �γ
∞
Im

2

6

6

4

3

7

7

5

< 0; (26)

where Ir ∈ IRr × r and Im ∈ IRm × m are identity matrices, respectively.

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof. (compare, e.g., Refs. [16] and [23]) Defining the Lyapunov function candidate as follows:

v q ið Þð Þ ¼ qT ið ÞPq ið Þ þ γ
�1
∞

X

i�1

l¼0

yT lð Þy lð Þ � γ
2
∞
uT lð Þu lð Þ

� �

> 0; (27)

then Eq. (18) implies that with the H
∞
norm γ

∞
of the transform function matrix Eq. (3), the

inequality Eq. (27) is positive. The forward difference of Eq. (27) along a solution of the

autonomous system Eq. (1) can be written as
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Δv q ið Þð Þ ¼ v q iþ 1ð Þð Þ � v q ið Þð Þ
¼ qT iþ 1ð ÞPq iþ 1ð Þ � qT ið ÞPq ið Þ þ γ�1

∞
yT ið Þy ið Þ � γ

∞
uT ið Þu ið Þ < 0

(28)

and, using the description of the state system Eqs. (1) and (2), the inequality Eq. (28) becomes

Δv q ið Þð Þ ¼ qT ið Þ γ�1
∞
CTC � Pþ FTPF

� �

q ið Þ þ uT ið ÞGTPFq ið Þ

þqT ið ÞFTPGu ið Þ þ uT ið Þ GTPG� γ
∞
Ir

� �

u ið Þ < 0:
(29)

Thus, introducing the notation

qTc ið Þ ¼ qT ið Þ uT ið Þ
� �

; (30)

it is obtained

Δv qc ið Þ
� �

¼ qTc ið ÞPcqc ið Þ < 0; (31)

where

Pc ¼
FTPF þ γ�1

∞
CTC � P FTPG

GTPF GTPG� γ
∞
Ir

� �

< 0: (32)

Since, using the Schur complement property with respect to the matrix element γ�1
∞
CTC,

Eq. (32) can be rewritten as

Pc ¼
�P 0 CT

0 �γ
∞
Ir 0

C 0 �γ
∞
Im

2

4

3

5þ
FTP
GTP
0

2

4

3

5P�1 PF PG 0½ � < 0; (33)

then, applying the dual Schur complement property, Eq. (33) implies Eq. (26). This concludes

the proof. □

Direct application of the second Lyapunov method [30, 31] and BRL in the structure given by

Eqs. (25) and (26) for affine uncertain systems as well as in constrained control design is in

general ill-conditioned owing to singular design conditions [13]. To circumvent this problem,

an enhanced LMI representation of BRL is proposed, where design condition proof is based on

another form of LMIs.

Proposition 5. (Enhanced LMI representation of BRL) The autonomous system Eqs. (1) and (2) is

stable with the quadratic performance γ
∞
, if there exist a symmetric positive definite matrix P ∈ IRn × n,

a regular square matrix Q ∈ IRn × n, and a positive scalar γ
∞
∈ IR such that

P ¼ PT
> 0 , γ

∞
> 0 ; (34)

Y ¼

P�Q�QT
∗ ∗ ∗

FTQT �P ∗ ∗

GTQT 0 �γ
∞
Ir ∗

0 C 0 �γ
∞
Im

2

6

6

4

3

7

7

5

< 0; (35)

where Ir ∈ IRr × r and Im ∈ IRm × m are identity matrices.
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Proof. Since, Eq. (1) can be rewritten as

Fq ið Þ þGu ið Þ � q iþ 1ð Þ ¼ 0; (36)

with an arbitrary square matrix Q ∈ IRn × n, it yields

qT iþ 1ð ÞQ Fq ið Þ þGu ið Þ � q iþ 1ð Þð Þ ¼ 0: (37)

Now, not substituting Eq. (1) into Eq. (28), but adding Eq. (37) and its transposition to Eq. (28),

it can be obtained that

Δv q ið Þð Þ ¼ qT iþ 1ð ÞPq iþ 1ð Þ � qT ið ÞPq ið Þ þ γ�1
∞
yT ið Þy ið Þ � γ

∞
uT ið Þu ið Þ

þ Fq ið Þ þGu ið Þ � q iþ 1ð Þð ÞTQTq iþ 1ð Þ

þ qT iþ 1ð ÞQ Fq ið Þ þGu ið Þ � q iþ 1ð Þð Þ < 0:

(38)

Thus, considering Eq. (2), then Eq. (38) can be rewritten as

q°T ið ÞP°q° ið Þ < 0; (39)

where

q°T ið Þ ¼ qT ið Þ qT iþ 1ð Þ uT ið Þ
� �

(40)

and

P° ¼

�Pþ γ�1
∞
CTC FTQT

0

QF P�Q�QT QG

0 GTQT �γ
∞
Ir

2

6

6

4

3

7

7

5

< 0: (41)

Since Eq. (41) can be written as

P° ¼

�P FTQT
0

QF P�Q�QT QG

0 GTQT �γ
∞
Ir

2

6

4

3

7

5
þ γ�1

∞

CT

0

0

2

4

3

5 C 0 0½ � < 0; (42)

then, using the dual Schur complement property, Eq. (43) can be transformed in the form

�γ
∞
Im C 0 0

CT �P FTQT
0

0 QF P�Q�QT QG

0 0 GTQT �γ
∞
Ir

2

6

6

6

6

4

3

7

7

7

7

5

< 0: (43)

To obtain a LMI structure visually comparable with Eq. (26), the following block permutation

matrix is defined
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Ta° ¼

0 0 In 0

0 In 0 0

0 0 0 Ir
Im 0 0 0

2

6

6

4

3

7

7

5

: (44)

Then, premultiplying the left side of Eq. (43) by Ta° and postmultiplying the right side of

Eq. (43) by the transposition of Ta° lead to the inequality in Eq. (35). This concludes the proof.□

It is evident that Lyapunov matrix P is separated from the matrix parameters of the system F,

G, and C, i.e., there are no terms containing the product of P and any of them. By introducing

the slack variable matrixQ, the product forms are relaxed to new productsQF andQG, where

Q needs not be symmetric and positive definite. This enables a robust BRL, which can be

obtained to deal with linear systems with parametric uncertainties, as well as with singular

system matrices.

Considering a symmetric positive definite matrixQ∈ IRn × n, the following symmetric enhanced

LMI representation of BRL is evidently obtained.

Corollary 1. (Enhanced symmetric LMI representation of BRL) The autonomous system Eqs. (1) and

(2) is stable with the quadratic performance γ
∞
, if there exist symmetric positive definite matrices

P, Q ∈ IRn × n and a positive scalar γ
∞
∈ IR such that

P ¼ PT
> 0, Q ¼ QT

> 0, γ
∞
> 0; (45)

P� 2Q ∗ ∗ ∗

FTQ �P ∗ ∗

GTQ 0 �γ
∞
Ir ∗

0 C 0 �γ
∞
Im

2

6

6

6

6

4

3

7

7

7

7

5

< 0; (46)

where Ir ∈ IRr × r, Im ∈ IRm × m are identity matrices.

Note, Corollary 1 provides the identical condition of existence to Proposition 4, if the equality

P = Q is set.

5. Control law parameter design

The state-feedback control problem is finding, for an optimized (or prescribed) scalar γ> 0, the

state-feedback gain K such that the control law guarantees an upper bound of γ
∞
of the closed-

loop transfer function, while the closed-loop is stable. Note, all the above presented BRL

structures applied in the control law synthesis lead to bilinear matrix inequalities and have to

be linearized.

Theorem 1. System Eqs. (1) and (2) under control Eq. (3) is stable with quadratic performance γ
∞
, if

there exist a positive definite symmetric matrix R ∈ IRn × n, a matrix Y ∈ IRr × n, and a positive scalar

γ
∞
∈ IR such that
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R ¼ R
T
> 0, γ

∞
> 0; (47)

�R ∗ ∗ ∗

RF
T � Y

T
G

T �R ∗ ∗

G
T

0 �γ
∞
Ir ∗

0 CR 0 �γ
∞
Im

2

6

6

4

3

7

7

5

< 0: (48)

When these inequalities are satisfied, the control law gain matrix is given as

K ¼ YR
�1
: (49)

Proof. Since P is positive definite, the transform matrix T
∞
can be defined as follows:

T
∞
¼ diag R R Ir Im½ �, R ¼ P

�1
: (50)

Then, premultiplying the left side of Eq. (35) and postmultiplying the right side of Eq. (35) by

T
∞
gives

�R FR G 0

RF
T �R 0 RC

T

G
T

0 �γ
∞
Ir 0

0 CR 0 �γ
∞
Im

2

6

6

4

3

7

7

5

< 0: (51)

Inserting F← Fc = (F � GK) into Eq. (51) gives

�R F �GKð ÞR G 0

R F �GKð ÞT �R 0 RC
T

G
T

0 �γ
∞
Ir 0

0 CR 0 �γ
∞
Im

2

6

6

4

3

7

7

5

< 0 (52)

and with

Y ¼ KR (53)

Eq. (53) implies Eq. (48). This concludes the proof. □

Theorem 2. System Eqs. (1) and (2) under control Eq. (3) is stable with quadratic performance γ
∞
, if

there exist positive definite symmetric matrices S,O ∈ IRn × n, a matrix Y ∈ IRr × n, and a positive scalar

γ
∞
∈ IR such that

S ¼ S
T
> 0, O ¼ O

T
> 0, γ

∞
> 0; (54)

O� 2S ∗ ∗ ∗

SF
T � Y

T
G

T �O ∗ ∗

G
T

0 �γ
∞
Ir ast

0 CS 0 �γ
∞
Im

2

6

6

4

3

7

7

5

< 0: (55)

When these inequalities are satisfied, the control law gain matrix is given as
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K ¼ YS�1
: (56)

Proof. Considering that Q is positive definite, the transform matrix T ∘

∞
can be defined as

follows:

T ∘

∞
¼ diag S S Ir Im½ �, S ¼ Q�1

: (57)

Therefore, premultiplying the left side of Eq. (46) and postmultiplying the right side of Eq. (46)

by the matrix T∘

∞
gives

SPS� 2S FS G 0

SFT �SPS 0 SCT

GT 0 �γ
∞
Ir 0

0 CS 0 �γ
∞
Im

2

6

6

6

4

3

7

7

7

5

< 0: (58)

Substituting F← Fc = (F � GK) into Eq. (58) gives

SPS� 2S F �GKð ÞS G 0

S F �GKð ÞT �SPS 0 SCT

GT 0 �γ
∞
Ir 0

0 CS 0 �γ
∞
Im

2

6

6

6

4

3

7

7

7

5

< 0: (59)

and with

Y ¼ KQ, O ¼ SPS; (60)

Eq. (59) implies Eq. (55). This concludes the proof. □

6. Ratio control design

Using the control law Eq. (3), the closed-loop system equations take the form

q iþ 1ð Þ ¼ F �GKð Þq ið Þ; (61)

y ið Þ ¼ Cq ið Þ: (62)

Prescribed by a matrix E ∈ IRp × n, rank E = p ≤ r, it is considered the design constraint Eq. (9) for

all nonzero natural numbers i. From Proposition 2, it is clear that such kind of design is a

singular task, where Eq. (9) gives

Eq iþ 1ð Þ ¼ E F �GKð Þq ið Þ ¼ 0; (63)

which evidently implies

E F �GKð Þ ¼ 0: (64)
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Evidently, the equality

EF ¼ EGK (65)

can be satisfied, as well as the closed-loop system matrix Fc = F � GK has to stable (all its

eigenvalues are from the unit circle in the complex plane Z).

Lemma 1.The equivalent state-space description of the system Eqs. (1) and (2) under control Eq. (3),

in which closed-loop state variables satisfying the condition Eq. (9) is

q iþ 1ð Þ ¼ F �GKð Þq ið Þ; (66)

y ið Þ ¼ Cq ið Þ; (67)

where

K ¼ J þ LK∘, J ¼ EGð Þ⊝1EF, L ¼ Ir � EGð ÞT EG EGð ÞT
	 
�1

EG (68)

while L ∈ IRr × r is the projection matrix (the orthogonal projector of EG onto the null space N EG [23])

and K° ∈ IRr × n is the ratio control gain matrix.

Proof. Premultiplying the left side of Eq. (65) by the identity matrix, it yields

EG EGð ÞT EG EGð ÞT
	 
�1

EF ¼ EGK; (69)

which implies the particular solution

K ¼ EGð Þ⊝1EF; (70)

where

EGð Þ⊝1 ¼ EGð ÞT EG EGð ÞT
	 
�1

(71)

is the left Moore-Penrose pseudoinverse of EG.

Using the equality Eq. (65), then Eq. (69) can be also written as

EG EGð ÞT EG EGð ÞT
	 
�1

EGK ¼ EGK; (72)

which implies

EG Ir � EGð ÞT EG EGð ÞT
	 
�1

EG

� �

K ¼ 0; (73)

EG Ir � EGð Þ⊝1EG
	 


K ¼ 0; (74)
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respectively, where Ir ∈ IRp × p is the identity matrix. It is evident that Eq. (74) can be satisfied

only if

Ir � EGð Þ⊝1
EG ¼ 0: (75)

Thus, Eq. (11) implies all solutions of K as follows

K ¼ EGð Þ⊝1
EF þ Ir � EGð Þ⊝1

EG
	 


K°; (76)

where K° is an arbitrary matrix with appropriate dimension, and evidently Eq. (76) gives

Eq. (68). This concludes the proof. □

Considering the model involving the given ratio constraint on the closed-loop system state

variables Eqs. (66)–(68), the design conditions are presented in the following theorems.

Theorem 3. System Eqs. (1) and (2) under the control (3), and satisfying the constraint Eq. (4) is

stable with the quadratic performance γ
∞
, if there exist positive definite matrices S,O ∈ IRn × n, a matrix

Y° ∈ IRr × n, and a positive scalar γ
∞
∈ IR such that

S ¼ ST > 0, O ¼ OT
> 0, γ

∞
> 0; (77)

O� 2S ∗ ∗ ∗

S F �GJð ÞT � Y°TLTGT �O ∗ ∗

GT 0 �γ
∞
Ir ∗

0 CS 0 �γ
∞
Im

2

6

6

6

6

4

3

7

7

7

7

5

< 0: (78)

When these inequalities are satisfied, the control law gain matrices are given as

K° ¼ Y°S�1, K ¼ J þ LK°; (79)

where J, L are defined in Eq. (68).

Proof. Substituting Eq. (68) into Eq. (59) gives

O� 2S F �GL�GLK°ð ÞS G 0

S F �GJ �GLK°ð ÞT �O 0 SCT

GT 0 �γ
∞
Ir 0

0 CS 0 �γ
∞
Im

2

6

6

6

4

3

7

7

7

5

< 0: (80)

Using the notation

Y° ¼ K°S (81)

Eq. (80) implies Eq. (78). This concludes the proof. □

The ratio control does not exclude a forced regime given by the control law
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u ið Þ ¼ �Kq ið Þ þWw ið Þ; (82)

wherew(i) ∈ IRm is desired output signal vector andW ∈ IRm × m is the signal gain matrix. Using

the static decoupling principle, the conditions to design the signal gain matrix W can be

proven.

Lemma 2. If the system Eqs. (1) and (2) is square, which is stabilizable by the control policy Eq. (82)

and Ref. [32]

rank
F G
C 0

� �

¼ nþm; (83)

then the matrix W takes the form

W ¼ C In � F �GKð Þð Þ�1G
	 
�1

; (84)

where In ∈ IRn × n is the identity matrix.

Proof. In a steady state, the system equations Eqs. (1) and (2), and the control law Eq. (82) imply

qo ¼ F �GKð Þqo þGWwo; (85)

where qo, wo are the steady-state values of the vectors q(i), w(i), respectively. Since from

Eq. (85), it can be derived that

qo ¼ In � F �GKð Þð Þ�1GWwo (86)

and

yo ¼ C In � F �GKð Þð Þ�1GWwo; (87)

considering yo = wo, Eq. (87) implies Eq. (84). This concludes the proof. □

Theorem 4. If the closed-loop system state variables satisfy the state constraint Eq. (63), then the

common state variable vector qd(i) = Eq(i), qd(i) ∈ IRk attains the steady-state value

qdw ¼ EGWwo: (88)

Proof. Using the control policy Eq. (82), then

Eq iþ 1ð Þ ¼ E F �GKð Þq ið Þ þ EGWw ið Þ: (89)

Since K satisfies Eq. (65), then Eq. (89) implies

Eq iþ 1ð Þ ¼ EGWw ið Þ (90)

and it is evident that the tied state variable qd(i) of the closed-loop system in a steady state is

proportional to the steady state of the desired signal wo and takes the value Eq. (88). This

concludes the proof. □
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7. Illustrative examples

To demonstrate properties of proposed approach, the classical example for a helicopter control

[33] is taken, where the discrete-time state-space representation Eqs. (1) and (2) for the sam-

pling period Δt = 0.05s consists of the following parameters

F ¼

0:9982 0:0013 0:0004 �0:0229
0:0023 0:9507 �0:0048 �0:1962
0:0049 0:0176 0:9670 0:0679
0:0001 0:0004 0:0492 1:0017

2

6

6

4

3

7

7

5

, G ¼

0:0221 0:0086
0:1733 �0:3705

�0:2697 0:2173
�0:0068 0:0055

2

6

6

4

3

7

7

5

,

C ¼
0 1 0 0
1 0 0 0

� �

: (91)

The state constraint, defining the ratio control of two state system variables, is specified as

q4 tð Þ

q1 tð Þ
¼ 1:5 ) E ¼ �1:5 0 0 1½ � (92)

and subsequently it yields

EGð Þ⊝1 ¼
�24:1737
�4:4828

� �

, L ¼
0:0332 �0:1793

�0:1793 0:9668

� �

; (93)

J ¼
36:1914 0:0372 �1:1753 �25:0447
6:7113 0:0069 �0:2179 �4:6443

� �

: (94)

Solving Eqs. (77) and (78) using self-dual-minimization (SeDuMi) package for Matlab [19], the

feedback gain matrix design problem in the constrained control is feasible with the results

O ¼

2:9027 0:2117 0:1103 �1:7595
0:2117 1:3174 �0:1751 �0:1245
0:1103 �0:1751 0:4162 0:0060

�1:7595 �0:1245 0:0060 3:2464

2

6

6

4

3

7

7

5

,

S ¼

2:4910 0:1375 0:0792 �1:4957
0:1375 1:0779 �0:0910 �0:0030
0:0792 �0:0910 0:3735 �0:0348

�1:4957 �0:0030 �0:0348 3:0926

2

6

6

4

3

7

7

5

; (95)

Y° ¼
�2:2113 0:2435 �0:0819 1:4281
11:9245 �1:3129 0:4416 �7:7011

� �

, γ
∞
¼ 8:5565: (96)

Inserting Y° and S into Eq. (79), the gain matrix K° is computed as
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K° ¼
�0:8887 0:3441 0:0562 0:0329
4:7926 �1:8555 �0:3028 �0:1775

� �

(97)

and Eq. (79) implies the full-state feedback gain matrix values

K ¼
35:3027 0:3813 �1:1191 �25:0117
11:5040 �1:8486 �0:5208 �4:8217

� �

: (98)

It can be easily verified that the closed-loop system matrix takes the format

Fc ¼ F �GK ¼

0:1179 0:0088 0:0296 0:5722
�1:8528 0:1997 �0:0038 2:3515
7:0258 0:5223 0:7783 �5:6297
0:1768 0:0132 0:0444 0:8583

2

6

6

4

3

7

7

5

; (99)

while the ratio control law rises up the stable closed-loop system with the closed-loop system

matrix eigenvalues spectrum

ρ Fcð Þ ¼ 0:9527, 0:7566, 0:0000, 0:2449f g: (100)

Note that one from the resulting eigenvalue of Fc is zero (rank(E) = 1)), because Proposition 2

prescribes this constrained design task as a singular problem. Using the connection between

the eigenvector matrix N and M as given by Eq. (17), it is possible to show that this instance is

documented also by the structure of M, while

N ¼

�0:3109 �0:1105 �0:0800 �0:0184

�0:6937 �0:3384 �0:4690 �0:7382

0:4522 0:9197 0:8793 0:6738

�0:4664 �0:1657 �0:0218 �0:0276

2

6

6

6

4

3

7

7

7

5

,

M ¼

�3:4197 �0:3938 �0:5157 0:2213

10:2685 1:3777 1:4844 �7:4555

�15:2705 0:0000 0:0000 10:1803

8:2076 �1:6162 �0:1958 �3:2577

2

6

6

6

4

3

7

7

7

5

;

(101)

where the structure of the third row of M correspondents to the structure of the constraint

vector E, while a4 ¼ m
T

3 1ð Þ=mT

3 4ð Þ ¼ �1:5.

To illustrate the closed-loop system property in the forced mode, the signal gain matrix W is

computed by using Eq. (84) as follows

W ¼
1:4575 35:9137

�1:7651 11:6521

� �

: (102)
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Therefore, according to Theorem 4, the constraint given on the states of the system under study

is satisfied with zero offset in the autonomous regime and with offset value equal qdw in the

forced mode, i.e.,

qd ¼ 0, qdw ¼ EGWwo ¼ 3:0001; (103)

while

w ið Þ ¼
1

�2

� �

for all i: (104)

The simulation results of the closed-loop system response in the autonomous and forced mode

are presented, where Figure 1 is concerned with the system state variables response in the

autonomous regime and Figure 2 with the system state variables response in the forced mode.

It is evident that the condition Eq. (9) is satisfied at all time instant, except initial time instant in

the above given way (see the time response of the additive of variable, which is included as

qd(i) in the figures).

For comparison, an example is given for default design of state feedback gain matrix using

BRL structure of LMIs. Solving Eqs. (54) and (55), the task is feasible with the Lyapunov matrix

variables

Figure 1. State response in autonomous regime.
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O ¼

0:1438 �0:1090 �0:1619 �0:2191
�0:1090 1:5603 �0:2198 0:2945
�0:1619 �0:2198 1:6006 �0:4711
�0:2191 0:2945 �0:4711 1:8586

2

6

6

4

3

7

7

5

,

S ¼

0:1338 �0:0840 �0:1490 �0:1928
�0:0840 1:2736 �0:2314 0:2439
�0:1490 �0:2314 1:6729 �0:5520
�0:1928 0:2439 �0:5520 1:8296

2

6

6

4

3

7

7

5

; (105)

and parameter matrix variable

Y ¼

0:6210 �0:8607 �2:6800 �0:7582
0:4017 �2:6793 �0:3804 0:1788

� �

, γ
∞
¼ 3:1301: (106)

Therefore, using Eq. (56), the nominal control law gain matrix K is computed as

K ¼

0:8951 �0:8107 �1:8928 �0:7830
2:4671 �2:0742 �0:0947 0:6056

� �

; (107)

the closed-loop system matrix takes the form

Figure 2. State response in forced mode.

Dynamical Systems - Analytical and Computational Techniques94



Fc ¼ F �GK ¼

0:9571 0:0371 0:0431 �0:0108
0:7613 0:3227 0:2881 0:1639

�0:2898 0:2498 0:4771 �0:2749
�0:0073 0:0063 0:0368 0:9931

2

6

6

4

3

7

7

5

; (108)

while the closed-loop system matrix eigenvalues spectrum is

ρ Fcð Þ ¼ 0:1207, 0:6570, 0:9733, 0:9990f g: (109)

To apply in the forced mode, the signal gain matrix W is now computed by using Eq. (84) as

follows:

W ¼
�0:8296 0:9567
�2:2360 2:4922

� �

: (110)

The simulation results of the nominal closed-loop system response are illustrated in Figures 3

and 4, where Figure 3 is concerned with the system state variables response in the autonomous

regime and Figure 4 with the system state variables response in the forced mode.

Since these two control structures are of interest in the context of full-state control design,

matching the presented results, it is evident that the system dynamics in both cases are

comparable.

Figure 3. State response in autonomous regime.
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8. Concluding Remarks

In this chapter, an extended method is presented, based on the classical memoryless feedback

H
∞
control principle of discrete-time systems, if the ratio control is reformulated by an equality

constraint setting on associated state variables. The asymptotic stability of the control scheme

is guaranteed in the sense of the enhanced representation of BRL, while resulting LMIs

are linear with respect to the system state variables, and does not involve products of the

Lyapunov matrix and the system matrix parameters, which provides one way of solving

the singular LMI problem. Moreover, formulated as a stabilization problem with the full-state

feedback controller, the control gain matrix takes no special structure. The formulation allows

to find a solution without restrictive assumptions and additional specifications on the design

parameters. It is clear from Theorem 4 that the control law strictly solves the problem even in

the unforced mode. The validity of the proposed method is demonstrated by numerical

examples.
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