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Abstract

In this chapter, we introduce multiwavelength digital holographic techniques and a
novel multiwavelength imaging technique. General multiwavelength imaging systems
adopt temporal division, spatial division, or space-division multiplexing to obtain
wavelength information. Holographic techniques give us unique multiwavelength
imaging systems, which utilize temporal or spatial frequency-division multiplexing.
Conventional multiwavelength digital holography systems have been combined with
one of the methods listed above. We have proposed phase-shifting interferometry selec-
tively extracting wavelength information, characterized as a multiwavelength three-
dimensional (3D) imaging technique based on holography and called phase-division
multiplexing (PDM) of multiple wavelengths. In PDM, wavelength-multiplexed phase-
shifted holograms are recorded, and multiwavelength information is separately
extracted from the holograms in the space domain. Phase shifts are introduced for
respective wavelengths to separate object waves with multiple wavelengths in the polar
coordinate plane, and multiple object waves are selectively extracted by the signal
processing based on phase-shifting interferometry. Additionally, the system of equations
needed to obtain a multiwavelength 3D image is solved with less wavelength-
multiplexed images using two-step phase-shifting interferometry-merged phase-divi-
sion multiplexing (2π-PDM), which makes the best use of 2π ambiguity of the phase
and two-step phase-shifting method. The PDM techniques are reviewed and color 3D
imaging ability is described with numerical and experimental results.

Keywords: digital holography, holography, interferometry, holographic interferometry,
phase-shifting interferometry, multiwavelength interferometry, color holography,
multiwavelength 3D imaging, color 3D imaging, multiwavelength imaging, phase-divi-
sion multiplexing of wavelengths, 2π-PDM
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1. Introduction

Holography [1–4] is a technique to record a wavefront of an object wave by utilizing interfer-

ence of light as well as reconstruct a three-dimensional (3D) image of an object. The medium

containing the information of an interference fringe image is called a “hologram”, which

contains both the amplitude and phase information of an object wave. 3D image information

is reconstructed using a hologram and diffraction theory. One of the most remarkable features

in holography is that 3D motion-picture recording of any ultrafast physical phenomenon can

be achieved, even for light propagation in 3D space [3]. Digital holography [5–8] is a technique

to record a hologram digitally using an image sensor, and reconstruct both the 3D and

quantitative phase images of an object using a computer or spatial light modulator. This

technique has been researched for not only the observation of ultrafast phenomenon, but also

for microscopy [9, 10], quantitative phase imaging [11, 12], and multimodal imaging [13, 14].

In recent years, there has been an increase in demand for multispectral imaging techniques.

Multiwavelength information helps us to perceive, analyze, and recognize an object such as body

tissue or a tumor. Wavelength of light has the ability to clarify color and material distributions of

an object [15], visualize the localization and dynamics of molecules with Raman scattering [16, 17],

and analyze the health of human skin [18]. In digital holography, the information of multiple

wavelengths and 3D space is obtained by recording waves with multiple wavelengths that are

irradiated from light sources, called multiwavelength/color digital holography [19, 20].

Multiwavelength digital holography has the ability for not only color 3D imaging [19, 20], but also

dispersion imaging [21] and 3D shape measurement with a wide range by using multiwavelength

phase unwrapping [22], due to the recording of quantitative phase information with multiple

wavelengths. Temporal division [23–25], spatial division [26–28], and space-division multiplexing

[19, 20, 29], which are generally adopted for multiwavelength imaging in an imaging system, can

be merged into digital holography to record multiple wavelengths. In general imaging systems,

wavelength information is temporally or spatially separated when recording image(s), as shown in

Figure 1(a)–(e). However, holographic techniques make it possible to record multiwavelength/

color information using a monochromatic image sensor and to reconstruct it from wavelength-

multiplexed image(s). In holography, multiple wavelength information is obtained also by utilizing

temporal frequency-division multiplexing (Figure 1(f)) [30, 31] and spatial frequency-division

multiplexing (Figure 1(g)) [32, 33]. In these techniques, Fourier and inverse Fourier transforms are

required to separate wavelength information. In the former, manywavelength-multiplexed images

and an image sensor with a high frame rate are needed. In the latter, the spatial bandwidth

available for recording an object wave at a wavelength is restricted as the number of wavelengths

is increased.

Since 2013, we have presented a novel multiwavelength imaging technique utilizing

holography and wavelength-multiplexed images [34–39]. The presented technique gives

phase-shifting interferometry [40–51] the function to extract wavelength information such as

wavelength dependencies of amplitude, phase, and polarization state selectively from wave-

length-multiplexed phase-shifted holograms. It is especially important to record not only phase

images but also amplitude distributions of object waves at multiple wavelengths in order to

achieve multicolor and multispectral 3D imaging of multiple objects. By making use of holog-

raphy for multiwavelength imaging, 3D space information is simultaneously captured. In this
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chapter, we explain the proposed technique, phase-shifting interferometry selectively

extracting wavelength information: phase-division multiplexing (PDM) of multiple wave-

lengths and two-step phase-shifting interferometry-merged phase-division multiplexing (2π-

PDM).

Figure 1. Multiwavelength imaging systems. (a) Temporal division, spatial division with (b) multiple image sensors and

a prism and (c) a stacked image sensor, space-division multiplexing with (d) a color image sensor and (e) a grating, (f)

temporal frequency-division multiplexing, and (g) spatial frequency-division multiplexing.
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2. Phase-shifting interferometry selectively extracting wavelength

information: phase-division multiplexing (PDM) of wavelengths

Figure 2 illustrates the schematic of the proposed multiwavelength 3D imaging technique in

the case where the number of wavelengths N is two, which was initially presented in 2013

[34–36]. Optical setup is based on phase-shifting digital holography with multiple lasers.

Multiple object and reference waves with multiple wavelengths illuminate a monochromatic

image sensor simultaneously. The sensor records wavelength-multiplexed phase-shifted holo-

grams I(x,y:α1,α2) by changing the phases of the reference waves. Phase shifts for respective

wavelengths α1 and α2 are introduced. An object wave at the desired wavelength is selectively

extracted from the holograms by the signal processing based on phase-shifting interferometry.

As a result, a color 3D image is reconstructed from the selectively extracted object waves.

Thus, color 3D imaging can be achieved with grayscale wavelength-multiplexed images.

When the number of wavelengths is N, 2N + 1 variables are contained in a wavelength-

multiplexed hologram: the number N of object waves, N of conjugate images, and the sum of

the 0th-order diffraction waves. Therefore, five holograms are required to solve the system of

equations when N = 2. It is noted that no Fourier transform is essentially required.

Figure 2. Schematic representation of the proposed multiwavelength 3D imaging technique.
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Figure 3 describes the principle that wavelength information is selectively extracted by the signal

processing in the space domain. As seen in Figure 3, different phase shifts for respective wave-

lengths are given to object waves with multiple wavelengths, and then wavelength information

is separated in the polar coordinate plane. Although this separation is used to extract an object

wave from a hologram in general phase-shifting interferometry, in the proposed technique, the

separation is utilized to remove not only the conjugate images and 0th-order diffraction wave,

but also undesired wavelength information. This means phase-division multiplexing (PDM) of

wavelengths. Figure 3 shows the case where specific phase shifts are used [34–36], but this

concept is also applicable to the case where arbitrary phase shifts are introduced [39].

Figure 4 illustrates optical implementations of the proposed digital holography. Multiple lasers

irradiate laser beams with multiple wavelengths simultaneously. A device for shifting the phase

of light, such as a mirror with a piezo actuator, a spatial light modulator, or wave plates, is

placed in the path of the reference arm. A monochromatic image sensor records the required

wavelength-multiplexed phase-shifted holograms sequentially. An optical system based on PDM

has the following features: the spectroscopic sensitivity of the optical system can be extended in

comparison to the system with a color image sensor; full space-bandwidth product of an image

sensor can be used to record object waves with multiple wavelengths; a bright color image can be

obtained due to no spectroscopic absorption, while wavelengths filters required in conventional

systems absorb light to obtain a color image; and measurement time is shortened by the wave-

length-multiplexed recording in comparison with temporal division technique.

Figure 3. Principle of phase-division multiplexing (PDM) of wavelengths: separation of multiple wavelengths in the polar

coordinate plane.
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Figure 5 illustrates the image reconstruction algorithm [34–36]. A wavelength-multiplexed

phase-shifted hologram I(x,y:α1,α2) is expressed as follows,

I x, y : α1,α2ð Þ ¼ Iλ1 x, y : α1ð Þ þ Iλ2 x, y : α2ð Þ; (1)

here Iλ1(x,y:α1) and Iλ2(x,y:α2) are holograms at the wavelengths of λ1 and λ2, respectively.

Eq. (1) means that a recorded monochromatic image is the sum of Iλ1(x,y:α1) and Iλ2(x,y:α2).

When the complex amplitude distributions of object waves with different wavelengths are

Uλ1(x,y) and Uλ2(x,y), 0th(x,y) is the 0th-diffraction wave, Ar(x,y) is the amplitude distribution

of the reference wave, j is imaginary unit, * means complex conjugate, and L and M are

integers, then I(x,y:α1,α2) can be rewritten as follows,

Figure 4. Optical implementations of PDM. Optical setups with (a) a mirror with a piezo actuator and (b) a spatial light

modulator that has wavelength dependency in phase modulation.
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I x, y : α1,α2ð Þ ¼ 0thλ1 x; yð Þ þ Arλ1 x; yð Þ Uλ1 x; yð Þexp −jα1ð Þ þUλ1
� x; yð Þexp jα1ð Þ

� �

þ 0thλ2 x; yð Þ þ Arλ2 x; yð Þ Uλ2 x; yð Þexp −jα2ð Þ þUλ2
� x; yð Þexp jα2ð Þ

� �

:
(2)

Only the complex amplitude distributions of object waves with dual wavelengths Uλ1(x,y) and

Uλ2(x,y) are derived from five wavelength-multiplexed phase-shifted holograms I(x,y:0,0), I(x,

y:α1,α2), I(x,y:-α1,-α2), I(x,y:α3,α4), and I(x,y:-α3,-α4) because five variables are contained in

Eq. (2). If the system shown in Figure 4(a) is used to implement the proposed technique by

moving the mirror in the reference arm with a piezo actuator at a distance Z in the depth

direction, the phase shifts are

α1 ¼
4πZ

λ1
; (3)

α2 ¼
4πZ

λ2
: (4)

Here, when Z is equal to Lλ1/2, α1 is 2πL and α2 is 2πLλ1/λ2. As a result, the intensity

distribution Iλ1(x,y: α1) is not changed and Iλ2(x,y: α2) is changed, unless Lλ1/λ2 is an integer.

In the case where an integral multiple of 2π is utilized for phase shifts, meaning α2 = 2πM and

α3 = 2πL, Uλ1(x,y) and Uλ2(x,y) are separately derived by the following expressions.

Uλ1 x; yð Þ ¼ 2I x, y : 0, 0ð Þ− I x, y : α1, 2πMð Þ þ I x, y : −α1, −2πMð Þf g½ �= 4Arλ1 x; yð Þ 1− cosα1ð Þf g
þ j I x, y : −α1, −2πMð Þ −I x, y : α1, 2πMð Þf g= 4Arλ1 x; yð Þ sinα1ð Þ;

(5)

Uλ2 x; yð Þ ¼ 2I x, y : 0, 0ð Þ− I x, y : 2πL,α4ð Þ þ I x, y : −2πL, −α4ð Þf g½ �= 4Arλ2 x; yð Þ 1− cosα4ð Þf g
þ j I x, y : −2πL, −α4ð Þ −I x, y : 2πL,α4ð Þf g= 4Arλ2 x; yð Þ sinα4ð Þ:

(6)

As shown in Eqs. (5) and (6), subtraction between holograms, which is based on phase-shifting

interferometry, is calculated and the unwanted wavelength component Iλ1(x,y) or Iλ2(x,y) is

removed. Thus, dual-wavelength information is extracted selectively from five phase-shifted

holograms. In this way, multiwavelength information can be separately extracted from 2N + 1

holograms when the number of wavelengths is N. From the extracted complex amplitude

distributions on the image sensor plane, a multiwavelength 3D object image is reconstructed

by the calculations of diffraction integrals and color synthesis.

Figure 5. Image-reconstruction procedure.
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3. Numerical simulation

Numerical simulations were conducted to verify the effectiveness of the proposed technique.

Figure 6 shows the amplitude and phase distributions of the object wave at each wavelength.

As shown in Figure 6(b), a color object with rough surface was assumed. 640 and 532 nm were

assumed as the wavelengths of the light sources. Red and green color components of a

standard image “pepper” were used as amplitude images at 640 and 532 nm, respectively. In

these simulations, the distance between the object and image sensor was assumed as 200 mm,

pixel pitch was 5 μm, resolution was 10 bits, and number of pixels was 512 × 512. Figure 7

shows the images reconstructed by the proposed technique. Faithful images were

reconstructed at each wavelength, and crosstalk between object waves with different wave-

lengths was not seen. The color synthesized image in Figure 7(c) indicates color 3D imaging

ability. Thus, the validity of the proposed technique was numerically confirmed. Detailed

numerical analyses and an experimental demonstration using an image sensor with 12-bit

resolution were reported in Ref. [36].

Figure 6. Object wave for a numerical simulation. (a) Amplitude and (b) phase distributions of the object wave. Assumed

amplitude images at the wavelengths of (c) 640 nm and (d) 532 nm.

Figure 7. Numerical results. Reconstructed images at the wavelengths of (a) 640 nm and (b) 532 nm. (c) Color synthesized

image.
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4. Two-step phase-shifting interferometry-merged phase-division

multiplexing (2π-PDM)

In a wavelength-multiplexed hologram, 2N + 1 variables are contained. Therefore, 2N + 1 images

are needed to extract object waves separately in a general PDM technique. However, 2N wave-

length-multiplexed holograms are sufficient to selectively extract object waves with N wave-

lengths, with the two-step phase-shifting interferometry-merged phase-division multiplexing

(2π-PDM) technique [38]. Figure 8 illustrates the basic concept of 2π-PDM. Two main points of

2π-PDM are the utilization of 2π ambiguity of the phase [34, 35] and merger of two-step phase-

shifting interferometry [52–56]. As described in section 2, an intensity distribution at a wave-

length is not changed when a phase shift is an integral multiple of 2π. We make the best use of

this nature to decrease the required number of wavelength-multiplexed images. Also, merging

PDM and two-step phase-shifting interferometry is important to satisfy high-quality

multiwavelength 3D imaging and acceleration of a recording simultaneously. When recording

three wavelengths, six holograms are sufficient with 2π-PDM, as described with an optical

implementation in Ref. [38].

The optical setup required for 2π-PDM is the same as that for other PDM techniques. Therefore,

the systems in Figure 4 are applicable to 2π-PDM. In 2π-PDM, various types of two-step phase-

shifting methods [52–56] can be employed. When mergingMeng’s two-step method [53] into 2π-

PDM, intensity distributions of reference waves Irλ1(x,y) = Arλ1
2(x,y) and Irλ2(x,y) = Arλ2

2(x,y) are

sequentially recorded before the measurement by inserting a shutter in the path of the object

arm. Figure 9 describes an algorithm for selectively extracting wavelength information in 2π-

PDM adopting Meng’s technique. In the case of N = 2, a monochromatic image sensor records

four wavelength-multiplexed phase-shifted holograms I(x,y:0,0), I(x,y:α1,arb.), I(x,y:2πM,α2), and

I(x,y:−2πM,−α2), and intensity distributions of reference waves Irλ1(x,y) and Irλ2(x,y). By making

use of 2π ambiguity, both a 0th-order diffraction wave 0thλ2(x,y) and an intensity distribution of

a hologram at an undesired wavelength Iλ1(x,y) are removed simultaneously by the subtraction

procedure. Therefore, an object wave Uλ2(x,y) is extracted from three holograms, although five

variables are contained in each hologram. In the case where α1 and α2 > 0,Uλ2(x,y) is derived by

Figure 8. Basic concept of 2π-PDM.
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Uλ2 x; yð Þ ¼ 2I x, y : 0, 0ð Þ− I x, y : 2πM,α2ð Þ þ I x, y : −2πM, −α2ð Þf g½ �= 4Arλ2 x; yð Þ 1− cosα2ð Þf g

þ j I x, y : 2πM,α2ð Þ −I x, y : −2πM, −α2ð Þf g= 4Arλ2 x; yð Þ sinα2ð Þ:
(7)

From the extracted object wave Uλ2(x,y) and the amplitude distribution of the reference wave

at λ2, the intensity distribution at only λ2 component Iλ2(x,y:α2) is numerically generated by a

computer,

Iλ2cal x, y : α2ð Þ ¼ jUλ2 x; yð Þj2 þ Arλ2 x; yð Þ2 þ Arλ2 x; yð Þ Uλ2 x; yð Þexp −jα2ð Þ
�

þUλ2
� x; yð Þ exp jα2ð Þg: (8)

If the sum of the intensities of the 0th-order diffraction waves is equal to |Uλ1(x,y)|
2 + Irλ1(x,y) +

|Uλ2(x,y)|
2 + Irλ2(x,y), noiseless multiwavelength 3D imaging can be achieved with 2π-PDM

adopting Meng’s two-step phase-shifting interferometry, according to the procedures described

from here. By using the numerically generated images Iλ2cal(x,y:0) and Iλ2cal(x,y:arb.), intensity

distributions at only λ1 component Iλ1(x,y:0) and Iλ1(x,y:α1) are obtained from I(x,y:0,0) and I(x,

y:α1,arb.) as the following expressions:

Iλ1 x, y : 0ð Þ ¼ I x, y : 0, 0ð Þ−Iλ2cal x, y : 0ð Þ

¼
�

�Uλ1 x; yð Þ
�

�

2 þ Arλ1 x; yð Þ2 þ Arλ1 x; yð Þ Uλ1 x; yð Þ þUλ1
� x; yð Þf g;

(9)

Iλ1 x, y : α1ð Þ ¼ I x, y : α1, arb:ð Þ −Iλ2cal x, y : arb:ð Þ

¼
�

�Uλ1 x; yð Þ
�

�

2 þ Arλ1 x; yð Þ2 þ Arλ1 x; yð Þ Uλ1 x; yð Þexp −jα1ð Þ þUλ1
� x; yð Þexp jα1ð Þ

� �

:

(10)

From the obtained Iλ1(x,y:0) and Iλ1(x,y:α1) and amplitude distribution of the reference wave at

λ1, the object wave at λ1 Uλ1(x,y) can be analytically extracted by using two-step phase-shifting

interferometry.

Uλ1 x; yð Þ ¼ Iλ1 x, y : 0ð Þ–s x; yð Þf Þ½ g

þ j Iλ1 x, y : α1ð Þ−Iλ1 x, y : 0ð Þ cosα1– 1− cosα1ð Þs x; yð Þgf �=2Arλ1 x; yð Þ;
(11)

where,

s x; yð Þ ¼
�

�Uλ1 x; yð Þ
�

�

2 þ Arλ1 x; yð Þ2 ¼ v−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2−4uw
p

2u

 !

; (12)

u ¼ 2 1− cosα1ð Þ; (13)

v ¼ 2 1− cosα1ð Þ Iλ1 x, y : 0ð Þ þ Iλ1 x, y : α1ð Þf g þ 2Irλ1 x; yð Þ sin 2
α1

� �

; (14)
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w ¼ Iλ1 x,y : 0ð Þ2 þ Iλ1 x,y : α1ð Þ2−2Iλ1 x, y : 0ð ÞIλ1 x, y : α1ð Þ cosα1 þ 2Irλ1 x; yð Þ2 sin 2
α1: (15)

Thus, the object waves at the desired wavelengths are extracted selectively from four wave-

length-multiplexed phase-shifted holograms and intensity distributions of the reference

waves. In this way, in the case where the number of wavelengths is N, multiwavelength

information can be separately extracted from 2N holograms. By applying diffraction integrals

to the object waves, amplitude and phase distributions of the object on the desired depth are

reconstructed at multiple wavelengths. Therefore, a 3D image and wavelength dependency of

the object can be obtained simultaneously.

Note that an arbitrary phase shift at λ2 is allowable in one of the wavelength-multiplexed,

phase-shifted, and monochromatic holograms I(x,y:α1,arb.) in a 2π-PDM algorithm described

above. Therefore, 2π-PDM conducts asymmetric phase-shifting and belongs to partially gen-

eralized phase-shifting interferometry.

Figure 9. Algorithm for selectively extracting wavelength information in 2π-PDM.
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5. Experimental demonstration of 2π-PDM

We have demonstrated 2π-PDM experimentally to show color 3D imaging ability [38].

Figure 10 shows a completed model of the optical system illustrated in Figure 4(a). Four

wavelength-multiplexed phase-shifted holograms were recorded sequentially by using a mir-

ror with a piezo actuator. Before/after that, two intensity images of two reference waves were

sequentially recorded only once. The wavelengths of the lasers were λ1 = 640 and λ2 = 473 nm.

A monochromatic CMOS image sensor was used to record the holograms and reference

intensities. The sensor has 12-bit resolution, 2592 × 1944 pixels, and the pixel pitch of 2.2 μm.

The mirror with a piezo actuator moved Z = 0, 237, and ±320 nm sequentially to generate phase

shifts that were required for 2π-PDM. Phase shifts (α1,α2) at (λ1,λ2) were (0,0), (2π(λ2/λ1), 2π),

(2π, 2π(λ1/λ2)), and (−2π,−2π(λ1/λ2)). To investigate the phase shifts at their respective wave-

lengths, interference fringe patterns at the wavelengths were observed before the experimental

demonstration, and details were explained in Ref. [38]. Two transparency sheets were set as a

color 3D object. The logo of the International Year of Light (IYL) and the characters “2015”

were printed on the sheets, and blue and red color films were attached to the logo and

characters, respectively. The red “2015” sheet and blue logo sheet were set on the depths of

250 and 320 mm from the image sensor plane, respectively. Opaque sheets were also attached

on blue and red color sheets to scatter the object illumination light. Therefore, the 3D color

object had a rough surface and scattered object waves illuminated the image sensor. The object

wave at the wavelength λ = 473 nmwas extracted from three holograms and the object wave at

λ = 640 nm was obtained by the procedures of Eqs. (7)–(15). For comparison, a colored object

image was also reconstructed from a wavelength-multiplexed hologram.

Figure 10. Photograph of the constructed dual-wavelength optical system of 2π-PDM.
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Figure 11 shows the experimental results. Wavelength-multiplexedmonochromatic images such as

Figure 11(a) were captured, and wavelength information was superimposed on space and spatial

frequency domains as seen in Figure 11(a) and (b). Figure 11(c) and (d) were the images focused

digitally at a distance of 320 mm from the image sensor plane and reconstructed by diffraction

integral alone and 2π-PDM, respectively. Blue and red color films attached to the sheets absorbed

red and blue light, respectively. However, Figure 11(c), which was obtained from a wavelength-

multiplexed hologram, indicated the superimpositions of not only the 0th-order diffraction wave

and the conjugate image but also image components given by the crosstalk between Iλ1(x,y:α1) and

Iλ2(x,y:α2). As a result, color information was not retrieved adequately. In contrast, Figure 11(d)

showed the removal of the unwanted images, the crosstalk components, and the successful exper-

imental demonstration of clear color imaging by 2π-PDM. Figure 11(e) and (f) were the object

images focused on 250 and 320 mm depths from the sensor plane, which were obtained by an

image-reconstruction procedure of 2π-PDM. Thus, we validated 2π-PDM in the imaging of wave-

length dependency of absorption for a 3D object and high-quality color 3D imaging ability.

Figure 11. Experimental results of 2π-PDM. (a) One of the recorded holograms and (b) its 2D Fourier transformed image.

(c) Image reconstructed from the hologram of (a). (d) Whole image reconstructed by 2π-PDM. (c) and (d) are the images

digitally focused on 250 mm depth from the image sensor plane. Object images numerically focused on (e) 250 mm and (f)

320 mm depths, which were reconstructed by 2π-PDM.
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6. Discussions and summary

We have proposed phase-shifting interferometry selectively extracting wavelength information

as a novel multiwavelength imaging technique. In this technique, not only multiwavelength

images but also the information of 3D space are simultaneously captured by the combination

with holography. The technique is characterized as phase-division multiplexing (PDM) of wave-

lengths, and wavelength information is separately extracted in the space domain from the

information of multiple wavelength-multiplexed images. 2π-PDM is the technique to analyti-

cally and completely solve the system of equations with 2N holograms against 2N + 1 variables

contained in each hologram. An experimental demonstration was conducted and clear color 3D

imaging ability was successfully shown. Note that detailed analyses against both the experimen-

tal demonstration and the theory in 2π-PDMwere reported in Ref. [38].

As future works, constructions of three-color digital holography and multidimensional holog-

raphy systems are important to realize full-color 3D imaging and multidimensional holo-

graphic sensing. Figure 12 shows an example of the required holograms in three-wavelength

2π-PDM [38] and numerical results for theoretical validation. Phase shifts indicated in

Figure 12(a) mean that three-color 3D imaging with 2π-PDM is capable, when a spatial light

modulator or wave plates are used as phase shifter(s) as described in Ref. [38]. Also, a

combination of a piezo and a wave plate or a spatial light modulator will be applicable as

another implementation. Figure 12(b)–(i) shows the results of a numerical simulation for three-

Figure 12. (a) An example of holograms required for three-wavelength 2π-PDM and (b)–(i) its numerical results. (b)

Amplitude and (c) phase distributions of the assumed object wave and (d) one of three-wavelength-multiplexed phase-

shifted holograms. Reconstructed amplitude images at the wavelengths of (e) 640 nm, (f) 532 nm, (g) 473 nm, and (h)

phase image at 640 nm. (i) Color synthesized image obtained from (d)–(f). In the results, wave plates are assumed as

phase shifters as described in Ref. [38]. The image-reconstruction procedure is in the same manner of dual-wavelength 2π-

PDM, which is explained in Section 4.
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wavelength 2π-PDM. In this simulation, a three-color object “pepper” with a smooth surface

shape, red, green, and blue color wavelengths of 640, 532, and 473 nm, and 200 mm distance

between image sensor and object planes, an image sensor with the pixel pitch of 5 μm,

512 × 512 pixels, ideal bit resolution, and α1, α2, α3 = π/2 were assumed. These assumptions

can be satisfied with the optical system with five quarter wave plates, which is illustrated in

Ref. [38]. Numerical results indicate that multiwavelength holographic 3D imaging can be

done with high image quality from grayscale wavelength-multiplexed images, if successfully

constructed. Improvements on the measurement principle and/or an image-reconstruction

algorithm are important to simplify the construction; this is one of the main issues to be solved.

From the viewpoint of multidimensional holographic imaging, PDM and 2π-PDM have the

potential for not only multiwavelength, but also polarization-imaging digital holography [37]

and instantaneous measurement [35], as implementations are described in these references. It

is expected that simultaneous imaging of 3D structures, multiple wavelengths, and polariza-

tion distribution can be demonstrated with 2π-PDM.

The next step of the PDM techniques is the extension to multicolor holographic 3D image

sensing, simultaneous imaging of color and 3D shape with multiwavelength phase unwrapping,

dispersion imaging of a 3D specimen, and multidimensional holographic imaging. This tech-

nique has prospective applications to multispectral microscopy to observe 3D specimens with a

wide field of view, quantitative phase imaging, multicolor lensless 3D camera, multidimensional

holographic image sensors, and other multiwavelength 3D imaging applications.
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