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1. Introduction  

The piezoelectric effect occurs in materials for which an externally applied elastic strain 
causes a change in electric polarization which produces a charge and a voltage across the 
material. The converse piezoelectric effect is produced by an externally applied electric field, 
which changes the electric polarization, which in turn produces an elastic strain.  
The most known piezoelectric material is quartz crystal. Many other natural crystalline 
solids, as Rochelle salt, ammonium dihydrogen phosphate, lithium sulfate, and tourmaline 
as well as some man-made crystal as gallium orthophosphate, aluminium nitride (AlN), and 
langasite exhibit piezoelectric properties.  A lot of artificial ceramics as barium titanate, lead 
titanate, lead zirconate titanate (PZT), potassium niobate, lithium niobate, and lithium 
tantalite have similar properties. 
The most known technical application is the piezoelectric transducer. In the last years 
electromechanical AlN resonators emerged as a very efficient solution for mobile 
communications filters due to the possibility to be integrated at a relatively low cost 
together with CMOS circuits in systems on a chip and systems in a package.  
In most applications the piezoelectric devices have a linear behaviour. In Section 2 the linear 
and nonlinear equations of the piezoelectric effect are described, a new iterative procedure 
for solving the nonlinear equations is given, and some aspects of the Finite Element solution 
are discussed. An electromechanical field analysis of a displacement transducer is presented 
in Section 3. Sections 4 and 5 show some recent applications in the mobile communication 
technology.  The field analysis of a bulk acoustic wave (BAW) resonator using 3D linear 
models is presented in Section 4. Some nonlinear effects in power BAW resonators together 
with their circuit models are discussed in Section 5. 

2. Electromechanical field equations of piezoelectric devices 

2.1 Linear behaviour 

In the case of linear behaviour (Cady, 1964; Wilson, 1989), the equations giving the 
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displacement u, the stress t  and the electric potential V are1:  

 fuf =−−⋅∇ $$ρft  (1) 

 0=⋅∇+∇⋅∇− MV Pε  (2) 

where: 

• ε  is the dielectric permittivity tensor. 

• f is the external force. 
The friction force is: 

 uf $η=f  (3) 

• The stress tensor t  has two components: t = Mt + Et  

• The mechanical stress tensor depends on the strain tensor s : 

 scct sM ˆ)(ˆ =∇= u  (4) 

where ĉ  is the elastic stiffness matrix evaluated for constant electric field intensity, E= V−∇  

and [ ]T
s )()(

2

1
uuu ∇+∇=∇  (the superscript T denotes the transpose of the matrix). 

• The piezoelectric stress tensor depends on the electric field intensity: 

 )(ˆ Vet T
E ∇=  (5) 

where ê  is the piezoelectric matrix. 

• The component of the polarization due to the strain is: 

 )(ˆˆ uP sM ese ∇==  (6) 

Using (3),(4),(5),(6), equations (1) and (2) become: 

 )(ˆ usc ∇⋅∇ )(ˆ VeT ∇⋅∇+ u$η− u$$ρ− =f (7) 

 V∇⋅∇ ε )(ˆ use ∇⋅−∇ =0 (8) 

For equations (2) and (8) we consider the static regime of the electric field. In order to have a 

unique solution, mechanical and electrical boundary conditions must be added: 0=u , for 

clamped surfaces, 0=tn , for free surfaces, a hybrid boundary condition (BC) in the case of 

a very light movable electrode; V = imposed for electrodes, 0=⋅ Dn  for field surfaces or 

symmetry surfaces, where: 

 MV PD +∇−= ε  (9) 

                                                                 

1 Notations: the boldface letters represent vectors, tensors are represented as t , u∇  is a diadic product, 

while u⋅∇  is a scalar product and a dot above a variable denotes a time derivative.. 
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The friction forces are neglected for modal analysis. Equations (7) and (8) become: 

 )(ˆ usc ∇⋅∇ )(ˆ VeT ∇⋅∇+ uρω 2+ =0 (10) 

 V∇⋅∇ ε )(ˆ use ∇⋅−∇ =0 (11) 

The values kω  which allow nontrivial solutions ku  of equations (10),(11) give resonance 

frequencies.  

2.2 Nonlinear constitutive equations 

The nonlinear behaviour can be modelled using the nonlinear constitutive equations: 
1. The friction force depends nonlinearly on the velocity (time derivative of displacement): 

 )(uf $Ff =  (12) 

2. The relationship st −  is nonlinear. This is possible in the case of large strains (powerful 

stress). The dielectric may be destroyed and the durability decreases. Hence, this case 
must be avoided. 

3. The relationship D-E is nonlinear: 

 MV)(- PD +∇= D  (13) 

We do not know yet results which present this kind of relationship. 
4. The relationships of the piezoelectric effects are nonlinear: 

 )(ET=t  (14) 

 )(sM P=P  (15) 

If the complementary energy may be defined: 

 ∑ ∑
= =

−=
3

1,

3

1

*

ji k
kkijij dEPdstUδ  (16) 

we have: 

 
ij

k

k

ij

sE ∂

∂
−=

∂

∂ PT
 (17) 

In the linear case, relationship (17) defines the same matrix ê  in (5) and (6). 

2.3 Iterative Procedures for Nonlinear Materials 

The usual method taking into account the nonlinearity is Newton-Raphson, which is used in 
most commercial simulators. This method provides a great convergence speed, but in some 
cases the convergence is not always achieved.  
The nonlinearity of the friction force relationship may be treated using the fixed point 
Picard-Banach procedure. We replace the relation (12) by: 
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 rf fuf += $η  (18) 

where the nonlinearity is contained in: 

 )()( uuuf $$$ GFr =−= η  (19) 

It may be proved (Hantila et al., 2000) that if the function F is uniformly monotonic 

 ( ) ( ) 2
)()( bababa −≥−⋅− λFF , 0>λ ,  ba,∀  (20) 

and Lipschitzian 

 baba −<− Λ)()( FF ,  ba,∀  (21) 

we can find a value for η so that the function G, defined by (19) is a contraction i.e. 

 baba −≤− θ)()( GG ,  1<θ ,  ba,∀  (22) 

We propose the following iterative procedure: 

a. We choose an arbitrary initial value )0(
rf . 

b. We compute )1(u  and hence )1(u$  solving the system (7) and (8), where the force f is 

replaced by )0(
rff + . 

c. We correct the force rf  with (19): 

 )( )1()1( u$Gfr =  (23) 

The steps b) and c) are repeated until the error 

 ( )∫ ∫=
Ω

ΩτΔη
t

nn dder
0

2)()( u$ =
2)(

η
Δ nu$  (24) 

is small enough, where )1()()( −−= nnn uuu $$$Δ . 

It may be proved that for a given rf  equations (7) and (8) have a unique solution u, hence 

u$ = )( rW f  and the function W is non-expansive: 

 baba −≤− )()( WW ,  ba,∀  (25) 

Therefore, the above procedure gives the Picard-Banach convergent sequence of the 

contraction WG , where the function )],0([: 2 Ω×tLG )],0([2 Ω×→ tL  is defined by the local 

function G. The procedure has several important advantages: we may evaluate the errors 
with respect to the exact solution, the overrelaxation may be applied, the system matrix of 
the numerical form of equations (7), (8)  is the same at each iteration. 
The most convenient procedure for space discretization of equations (7), (8) is the finite 
element method (see (Makkonen et al., 2001), for instance). The spectral decomposition is 
recommended for time discretization. 
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2.4 FEM solution of the coupled electromechanical field problem  

In Finite Element Method (FEM), the complete problem domain is discretized. This implies 
that FEM encounters inherent difficulties in dealing with open boundary field problems, as  
the problem domain needs to be truncated to keep the size finite. Truncation inevitably 
introduces an artificial boundary and, consequently, a modelling error resulting from an 
approximation of the BC on this boundary. Considering acoustic waves, the truncation of 
the model causes reflections of the wave on the artificial boundaries (see Fig. 1). 

 

 

x 

y 

z  

Figure 1. Cross section of a membrane-type composite thin-film BAW resonator showing the 
boundary conditions imposed in the FEM model 

Placing infinite elements along the artificial boundary on the side of the continuum has been 
suggested as a solution to this problem. The infinite elements strive to implement an ideal 
absorbing boundary condition, such that a wave incident on the boundary would not reflect 
back. Instead of infinite elements, one may simply introduce regions at the boundaries of the 
model where the attenuation of the material increases from zero to a given finite value. 
Since the increase of the attenuation is gradual, there is no abrupt change in the materials 
properties which would give rise to reflections of the wave. With a sufficiently high 
attenuation, the amplitude of the wave entering the region will decay rapidly such that there 
is no reflection. This solution has the benefit that it can be readily applied without any need 
for special FEM elements (Makkonen, 2005). 
A possible solution is to combine FEM with another method which is used to model the 
semi-infinite region. An example of such a modelling technique is the FEM/boundary-
element-method (BEM) formalism, which is used in the modelling of surface-acoustic wave 
devices.  
The electromechanical constitutive equations for linear material behaviour that FEM 
softwares solve are:  

 
ESD

EST

S
T

E

e

ec

ε+=

−=
 (26) 

where: T is the stress vector (referred to as σ elsewhere); D is the electric flux density vector; 
S is the strain vector (referred to as ε elsewhere); E is the electric field vector; cE is the 
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elasticity matrix (evaluated at constant electric field); e is piezoelectric stress matrix, and εS is 
the dielectric matrix (evaluated at constant mechanical strain). 
The elasticity matrix c can be given directly in uninverted form [c] as a general anisotropic 
symmetric matrix:  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

66

5655

464544

363534

262524

161514

33

2322

131211

c

cc

ccc

symmetric

ccc

ccc

ccc

c

cc

ccc

Ec  (27) 

The input can also be cD, the elasticity matrix (evaluated at constant electric flux density): 

 
S

ED

e
cc

ε

2

+=  (28) 

The piezoelectric stress matrix e relates the electric field vector E in the order x, y, z to the 
stress vector T in the order x, y, z, xy, yz, xz and has the form:  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

632661

535251

434241

332331

232221

131211

eee

eee

eee
eee

eee

eee

e  (29) 

The piezoelectric matrix can also be given as a piezoelectric strain matrix d. The piezoelectric 
strain matrix d can be converted to the piezoelectric stress matrix e using the elasticity matrix 
c: 

 dce ⋅=  (30) 

The dielectric matrix Sε  uses the electrical permittivities and can be described in orthotropic 

or anisotropic form:  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

22

11

00

00

00

ε

ε

ε

εS  or 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

ε

εε

εεε

ε

symmetric
S    (31) 

The dielectric matrix can also be given as a dielectric permittivity matrix at constant stress 

Tε . We can convert the dielectric matrix at constant stress to the dielectric matrix at constant 

strain: 

 deT
TS −= εε  (32) 
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The finite element discretization is performed by establishing nodal solution variables and 
element shape functions over an element domain which approximates the solution.  

 uNu T
uc ⋅=  (33) 

 VNV Vc ⋅=  (34) 

where: cu  is the displacement within element domain in the x, y, z directions; cV  is the 

electrical potential within element domain; uN  is the matrix of displacement shape 

functions;  VN  is the vector of electrical potential shape function; u is the vector of nodal 

displacements, and V is the vector of nodal electrical potential. 
Then the strain S and electric field E are related to the displacements and potentials, 
respectively, as:  

 uBu ⋅=S  (35) 

 VBV ⋅−=E  (36) 

 

T

u

xy

zx

zy

z

y

x

B

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂
∂

∂

=

0

0

0

00

00

00

 (37) 

 

T

V
zyx

B
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂

∂

∂

∂

∂
=  (38) 

After the application of the variational principle and finite element discretization, the 
coupled finite element matrix equation is:  

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
L

F

V

u

KK

KK

V

uC

V

uM

d
T
z

z

$
$

$$
$$

00

0

00

0
 (39) 

The following equations provide an explanation of the submatrices in (39). 
Structural mass (ρ is the mass density): 

 ∫=
element

T
uu dvNNM ρ  (40) 

The damping matrix (C) may be used in harmonic, damped modal and transient analyses as 
well as substructure generation. In its most general form, it is:  

 ( ) ∑ ∑
= =

++⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

++++=
m eN

j

N

k
kjj

m
jc CCKKMM

1 1

2
ξ

ξβ
Ω

βββα  (41) 
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where: C is the structure damping matrix; ǂ is the mass matrix multiplier; M is the structure 
mass matrix; ǃ is the stiffness matrix multiplier; ǃc  is the variable stiffness matrix multiplier; 

K is the structure stiffness matrix; Nm is the number of materials with m
jβ  (stiffness matrix 

multiplier for material j), ξβ j ( constant (frequency-independent) stiffness matrix coefficient 

for material j, Ω - circular excitation frequency) and Kj the portion of structure stiffness 
matrix based on material j; Ne is the number of elements with specified damping (Ck - 
element damping matrix, Cξ - frequency-dependent damping matrix). 
Structural stiffness: 

 ∫=
element

u
T
u dvcBBK  (42) 

Dielectric conductivity: 

 ∫−=
element

V
T
Vd dvBBK ε  (43) 

Piezoelectric coupling matrix: 

 ∫−=
element

V
T
uz dveBBK  (44) 

Structural load vector, F, is a vector of nodal forces, surface forces, and body forces. 
Electrical load vector, L, is a vector of nodal, surface, and body charges. 
In a FEM mesh, each node point is connected only to a limited number of other nearby 
located nodes. The benefit of this local connectivity is that the FEM matrices (system 
matrices) which describe the complete modelled system have a band structure. The relevant 
system matrices are the electromechanical stiffness matrix K and mass matrix M. In each 
node point of the FEM mesh, at least four field variables are considered (i.e., the three 
components of displacement and the electric potential). The values of the fields at a node 
point are the unknowns or degrees of freedom (DOFs) which are finally computed from the 
FEM equations. 
In the modal analysis, the eigenproblem resulting from the FEM formulation is solved for 
the frequencies of the vibration modes (eigenfrequencies) and for their mode shapes 
(eigenvectors). 
FEM software can also solve the field problem, where the response of the structure to time 
harmonic loading is computed. In harmonic analysis, the damping can be taken into 
account, since a solver for complex-valued linear systems of equations can be included into 
the FEM software. 
Starting from coupled electroelastic equations (Ostergaard & Pawlak, 1986) four types of 
solutions are possible:  

• Static Analysis (inertial and damping effects are ignored except static acceleration 
effects such as gravity; displacements and/or electric potentials are obtained). 

• Mode-Frequency Analysis (mode shapes and natural frequencies may be obtained). 

• Harmonic Analysis (the investigation of a piezoelectric structure under the influence of 
harmonic forces, currents, displacements, and/or voltages; system response 
characteristics to harmonic loads are obtained). 
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• Transient Analysis (the investigation of a piezoelectric structure under the influence of 
time-dependent forces, currents, displacements, and/or voltages; transient response of 
the system is computed). 

3. Field analysis of a displacement transducer 

The FEM analysis of a cantilever beam deformation producing electrical voltages trough a 
direct piezoelectric effect is described in the following (Dorina Popovici et al., 2006).  

3.1 Geometry of the model 

To simulate the structure we have chosen a multiphysics problem: plane stress and piezo 
plane stress. The geometry used is presented in figure below: 

 

Figure 2. The geometry of the problem 

 

Figure 3. Zoom in the PZT cell section 
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The domain R1 is an isotropic structural steel beam with a length of 550 mm, width of 50 
mm and thickness of 5 mm. This material is defined in Library 1 of (COMSOL, 2005). The 
domain R2 is the PZT 5H cell which has a length of 20 mm, width of 50 mm and thickness of 
0,5 mm. 
For the structural steel we used the following material constants E = 2·105 [MPa], Poisson’s 

ratio ν = 0.33 and density  ρ = 7850 kg/m3.  

The PZT – 5H properties are those listed in (COMSOL, 2005): Ec (c11=c22=126, c12=80.5, 

c13=c23=126, c33=117, c44=23.3, c55=c66=23, all in GPa), e(e51= e42=17, e13= e23=17, e33= 23.3, 

[C/m2]), Sε  ( 11ε = 22ε =1704, 33ε =1433, relative values). 

The boundary conditions resulted from the working conditions. For the mechanical part of 
the problem a constraint of zero displacement on the left side of the beam and the PZT cell 
has been considered. The load was applied on the right end of the beam only on the y 
direction. 

 

 

Figure 4. The mechanical boundary conditions 

We set the horizontal bottom surface of the PZT cell to ground and a zero charge/symmetry 
condition was considered on the top surface. 
The meshed model contains 3516 triangular elements. 

3.2 Results 

Three basic analysis types available in the Structural Mechanics Module have been 
considered: 

• Static 

• Eigenfrequency 

• Transient. 
At first, a statical analysis has been made, where a uniform distributed load has been 
applied at the right end of the beam. This force has only a vertical component fy = 10000 

www.intechopen.com



Modeling and Simulation of Piezoelectric Devices 

 

481 

N/m. The stationary direct linear solver UMFPACK has been used. In Fig. 5, 6, 7 are 
represented the displacements along the y axis, the maximum displacement at the end of the 
beam, and the local voltage along the PZT cell. 

 

Figure 5. Displacement of the beam on the y axis for fy = 10000 [N/m] 

The maximum stress calculated with Von Mises criteria has been determined in the left side 
of the beam (in the vicinity of the clamping side) and was equal to 294  [MPa] and the 
minimum value in the right side of the beam 0,168 [MPa]. 

The voltage response of the PZT cell at different loads (fy ∈ {500, 1000, 2500, 5000, 7500, 
10000} [N/m]) has a linear variation as we can see in Fig. 8. For the same loads we 
determined the displacement on y axis of the right side of the beam (Fig. 9) and the 
maximum stress values (Fig. 10) which has the same linear variation. 
 

 

Figure 6. y -displacement of the right end of the beam vs. relative position on z 
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Figure 7. Local voltage vs. longitudinal position  along PZT cell 

 
 

  

Figure 8. The linear dependence F(U) 

 
 

 

Figure 9. Displacement of the right end of the beam 
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Figure 10. The maximum stress values 

The simulation results used to draw figures 8 to 10 are given in Table 1. 

fy [N/m] 
Von Misses 
stress [MPa] 

ydisplacement [mm] U [V] 

500 14.71 2.53 13.75 

1000 29.42 5.06 27.51 

2500 73.55 12.65 68.77 

5000 147.1 25.30 137.55 

7500 220.6 37.95 206.33 

10000 294.2 50.61 275.10 

Table 1. Values determined in statical analysis 

An eigenfrequency analysis finds the eigenfrequencies and modes of deformation of the 

analyzed structure. The eigenfrequencies f in the structural mechanics field are related to 

the eigenvalues λ returned by the solvers through: 

π

λ

2
=f  

The purpose of the eigenfrequency analysis is to find the six lowest eigenfrequencies and 
their corresponding shape modes. This model uses the same material, load and constraints 
as the statical analysis. A direct system solver Umfpack was used and the results are 
presented below: 

f1 f2 f3 f4 f5 f6 

9.98 Hz 64.48 Hz 174.73 Hz 341.91 Hz 564.31 Hz 841.75 Hz 

Table 2. The first six eigenfrequencies of the model 

A transient analysis giving the displacements and velocities as functions of time was used. 
In this case, loads and boundary conditions are functions of time. The purpose of this 
analysis was to find the transient response to a harmonic load with the same amplitude as 
the static load during the first two periods. The excitation frequency has been taken 50 Hz, 
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which is between the first and second eigenfrequency found in the eigenfrequencies 
analysis.  

A harmonic load fx = 0 and fy = 10000 sin (100 π t) [N/m] has been used. Damping is very 
important in transient analysis but difficult to model. The Structural Mechanics Module 
supports Rayleigh damping, specifying damping parameters proportional to the mass (ǂdM) 

and stiffness (ǃdK) in the following way:   KMC dKdM βα +=  

where C is the damping matrix, M is the mass matrix, and K is the stiffness matrix. The 

structure has a constant damping ratio of 0.1. Two frequencies near the excitation frequency 
(20Hz and 60 Hz) have been considered to calculate the damping parameters, according to 
the FEMLAB code  (COMSOL, 2005):   ǂdM = 18.849 1/s and ǃdK = 3.979·10-4 s. 
The computation used a solver with the time interval [0; 0.08][s] within a step of 0.001, a 
relative tolerance of 0.05 and an absolute tolerance of 10-9.  
The following waveforms for the displacement on the x and y axes are represented in Fig.11 
and 12. 

 

Figure 11. The x displacement of the right end of the beam 

 

 

Figure 12. The x displacement ( __) and the y  displacement (__) of the right end of the beam 

The voltage output computed on the PZT crystal has a sinusoidal figure with a maximum 
value of 182.072 [V] and a minimum value of -150.962 V. 
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Figure 13. The PZT crystal voltage vs. time 

For a more accurate solution the time interval has been increased from 0.08 to 0.2 [s] ; 
in this case, the total displacement and the equivalent voltage response are represented in 
Fig.14 and 15. 

 
Figure 14. The total displacement of the right side of the beam 

 
Figure 15. The PZT crystal voltage 
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4. Field analysis of a BAW resonator 

We assume that the cause for material deterioration is the high level of the local stress in 
resonator layers. It follows that the regions in which material deteriorates correspond to the 
regions of maximum local stress.  
To compute the local stress FEM analysis of a 3D electromechanical field problem must be 
done. In order to do this, material parameters of various resonator layers must be known. A 
part of them haven’t been measured directly for the case in point, being taken from 
literature. To verify the parameter values, a model taking into account only longitudinal 
wave propagation (on z axis) has been analyzed, the results being reported in paragraph 4.1.  
Further on, a 3D model of a quarter of a resonator is analyzed in paragraph 4.2.  
For piezoelectric analysis (ANSYS, 2005) performs the so called “strong coupling analysis” 
meaning that the whole equation system of the coupled field problem is used. 

4.1 Numerical simulation of longitudinal wave propagation in a BAW resonator 
structure 

Mat. 
No. 

Material
Density ρ  

[kg/m3] 

Longitudinal 
velocity [m/s] 

c33 
[GPa] 

ε33 
[pF/m] 

e33 
[C/m2] 

1 Mo 10000 6600 435.6   

3 SiOC 1500 2400 10.14   

4 SiN 2700 9300 233.523   

5 Si 2330 8400 164.4   

6 AlN 3300 11000 399.3 82.6 1.5 

Table 3. Material properties used for analytical model simulations 

Block 
No. 

Mat. 
No. 

Material 

1 4 SiN 

3 1 Mo 

4 6 AlN 

5 1 Mo 

6 3 SiOC 

7 4 SiN 

8 3 SiOC 

9 4 SiN 

10 3 SiOC 

11 5 Si substrate 

Table 4. List of materials used to fabricate the device 
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Additional material properties: 
AlN  c11=345 GPa, c12=125 GPa, c13=120 GPa, c22= 345 GPa, c23= 120 GPa, c33= 372.06 
GPa, c44= 118 GPa, c55= 110 GPa, c66= 110 GPa  (each at constant E field)  e33= 1.5 C/m2 , 
e13= -0.58 C/m2 , e23=-0.58 C/m2 
Si Major Poisson's ratios: PRXY=PRYZ=PRXZ=0.26, Young's Modulus Ex=Ey=Ez=     
                134.36 GPa 
SiN PRXY=PRYZ=PRXZ=0.29, Ex=Ey=Ez= 178.20 GPa 
SiOC PRXY=PRYZ=PRXZ=0.22, Ex=Ey=Ez=     8.88 GPa 
Mo PRXY=PRYZ=PRXZ=0.31, Ex=Ey=Ez= 314.26 GPa 

The resonator has an area of 22500 µm2.  
Other assumptions about the model: 
Mechanical boundary conditions: zero displacement constraints for all directions imposed 
on the bottom surface of the last block (only for stack configuration 10). 
Meshing: 

• Only one 3-D 20-node brick element is considered in all transversal sections (the 
transversal waves of propagation are practically neglected). 

• Each layer is meshed longitudinally with a number of 3-D 20-node brick elements, that 
have the height less than 1/8 of the wavelength, and this number is increased until we 
reach the stability of the resonance and antiresonance frequency values. 

This stable solution is reached in general for elements with heights about 1/(16÷25) of the 
wavelength. 
Mechanical losses have been taken into account by using a constant damping ratio of 3x10-3. 
In this model only longitudinal wave propagation is reproduced. The FEM analysis results 
have been computed adding layer by layer and are given in the following. The resonance 
frequencies are compared to those obtained using the Mason multilayer model. 
 

Stack 
configuration 

Resonance 
frequencies 

computed with 
FEM simulation 

FEM simulation result 

Config 1:  
only AlN  
1170 nm 
  

Fr = 4.568 GHz, 
Fa = 4.702 GHz 
Mason model: 

GHz 4.7009

2

1 33

2
33

33

=

=

+

=
ρ

ε

e
c

l
Fa

 (simple 
anti-resonance 
formula for 
thickness mode) 
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Config 2: 
 Config 1  
+ Mo 240 nm  
(atop the AlN 
layer) 
 

Fr = 3.093GHz, 
Fa = 3.180 GHz 

Config 3: 
 Config 2  
+ Mo 280 nm 
(under the 
AlN layer) 
  

Fr = 2.138 GHz, 
Fa = 2.208 GHz 

Config 4: 
 Config 3  
+ SiN 200 nm 
(atop the 
stack) 
 

Fr = 2.037 GHz, 
Fa = 2.103 GHz 
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Config 5: 
 Config 4  
+ SiOC 295 
nm (under the 
stack) 
 
 

2 resonances:
 
Fr1 = 1.850 GHz, 
Fa1 = 1.895 GHz
 
Fr2 = 2.408GHz, 
Fa2 = 2.440 GHz 

Config 6: 
 Config 5  
+ SiN 1160 
nm (under the 
stack) 
 
   Fr = 2.043 GHz, 

Fa = 2.107 GHz 

Config 7: 
 Config 6  
+ SiOC 295 
nm (under the 
stack) 
 

2 resonances: 
 
Fr1 = 2.033 GHz, 
Fa1 = 2.090 GHz
 
Fr2 = 2.185 GHz, 
Fa2 = 2.193 GHz 
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Config 8: 
 Config 7  
+ SiN 1160 
nm (under the 
stack) 
 
   Fr = 2.042 GHz, 

Fa = 2.106 GHz 

Config 9: 
 Config 8  
+ SiOC 295 
nm (under the 
stack) 
 

Fr = 2.042 GHz, 
Fa = 2.106 GHz 

Config 10: 
 Config 9  
+ Si 725 µm 
(under the 
stack) 
 = real 
resonator  
   

Fr = 2.042 GHz, 
Fa = 2.106 GHz 

A good agreement between ANSYS numerical results and the analytical Mason multilayer 
model (Rosenbaum, 1988; Christopoulos, 1995) has been observed.  
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4.2  3D numerical simulation of a BAW resonator structure 

Only a quarter of the resonator structure (as is it seen in transversal plane) has been taken 
into account in order to reduce the computational FEM effort required by 3D FEM 
simulations of the whole stack (Fig. 16. (a),(b)). Mechanical boundary conditions (zero 
displacement constraints for transversal directions, ux=0 or uy=0) and dV/dn=0 boundary 
condition (for piezoelectric layer) are imposed on the symmetry planes. The mesh 
discretization for longitudinal directions is the same as in previous chapter. For lateral 
directions we used a discretization of ndiv x ndiv 20-node brick elements. 

 

 

 

(a) Lateral boundaries are free 

 

 

(b) Lateral boundaries have zero displacement constraints for all directions 

Figure 16. 3D simulations (ndiv = 8) 

In order to establish a more realistic model for transversal wave propagation we extend all 
layers by ext µm in each lateral side (because the abrupt end of the mesh is far from the real 
structure). For this new volume the mesh is much less dense. The electrodes have the area of 
¼ x 22500 µm2. Some results obtained using this approach are presented in Fig. 17 and Fig. 
18. Obviously, the results taking into account a larger extended part are closer to the real 
structure. 
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(a) Lateral boundaries are free 

 

(b) Lateral boundaries have zero displacement constraints for all directions 

Figure 17. 3D simulations for lateral extended stack (ndiv = 6 and 2 divisions for lateral 
extended side with ext=100µm) 

 

Figure 18. 3D simulations for lateral extended stack (ndiv = 8 and 4 divisions for lateral 
extended side with ext=200µm, lateral boundaries have zero displacement constraints for all 
directions.) 

The local stress values are shown in Fig. 19. According to common expectations, the 
maximum values are obtained for the series resonance frequency. 
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Figure 19. Local stress 

Remarks: 

• The resonance frequencies corresponding to longitudinal propagation are the same for 
all models.  

• The lateral modes are more accentuated and unstable. Some possible causes: 

• Model  assumptions which are not satisfied by the real structure 
a. Thickness uniformity  
b. Approximate layer lateral dimensions 
c. Approximate lateral boundary condition (mechanical) 

• Ill- conditioned meshing (in order to save CPU time, a small number of lateral 
divisions has been considered) 

• Approximate material parameters (not measured) 
a. Some AlN parameters on transversal directions are taken from 

literature (where different values are given) 
b. All layers, except AlN, are considered isotropic (perhaps they are not); 

the parameters on lateral directions being considered equal to that on 
the longitudinal direction. 

5. Circuit models for power BAW resonators and filters 

As BAW resonators are used to build filters which are parts of intricate circuits, like the 
power amplifier and duplexer in the mobile phone, circuit models are very useful in the 
design at system level. At a relatively low incident power the BAW resonator has a linear 
behaviour which can be described in a broad frequency range by the Mason model (Wilson, 
1989), a circuit which contains lumped and distributed parameter elements. In the vicinity of 
a resonance frequency pair (as, for example corresponding to the thickness mode) a simpler 
model, the Butterworth-Van Dyke (BVD) circuit, can be used (Fig. 20). 
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Figure 20. Butterworth-Van Dyke circuit 

A high power fed into the BAW resonator produces three nonlinear effects, namely: the 
amplitude-frequency effect, the intermodulation effect, and the bias-frequency effect 
(Nosek, 1999; Aigner et al., 2005). 
The amplitude-frequency effect is illustrated by the series resonance frequency increase as 
excitation amplitude increases for a quartz resonator (Fig. 21) (Nosek, 1999). A decrease of 
the series resonance frequency as the excitation amplitude increases has been observed in 
the case of an AlN stack crystal filter (Ketcham et al., 1988). The intermodulation effect 
consists, for example, in measuring some harmonic components of the response to a 
sinusoidal excitation (Nosek, 1999; Aigner et al., 2005; Ketcham et al., 1988). The shift of the 
series resonance frequency as a function of bias voltage is the bias-frequency effect (Aigner 
et al., 2005). 
The linear parametric model in Fig. 22, valid for the response on the fundamental frequency, 
which is able to reproduce this amplitude-frequency effect, is described in (Nosek, 1999). 
The resistance and the capacitance in the motional branch of the BVD circuit are considered 
as dependent on the r.m.s. current value I in this branch: 

 

Figure 21. Frequency characteristics of a quartz resonator (I- resonator current, U- excitation 
voltage) 
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Figure 22. Linear parametric model of a quartz  resonator 

 )1()( 2IRIR β+=                  )1(
1

)(

1 2I
CIC

α+= . (44) 

This linear parametric model and other similar ones (Constantinescu et al., 2007) can 
reproduce the amplitude-frequency effect but don’t give intermodulation products. 
These linear models contain parametric circuit elements whose characteristics depend on a 
r.m.s. value. This kind of dependence is not allowed in circuit simulators working in the 
frequency domain as ADS and APLAC (Constantinescu et al., 2007). Moreover, it cannot be 
used in a circuit simulator working in the time domain as SPICE or SPECTRE 
(Constantinescu et  al., 2007). To overcome this difficulty, iterative AC analyses have been 
implemented in APLAC and MAPLE (Constantinescu et al., 2007). Even though these 
methods can lead to correct results in a reasonable amount of time for the analysis of a 
circuit composed by several resonators, they cannot be used for the analysis of an intricate 
system like the power amplifier and duplexer in a mobile phone.  
Starting from an idea in (Aigner et al., 2005) two new nonlinear circuit models have been 
developed (Constantinescu et al., 2007). The first model is based on the BVD circuit in which 
the nonlinear resistor, inductor and capacitor are implemented as nonlinear controlled 
sources (Fig. 23). 
The following parameter values were used for the APLAC implementation of this circuit: 
C0 = 1.566e-12 
CCVS  R1    1    2   1   b       [4.695*(CI(0)+0.5*CI(0)^2+0.5*CI(0)^3)] R 
CCVS  L1    2    3   1   b       [3.5e-9*(CI(0)-5e-2*CI(0)^2+1e-2*CI(0)^3)] L 
VCCS  C1    3    5   1   3   5  [1.7666e-12*(CV(0)+1e-2*CV(0)^2+1e-4*CV(0)^3)] C 

 

Figure 23. Controlled source implementation of the first nonlinear circuit model  
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The amplitude-frequency effect of this model is shown in Fig. 24, where the frequency 
characteristics for the 1V, 3V, and 5V excitation amplitude are given. The decreasing of the 
series resonance frequency as the excitation amplitude increases may be observed. The 
second and third harmonic amplitudes obtained with the first model are given in Fig. 25 for 
three excitation frequencies. 

 

 

 

 
Figure  24. Ia vs. frequency for the  first nonlinear model 

 

 

 

 
Figure 25. Intermodulation products for V=5V,  first model 

Forcing the current value in the motional branch by means of the VCCS, the capacitor has a 
dominant role in this model, both the resonance frequency shift and the amplitudes of the 
intermodulation products depending mainly on its nonlinear characteristic. To avoid this 
disadvantage a second model is proposed (Fig. 26).  
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Figure 26. Second nonlinear circuit model 

 

 

 

Figure 27. Intermodulation products for V=5V, second model 

 

 

 

Figure  28. Intermodulation products, second model with modified inductor 
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The following parameter values were used for the APLAC implementation of this circuit: 
C0 = 1.566e-12 
CCVS L1 1 2 1 b [3.5e-9*(CI(0)+.1*CI(0)^2+1e-2*CI(0)^3)] L 
CCVS R1 3 5 1 c [430*(CI(0)+2e-2*CI(0)^2+2e-2*CI(0)^3)] R 
VCCS C1 3 GND 1 3 GND [.177e-12*(CV(0)+5e-5*CV(0)^2+5e-5*CV(0)^3)] C 
This circuit shows an amplitude-frequency effect similar to the first model. Its 
intermodulation effect is illustrated in Fig. 27. 
In order to show the better fitting properties of this second model, let’s modify the 
inductance parameters as: 
CCVS L1 1 2 1 b [3.5e-9*(CI(0)+1e-3*CI(0)^2+1e-3*CI(0)^3)] L 
(changed values are underlined). Using this new inductance the amplitude-frequency effect 
remains the same, while the amplitude of the second harmonic practically vanishes as it is 
shown in Fig. 28. 
The second circuit model allows a better control of both amplitude-frequency effect and 
intermodulation effect than the first one. This control is obtained by varying the coefficients 
of the polynomial nonlinearities. In order to validate these models, we considered the 
measured dependence of the series resonance frequency on the incident power 
(Constantinescu et al., 2008). A comparison between the simulated and measured data is 
given in Fig. 29. 
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Figure 29. The dependence of the series resonance frequency on the incident power 

In order to compare simulation results in time domain (TD) and frequency domain (FD) the 
two resonator filter in Fig. 30 has been analyzed both with periodic steady state analysis 
(PSS) and harmonic balance analysis of SPECTRE.  
These analyses are implemented in the IC 6.1.0 package of CADENCE. The polynomial 
nonlinearities are defined by the coefficients a0, a1, a2, whose meaning has been shown 
before. The running options are: 
SetOption1 options iabstol=1e-13 vabstol=1e-12 digits=8 fund=2.025G harms=4 
outputtype=all errpreset= conservative 
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Figure 30. A nonlinear model of a two resonator power BAW filter 

The harmonic components of the output signal are given in the following tables, for two 
values of the parameter “reltol”. 

 TD FD 

f component 3.646 V 3.646 V 

2f component 239 uV 239 uV 

3f component 191.6 nV 118.8 nV 

Table 5. Harmonic components of the output signal, reltol=1e-6 

 TD FD 

f component 3.646 V 3.646 V 

2f component 238.9 uV 239 uV 

3f component 115.5 nV 118.8 nV 

Table 6. Harmonic components of the output signal, reltol=1e-9 

These results show a very good agreement between the TD and FD analyses.  
Further research will be devoted to filter modeling and simulation taking into account real 
RF signals (not sinusoidal ones as in the case of the results given before). To this end new 
nonlinear circuit models can be developed using simple impedance transformations. 
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