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Abstract

There are significant alterations in the tumor surrounding stromal cells in addition to the
cancer cells in tumor microenvironment. Tumor cells can metastasize by acquiring the
ability to escape immune control and surveillance. A decline in the ability of the immune
cells to recognize and kill the tumor leads to tumor relapse or metastasis after primary
treatment. Comprehensive review in this chapter will be conducted to further investi-
gate into the mechanism of immune evasion in metastatic tumor microenvironment. The
immune cells, stromal cells, extracellular matrix protein/component, and their interaction
will be reviewed and summarized. Breast cancer has not been previously viewed as a
particularly immunogenic type of tumor. Nevertheless, immune parameters have been
increasingly studied in breast cancer, and accumulating data show that they are relevant
for the development and progression of this tumor type. Consequently, immunothera-
pies of breast cancer are now tested in different clinical trials. The prospect of immuno-
therapy in metastatic breast cancer will be introduced. The importance of host-targeted
modulation/therapy will be increased in addition to cancer-targeted strategies. We have
to better define subpopulations of breast cancer patients to optimize the immunological
way to overcome the cancer metastasis.
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1. Introduction

The innate and adaptive immune responses are crucial for combating pathogen infection,
repairing damaged tissue, and maintaining immune homeostasis. The immune system is
composed mainly of macrophages and lymphocytes, including B-cells, CD4+ T-cells, CD8+
cells, and natural killer (NK) cells [1, 2]. The innate immune response is a nonspecific general
response to infection used mainly by macrophages and natural killer cells, while the adaptive
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immune system is a more developed system in which certain lymphocytes “recall” specific
pathogen-antigenic patterns and alert the immune system when activated. The macrophage
plays an important role in the innate immune system to help the adaptive immune system. In
the lung alveoli, these macrophages phagocytize apoptotic cells and debris and digest them
in lysosomes [1]. Binding of antigens presented by major histocompatibility complex (MHC-I/
IT) to antigen-presenting cells” (APCs’) Toll-like receptors can help to avoid an autoimmune
response by having a system for recognizing cells that are native to the host body. The APCs
then express the MHC/antigen complex and a co-stimulatory molecule to the naive T-cells
to suppress their activation against the normal tissue cells, preventing autoimmune dam-
age [3]. An essential factor in the adaptive immune system is the recognition of antigens. All
microbes, cells, cancer cells, and other pathogens possess antigens. As explained earlier, MHC
complexes present cell antigens for APCs to copy and express themselves. The APCs then
present this MHC/antigen complex with a co-stimulatory molecule to activate or suppress
naive T-cells, depending on the nature of the antigens [3]. Although derived from normal
cells, cancer cells have significant mutations to alter their antigenic peptide sequences and
become immunogenic [4]. If the antigen can be recognized as pathogenic, the T-cells release
cytokines to allow themselves to differentiate into cytotoxic phenotypes and then secrete
chemokines to recruit more immune cells from the circulation. B-cells also produce comple-
mentary antibodies to help target the pathogen for destruction if its antigens are previously
recognized from past infections [5]. Many of the antigen-presenting functions are dysregu-
lated in cancer environment. Tumor cells secrete factors that induce immunological tolerance
(e.g., lactic acid, indoleamine 2,3-dioxygenase (IDO), and various cytokines), recruit immuno-
suppressive immune cells such as M2 macrophages, alter their cell attributes to avoid recogni-
tion (e.g., by suppressing antigen presentation or becoming elusive mesenchymal-like cells),
and skew immune cell function by triggering immunosuppressive pathways. Additionally,
they constitutively proliferate by activating signaling pathways that promote growth (e.g.,
the estrogen-induced growth pathway in breast cancer). Consequently, there are many inter-
acting factors that have to be considered in breast cancer therapy in order to better improve
tumor treatment response and survival.

The tumor microenvironment consists of not only a stroma composed of fibroblasts, adi-
pocytes, endothelial, and resident immune cells but also an insoluble extracellular matrix
(ECM). The ECM itself is composed by a complex mixture of components, including proteins,
glycoproteins, proteoglycans, and polysaccharides [6, 7]. Breast cancer-associated alterations
in the amount and organization of extracellular components have been demonstrated in pre-
vious studies. These changes lead to tumor metastasis progression and treatment resistance
through dysregulated biochemical and physical properties of tumor-associated ECM and
subsequently affecting peri-tumoral stromal cells, including immune, endothelial, and other
stromal cells in promoting oncogenesis (e.g., evolution of ductal carcinoma in situ to invasive
disease). Although many ECM components have been identified as relevant factors in breast
cancer progression, evaluation and targeting of a single molecule appears to have limited
usefulness in predicting therapeutic response. This might attribute to the large number of
ECM components, which, even if likely redundant, collectively contribute to distinctive phys-
ical, biochemical, and biomechanical properties of the tumor microenvironment [8]. In gene
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expression, profiles of breast cancer-associated fibroblasts identify distinct stromal patterns
with prognostic implication, and the expression profiles of some extracellular matrix genes
provide prognostic information of patients at risk of clinical progression and/or predictive
significance for treatment efficacy. It needs to define function and composition of the distinct
stromal components, and integrated by proteomic studies to compose and clarify the complex
interactions between tumor cells and their surrounding microenvironment.

2. Tumor-associated immune stroma and immunosuppressive cells in the
tumor microenvironment

Immune cells can functionally suppress cancer or become dysregulated with immune sup-
pression in the tumor-associated microenvironment. Dendritic cells, macrophages, natural
killer cells, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs) all
have been demonstrated to participate in the tumor-promoting microenvironment because
of their functional characteristics within the tumor niche. Especially, M2-polarized macro-
phage populations in the tumor-associated macrophages (TAMs) promote pro-angiogenesis,
immune suppression/evasion, and tumor cell migration and invasion [9]. TAMs-targeted
strategy may lead to reduced angiogenesis, tumor cell invasion, and metastasis, as well as
enhance the antitumor activity of chemotherapeutics [10]. Upon tumor progression, MDSCs
could differentiate into dendritic cells and TAMs and lead to tumor immune suppression/
evasion, extracellular matrix remodeling, and epithelial-mesenchymal transition (EMT) [11].
Dysfunctional dendritic cell activity within cancer leads to lower number of mature den-
dritic cells. Inefficient maturation of dendritic cell may contribute to tolerogenic effect and
immunosuppression [12]. Two specific NK subpopulations have been demonstrated in tumor
microenvironment: tumor-infiltrating natural killer cells (TINKs) and tumor-associated natu-
ral killer cells (TANKS) [13]. These NK subpopulations represent distinct cytokine profiles
leading to enhanced angiogenesis and tumor progression [14]. Additionally, Tregs have been
shown to play a crucial role in tumor progression via infiltration of tumor tissue and miti-
gation of the antitumor immune response [15]. Furthermore, it is reported that Tregs may
enhance angiogenesis in a mouse model of ovarian cancer [16]. Taken together, this evidence
suggests that contextual responses of immune cells within the tumor stroma help to modulate
tumor progression. Given the complicated crosstalk between tumor cells, local endogenous
stroma, and tumor-associated stroma, personalized multimodal therapeutic strategies should
be developed that target not only the tumor bulk but also the tumor-associated immunosup-
pressive stromal compartment and associated cell-derived factors.

3. Overcoming the immunosuppression
Proper T-cell activation will require two signals regulating T-cell survival, proliferation, and/

or responsiveness to antigens. The first signal is initiated by the T-cell receptor (TCR) through
antigen recognition, while the second one is mediated by an interaction between receptors and
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ligands of co-stimulatory and/or co-inhibitory signals, also known as immune checkpoints, in
particular the B7 family [17, 18]. Under physiologic conditions, there exists a counterbalance
between co-inhibitory and co-stimulatory signals, which is essential for the maintenance of
self-tolerance and immune homeostasis, thereby protecting the host from unnecessary dam-
age upon the clearance of the pathogen by the immune system [19]. In tumors following
oncogenic transformation, immune inhibitory molecules are overexpressed resulting in the
attenuation of adapted immune reactions and immune resistance. T-cells are able to control
diverse effector responses by integrating both adaptive and innate immune mechanisms.
Therefore, agonists of co-stimulatory receptors or antagonists of inhibitory receptors might
enhance antigen-specific T-cell response [20]. The blockade of immune checkpoints mono-
clonal antibodies has been demonstrated to trigger effective antitumor responses not only in
classical “immunogenic” tumor types, such as melanoma and renal cell carcinoma [21, 22],
but also in many other solid cancers, such as lung [23], colorectal [24], ovarian [25], gastric [26],
esophageal [27], bladder [28], and more recently breast cancer [29]. In addition to anti-CTLA4,
mAbs directed against PD1 and PD-L1 are emerging as important therapeutic strategies in
the treatment of cancer patients. These drugs are characterized by a better safety profile and
more effective antitumor activity. PD1 is an immune inhibitory receptor mainly expressed
on activated T-cells, B-cells, and monocytes, but also on Tregs. Following interaction with
its ligands (i.e., PD-L1 and/or PD-L2), PD1 induces T-cell anergy, leading to immune escape
[30-32]. PD-L1 is the best characterized of the two known PD1 ligands and can be expressed
by tumor cells as well as by T- and B-cells, macrophages, and dendritic cells [33, 34]. Food and
Drug Administration (FDA) has approved the use of anti-PD1 mAbs nivolumab and pem-
brolizumab in metastatic melanoma (in 2014) and non-small cell lung cancer (in 2015), while
anti-PD-L1 has demonstrated similar antitumor activities and is currently in a glowing stage
of development [35, 36].

In breast cancer, PD-L1 transcript expression positively correlates with that of interferon
(IFN)-y and other inflammatory genes [37] and in 12 of 41 triple-negative breast cancer
(TNBC) found the same chromosomal amplification, which is associated with higher expres-
sion of PD1 ligands compared to estrogen receptor (ER)-positive or human epidermal growth
factor receptor 2 (HER2)-positive breast cancer tissues [38]. The largest immunohistochemical
evaluation evaluating almost 4000 breast cancer tissues detected PD-L1 expression (cutoff
at 1%) in 1.7% of all tumors and in 19% of the 302 TNBC samples [39]. However, among
the tumor-infiltrating lymphocytes (TILs), PD-L1 expression was present in 6% overall and
in 39% of TNBCs. Luminal A and luminal B subtypes are the major breast cancer tumors.
However, PD-L1 expression is rather less common in luminal subtypes given their high prev-
alence, they still represent a considerable proportion of PD-L1-positive tumors (i.e., 44% of
all PD-L1-positive tumors in the study by Ali et al. [39]). This subgroup of luminal PD-L1-
expressed patients might benefit from immunotherapy [40]. A transcriptomic meta-analy-
sis of 5454 breast cancer tissues demonstrated a highly variable frequency of PD-L1 mRNA
expression [39]. Expression was most prevalent in basal tumors, followed by HER2, and then
luminal subtypes. High PD-L1 expression levels were associated with poor clinical prognostic
factor such as larger tumor size, higher grade, triple negative, and higher proliferative activity
[39]. Recently, PD-L1 expression was detected in circulating tumor cells (CTCs) in the blood
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of hormone receptor-positive, HER2-negative breast cancer patients [41]. Thus, PD-L1 expres-
sion of circulating tumors cells or soluble form detection can be plausible for stratification
and monitoring of tumor patients undergoing immune checkpoint blockade. The influence of
confounding variables is less strong in the therapeutic setting where the expression of PD-L1,
which is in turn associated with the expression of ICR genes, is correlated with responsive-
ness to neoadjuvant breast cancer chemotherapy [42, 43]. The predictive role of PD-L1 in the
metastatic setting is completely unknown.

4. Immunotherapy in breast cancer

Breast cancer has been considered as non-immunogenic tumor, and therefore immunothera-
pies play a limited role in breast cancer patients. In the metastatic setting, vaccination thera-
pies have shown some signs of activity [44, 45], but results have been overall disappointing
with lower objective response (OR) and clinical benefit. NeuVax, which is composed of the
human epidermal growth factor receptor 2 (HER2)-derived peptide E75 (nelipepimut-S)
combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) as an immu-
noadjuvant, appears to have clinical efficacy in early phase I/II trials [46, 47]. It is now the
only breast cancer vaccine being evaluated in a phase III trial [48, 49]. Adoptive therapy with
TILs is relatively active in melanoma patients [50]. However, this approach has not yet been
applied in breast cancer due to the difficulty to generate sufficiently effective TIL cultures
against the original tumor [51]. A phase I/Ila study in metastatic breast cancer by Domschke
et al. [52] and Stefanovic et al. [53] demonstrated promising results in terms of immunological
response, disease control, and survival by using bone marrow-derived tumor-reactive mem-
ory T-cells. An intriguing median overall survival (OS) of 34 months was achieved with three
(20%) patients alive at last follow-up and more than 7 years after treatment. Interestingly, the
survival rate correlates with the immunological response in the peripheral blood. They are
now testing this approach in combination with cyclophosphamide to counteract the response
to Tregs in a phase II study [54].

The first study employing checkpoint inhibitors tested the anti-CTLA4 mAb tremelimumab
in combination with endocrine therapy (examestane) in metastatic ER-positive breast cancer
patients. No significant clinical response was observed by treatment although 42% of patients
achieved stable disease for more than 3 months [55]. The anti-CTLA4 mAb ipilimumab is now
being tested in patients with earlier stage or lower tumor burden. Based on the predictive
and/or prognostic role of TILs [56, 57] and immune signatures [37] in breast cancers, and in
view of the encouraging activity of PD1 blockade among multiple tumors, this strategy is now
actively studied in breast cancer.

In general, TNBCs have a higher density of TILs, more active expression of inflammatory-
related genes, and considering that the prognostic role of TILs is more prominent in TNBC
than in other subtypes, the efficacy of PD1 inhibition has so far been evaluated in this setting
[58, 59]. Results from two studies assessing the anti-PD1 mAb pembrolizumab and the anti-
PDL1 atezolizumab were recently presented. The pembrolizumab phase Ib KEYNOTE-012
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trial recruited 32 metastatic TNBC patients, most of whom had previously received at least
three lines of chemotherapy for metastatic disease [60]. Only patients with PD-L1 staining
in the stroma or in >1% of tumor cells (evaluated by IHC) in archived samples were eligible.
Satisfactory response rate of 19% was obtained with one complete and four partial respond-
ers. The atezolizumab phase Ia expansion trial enrolled 54 TNBC patients [61]. Even with
previous chemotherapy heavily pretreated patients (85% had received four or more lines of
chemotherapy), a similar overall response rate of 24% was reported with three partial and
two complete responses in the 21 studied patients [62]. The efficacy of single-agent immuno-
therapy soon led to combination strategies and showed better efficacies with the combination
of anti-PD1 mAb nivolumab and ipilimumab in melanoma [63]. Some combinatorial trials
have been initiated to evaluate the activity of these and other anti-PD1/PD-L1 mAbs in mul-
tiple tumors, including breast cancer. These trials include combinations with co-stimulatory
molecules, different checkpoint inhibitors, p53 vaccine, HER2-targeted monoclonal antibod-
ies, histone deacetylase inhibitors, less cytotoxic chemotherapy or tyrosine kinase inhibitor
(nab-paclitaxel, eribulin, PLX3397), poly I:C (a Toll-like receptor agonist), bevacizumab (an
anti-angiogenic mAb), and radiotherapy [29].

5. Conclusions/perspectives

Over the last 20 years, we have learned more about the correlation of solid tumors and the
immune system. By understanding the interactions has come a renaissance in cancer therapy,
as immunotherapeutic interventions, which augment tumor-specific responses and inhibit
the suppressive pathways maintaining cancer cells’ immune privilege, have shown increasing
efficacy in the clinical practice. However, despite the advancement we have made in under-
standing these mechanisms, we have just started to translate this knowledge into therapeutic
implications.

Trastuzumab was the first antibody that could induce an antigen-specific antitumor immune
response [64]. It remains to be investigated whether the main effect of trastuzumab is related to
immunological mechanisms or to synergistic activity with chemotherapy [65]. Meanwhile, many
antibodies have been approved for treating solid tumors including breast cancer. However,
tumor-targeted antibodies represent only a small part of the immunotherapeutic strategies.

The treatment or prevention of metastatic breast cancer remains challenging. Targeting the
immune checkpoint molecules in the tumor microenvironment, to modulate antitumor
immune response with manageable toxicity, is an attractive and promising therapeutic strat-
egy for breast cancer. Nevertheless, only the minority of breast cancer patients with metastatic
disease has responded to an anti-PD-1 therapy (18% with the antibody pembrolizumab).
Future in-depth research is urgently needed to identify the predictive biomarkers in those
responders before starting the treatment. These therapies may represent the future standards
of care but “one size doesn’t fit all” is a dictum reflecting the wide range of immune treatments.
We need to define the susceptible subpopulations (with predictive biomarkers) and to apply
those treatments as monotherapy, combined with standard therapies, in a more optimized
sequence of therapy, or at the optimal timing of therapy (adjuvant vs. metastatic setting).
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cancer progression, immune-related toxicities, and the mechanisms of immunologic resis-
tance to checkpoint modulation may further enhance the efficacy of cancer immunotherapies
with its potential clinical applications.
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