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Abstract

The origin of the extragalactic gamma-ray background (EGRB) is an important open
issue in the gamma-ray astronomy. There are many theories about the origin of EGRB:
(1) some truly diffuse processes, such as dark matter (DM) annihilation or decay, which
can produce gamma rays; (2) gamma rays produced by energetic particles accelerated
through induced shock waves during structure formation of the universe; (3) a lot of
unidentified sources, including normal galaxies, starbursts and active galactic nuclei
(AGNs), contain a large number of energetic particles and can emit gamma rays. Among
various extragalactic sources, blazars including flat spectral radio quasars (FSRQs) and
BL Lac objects are one of the most possible sources for EGRB. As continuous accumula-
tion of the data observed by the Fermi Gamma-Ray Space Telescope, it is possible to
directly construct gamma-ray luminosity function (GLF) of the blazars involving evolu-
tion information. In this chapter, based on the largest clean sample of AGNs provided
by Fermi Large Area Telescope (LAT), we mainly study blazar's GLFs and their contri-
bution to EGRB. In our study, we separately construct GLFs of FSRQs and BL Lacs and
then estimate the contributions to EGRB, respectively. Further, we discuss the diffuse
gamma ray from other astrophysical sources and the other possible origins of the EGRB.

Keywords: blazars, gamma-ray radiation, luminosity function, the extragalactic
gamma-rays background

1. Introduction

The large area telescope (LAT [1]) onboard Fermi gamma-ray space telescope (Fermi) has mea-

sured the extragalactic diffuse gamma-ray background and then provided useful information for

us to study the origins of the extragalactic gamma-ray background (EGRB) [2–5]. However, the

origin of the EGRB is still an unsolved problem. Observationally, an isotropic component of

the EGRB emission was first detected by the SAS-2 satellite [6, 7] and subsequently measured

by the energetic gamma-ray experiment telescope (EGRET) [8–10]. Due to the higher sensitivity

of Fermi-LAT than that of EGRET, the observed integrated flux above 100MeV by the LAT is

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



ð1:03–0:17Þ· 10−5 photons cm−2s−1 [3], which is lower than ð1:14–0:05Þ· 10−5 photons cm−2s−1

measured by EGRET [11]. Recently, Fermi-LAT has made a new measurement of the EGRB

spectrum and their results shown that the EGRB energy spectrum between 0.1 and 820GeV is to

be well represented by a power law with an exponential cutoff above 300GeV [5]. Figure 1 (left

panel) shows the measured X-ray and gamma-ray background radiation spectra. We know that

the X-ray background spectrum has no big change with time and has been considered as the

integrated light produced via the accretion process of active galactic nuclei (AGNs) [12]. However,

the gamma-ray spectrum is different from the X-ray background spectrum due to the sensitivity

of an instrument and other reasons. Before the Fermi gamma-ray space telescope era, neither

spectrum nor origin of the EGRB was well understood. In particular, the spectrum at 0.03–50GeV

reported by EGRET has a break in the several GeV. With the arrival of Fermi era, more accurate

determination of the EGRB spectrum and more extragalactic source samples are provided to

understand the nature of the EGRB. Note that the whole gamma-ray sky contains diffuse galactic

emission, point sources, isotropic extragalactic diffuse emission and local and solar diffuse emis-

sions. Figure 1 (right panel) shows that the EGRB spectrum is obtained by removing the resolved

point source, like as the most recent list of resolved Fermi-LAT source (3FGL), the diffuse galactic

emission determined by GALPROP, which simulates both cosmic-ray propagation in the galaxy

and the gamma-ray flux resulting from interactions and possibly an isotropic flux of galactic, by

restricting data to regions with |b|>10° or even higher galactic latitudes.

Similar to the extragalactic EGRET sky, blazars are the largest source class identified by Fermi

extragalactic sky and their contribution to the EGRB has been widely discussed. Typical estimated

contributions of unresolved blazars to the EGRB range from 10 to 100% [13–36]. Blazars are

divided into two main subgroups: BL Lac objects and FSRQs [37]. Among the gamma-ray blazar

sample, the number of FSRQs detected by Fermi-LAT is smaller than that of BL Lac objects (e.g.,

2FGL, 3FGL). FSRQs generally show softer spectrum in the gamma-ray band (e.g., [38]), which is

to be detected harder than BL Lac objects at a given significant limit. On the one hand, BL Lacs are

reputed as the population of extragalactic sources that show a negative or no cosmological

evolution [39–42], but FSRQs are regarded as those with a positive cosmological evolution, which

Figure 1. Left: The measured X-ray and gamma-ray background radiation spectra, which is from Ref. [5]. Right: The

composition of the total gamma-ray flux. The figure is obtained from the report of Ackermann, M. at Fermi Symposium.
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is similar to the population of X-ray-selected, radio-quiet AGNs [43–45]. Ajello et al. [32]

suggested that BL Lacs have a more complex evolution. At the modest redshift region, most BL

Lac classes show a positive evolution with a space density peaking. Meanwhile, their results

suggest that the evolution of low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects is

strong negative with number density increasing for low redshift range (z ≤ 0:5). In addition, the

contributions of the EGRB from other sources or processes are very important. Those are star-

forming galaxies [46, 47], radio galaxies (e.g., [14, 46, 48]), gamma-ray bursts (GRBs) (e.g., [49]),

high galactic-latitude pulsars (e.g., [50]), intergalactic shocks (e.g., [51, 52]), Seyferts (e.g., [53]),

cascade from ultra-high-energy cosmic rays (e.g., [54, 55]), large galactic electron halo [56], cosmic-

ray interaction in the solar system [57] and dark matter annihilation or decay (e.g., [58]). Recently,

with the assumptions and uncertainties, Ajello et al. [33] and Di Mauro and Donato [36] shown

that the EGRB can be fully accounted for the sum of contributions from undetected sources

including blazars and radio and star-forming galaxies. Those results imply that little room in

space is left for other processes such as shock wave or DM interactions (e.g., [33, 59]).

The extragalactic gamma-ray sky provides an amount of gamma-ray sources and allows us to

obtain the information about the evolution of sources and estimate their contributions to the

EGRB. Because the blazar's contribution is the main content of research on this chapter, the

detail about how to build the gamma-ray luminosity function (GLF) will be discussed in

Section2. In Section3, a brief description about how to estimate different components’ contri-

butions to the EGRB is given and finally, we give the conclusions and discussions in Section4.

2. The gamma-ray luminosity function

Since the Fermi-LAT has detected and identified more and more gamma-ray sources and

observed previously detected objects in greater detail, the method by using the gamma-ray

luminosity function (GLF) to estimate the EGRB of resolved sources has become much more

reliable. In this approach, the GLF involving the evolution of redshift as well as the distribution

of spectral indices of a given source class can be established for all known sources and the

observed population can be extrapolated to lower fluxes.

2.1. Function derivation

As professed in Ref. [31], there is a classical approach to obtain the luminosity function, which is

on account of 1/VMAX method provided by Schmidt [60] to deal with redshift bins. However,

this method has a fault, which is known to introduce bias in each binning. For a small sample

and/or a large span of parameters, if the bins contained significant evolution, the method would

result in a loss of important information. In order to constrain the model parameters for various

models of the evolving GLF, a maximum likelihoodmethod is adopted, which is first introduced

by Marshall et al. [61]. The likelihood function L is given as follows (e.g., [17, 19, 24, 62]):

L ¼ exp ð−NexpÞ∏
Nobs

i¼1 ΦðLγ, i, zi, ΓiÞ, (1)

where Nexp is the expected number of source detections:
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Nexp ¼

ð

dΓ

ð

dz

ð

dLγΦðLγ, i, zi, ΓiÞ, Nexp is the number of the sample of sources andΦðLγ, i, zi, ΓiÞ

is the distribution function of the space density of source on luminosity (Lγ), redshift (z) and

photon index (Γ). The function form can be expressed as follows:

ΦðLγ, i, zi, ΓiÞ ¼
d
3
N

dLγdzdΓ
¼ ργðLγ, zÞ ·

dN

dΓ
·

dV

dz
·ωðLγ, z, ΓÞ, (2)

where ργðLγ, zÞ is the γ-ray luminosity function and dV=dz is the comoving volume element

per unit redshift and unit solid angle:

dV=dz ¼ cd
2
L
=ðH0ð1þ zÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩMð1þ zÞ3 þΩΛ

q

Þ: dN=dΓ is the intrinsic photon index distribution

assumed as a Gaussian expð−ðΓ−μÞ2=2σ2Þ, where μ and σ are the mean and the dispersion,

respectively. ωðLγ, z, ΓÞ is the detection efficiency and represents the probability of detecting an

object with the γ-ray luminosity Lγ at redshift z and photon index Γ [1, 24, 31]. The relationship

between χ2 and likelihood (L) can be expressed by function χ2 ¼ −2 ln (L) [63]. In this case, the

function χ2 ¼ −2 ln L that is minimized is defined as follows:

χ2 ¼ −2
X

Nobs

i

lnðΦðLγ, i, zi, ΓiÞÞ þ 2Nexp: (3)

For a given GLF, the redshift distribution, luminosity distribution and photon index distribu-

tion can be divided into three intervals of size dLγdzdΓ and the three kinds of differential

distributions can be expressed from GLF as follows [31]:

dN

dz
¼

ð

Γmax

Γmin

ð

Lγ,max

Lγ,min

d
3
N

dLγdzdΓ
dLγdz,

dN

dz
¼

ð

Γmax

Γmin

ð

zmax

zmin

d
3
N

dLγdzdΓ
dzdΓ,

dN

dz
¼

ð

Γmax

Γmin

ð

Lγ,max

Lγ,min

d
3
N

dLγdzdΓ
dLγdz,

(4)

The source count distribution can be derived as follows:

N ð> SÞ ¼

ðΓmax

Γmin

dΓ

ð

zmax

zmin

dz

ð

Lγ, max

Lγðz,SÞ
dLγ

d
3
N

dLγdzdΓ

¼

ðΓmax

Γmin

dN

dΓ
dΓ

ð

zmax

zmin

dV

dz

ð

Lγ, max

Lγðz,SÞ
ργðLγ, zÞωðLγ, z, ΓÞdLγ

(5)

where Lγðz, SÞ is the luminosity of a source at redshift z with a flux of Sγ (>100MeV).

Through minimized Eq. (3), we can obtain the best-fitting parameters of the models. There are

multiple parameters in our various models to find the best in observational data in a
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multidimensional model parameter space; the MCMC technique can be employed for its high

efficiency to constrain the model parameters. In this method, the Metropolis-Hastings algo-

rithm that generates samples from the posterior distribution using a Markov Chain is used

when sampling the model parameters and the probability density distributions of the model

parameters are asymptotically proportional to the number density of the sample points. For

each parameter set P, one obtains the likelihood function LðPÞ∝exp
�

−χ2ðPÞ=2
�

, where χ2 is

obtained by comparing model predictions with observations. A new set of parameter P
0

is

adopted to replace the existing one P with a probability of min {1;LðP′Þ=LðPÞ}. The MCMC

method has been reviewed by Fan et al.[64] and described in detail by Neal [65], Gamerman

[66], Lewis and Bridle [67], Mackay [68].

2.2. Models description

The GLF models for different source classes are uncertainty. Currently, there are two methods

for constructing the blazars’ GLF: the first method is to build the GLF by assuming a relation-

ship between the GLF and the luminosity function in a lower energy band, for example, that

the GLF relates to radio luminosity function (RLF) or to the X-ray luminosity function (XLF)

(e.g., [14, 16, 17, 19, 23, 28, 48, 69–72]); the second method is to construct the GLF directly using

observed gamma-ray data of blazars (e.g., [15, 17, 22]). Before the Fermi era, constructing the

GLF model indirectly was used more frequently due to the small EGRET samples, which

results in blazar's contribution between the range of 10 and 100%. In next sections, we briefly

review those models for directly constructing the GLF.

2.2.1. The pure density evolution

The pure density evolution (PDE) model is the simplest scenario of evolution and the GLF has

a following form:

ρðLγ, zÞ ¼
A

lnð10ÞLγ

Lγ

L

� �γ1

þ
Lγ

L

� �γ2
� �

−1

· eðzÞ, (6)

where eðzÞ ¼ ð1þ zÞκ is the standard power-law evolutionary factor. In this case, there are five

model parameters and other two parameters, μ and σ, are also added.

2.2.2. The pure luminosity evolution

In the pure luminosity evolution (PLE) model, the GLF can be expressed as follows:

ρðLγ, zÞ ¼
Að1þ zÞκez=ξ

lnð10ÞLγ

Lγ

L�ð1þ zÞκez=ξ

� �γ1

þ
Lγ

L�ð1þ zÞκez=ξ

� �γ2
� �

−1

, (7)

where A is a normalization factor, Li is the evolving break luminosity, γ1 is the faint-end slope

index, γ2 is the bright-end slope index, κ and ξ represent the redshift evolution. Including the

parameters μ and σ, there are 8 parameters in calculations.

2.2.3. The luminosity-dependent density evolution

In the luminosity-dependent density evolution (LDDE) model, the GLF evolution is decided

by a redshift cutoff that depends on luminosity and the GLF can be given by
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ρðLγ, zÞ ¼
A

lnð10ÞLγ

Lγ

L�

� �γ1

þ
Lγ

L�

� �γ2
� �

−1

1þ z

1þ z�c ðLγ=10
48Þα

 !p1

þ
1þ z

1þ z�c ðLγ=10
48Þα

 !p2
" #

, (8)

where A is a normalization factor, L is evolving break luminosity, γ1 and p1 are the faint-end

slope index, γ2 and p2 are the bright-end slope index, zc is redshift peak with a luminosity (here

1048 ergs s−1) and α is power-law index of the redshift-peak evolution. From this, there are 10

parameters for calculation.

The detailed description about PLE and LDDE models can be found in sections4.1 and 4.2

from Ref. [32]. These models also can be applied to X-ray band, to determine the information of

evolution of sources in X-ray band (e.g., [62]). With the increase in the number of the detected

sources, the evolutionary form of those sources becomes more complicated and the updated

forms of those models can be found in Ref. [33], which allows the Gaussian mean μ of the

photon index and the evolutionary factor eðz, LγÞ to change with luminosity.

2.3. The cosmological evolution

In Fermi sample, the large redshift range between z ¼ 0 and z ¼ 3:1 of gamma-ray blazars was

found. The obtained GLFs have shown that blazars have a cosmological evolution in their

gamma-ray band. We have simply discussed the redshift evolution of blazars in the “Introduc-

tion”. Ajello et al. [32] recently have presented the new results on the cosmological evolution of

the BL Lac population by using the largest and most complete sample of gamma-ray BL Lacs

available in the literature and they found that for most BL Lac classes, the evolution is positive,

with a space density peaking at modest redshift (z≈1.2) (see Figure 2). In Figure 2, we also see

that for their higher luminosity, FSRQs dominate at all redshifts z>0.3 and the extreme growth

in BL Lac numbers at low z allows them to produce ~90% of the local luminosity density. In

particular, low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects showed different

evolutionary behaviors with respect to other blazar classes (see Figure 2). They have strong

Figure 2. Left: The evolution of the luminosity density of FSRQs compared to that of BL Lac objects. Right: Number

density of FSRQs, BL Lac objects and HSPs. The figures are obtained from the report of [32] and see Ref. [32] for additional

details.
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negative evolution with number density increasing for z<0.5, which confirms previous stand-

points of negative evolution based on the samples of X-ray-selected BL Lac objects and this

sample contained a large fraction of HSPs [39, 41].

3. The extragalactic gamma-ray background

The origin of the EGRB has been widely discussed for various gamma-ray-emitting sources in

literature. Fermi has observed gamma-ray emission from blazars, star-forming galaxies, radio

galaxies, GRBs and high-latitude pulsars. Ajello et al. [33] and Di Mauro and Donato [36]

suggested that blazars, star-forming galaxies and radio galaxies are the main contributors to

the EGRB. For those emitting sources, we focus on how to estimate the contribution of

unresolved objects to the EGRB below, based on the best-fitting GLF (space density of sources).

The differential intensity of the EGRB radiation can be expressed as follows:

dN

dEdΩ
¼

ð

Γmax

Γmin

dΓ
dN

dΓ

ð

zmax

zmin

dV

dz

ð

Lγ,max

Lγ,min

dLγ

ΦðLγ, zÞF
intrinsic

γ ðE, Lγ, z, ΓÞe
−τðE,zÞ

�

1:0−ωðLγ, z, ΓÞ
�

(9)

where ΦðLγ, zÞ is the GLF and e−τðE,zÞ is the optical depth of the extragalactic background light

(EBL) for the sources at redshift z emitting gamma-ray photon energy E. Recently, there are

many studies on EBL (e.g., [21, 73–75]). Generally, we adopted the model given by [73] for the

EBL to calculate the optical depth. In Eq. (9), Fintrinsicγ ðE, Lγ, z, ΓÞ represents the intrinsic photon

flux at energy E with γ-ray luminosity Lγ and a power-law spectrum at redshift z and it is

expressed as follows:

F
intrinsic
γ ðE, Lγ, z, ΓÞ ¼

Lγ ð1þ zÞ2−Γ

4πd2
L
E
2
1

ð2−ΓÞ E2

E1

� �2−Γ
−1

� �

−1
E

100 MeV

	 


−Γ
Γ ≠2,

1

lnðE2=E1Þ
1−

E1

E2

� �

−1
E

100 MeV

� �

−2

Γ ¼ 2,

8

>

>

>

<

>

>

>

:

(10)

where E1 ¼ 100 MeV and E2 ¼ 100 GeV. Therefore, the integrated intensity between photon

energy E1 and E2 ðE2 > E1Þ can be written as follows:

dN

dΩ
¼

ð

E2

E1

dN

dEdΩ
dE (11)

The electrons and positrons are produced due to the interaction between very high energy

(VHE) photons from TeV sources and ultraviolet-infrared photons of EBL. The pairs could

scatter the cosmic microwave background (CMB) radiation to high-energy background
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radiation through the inverse Compton scattering process (e.g., [76–83]). This cascading emis-

sion is regarded as a contributor to the EGRB if the flux of the cascade flux is lower than the

detector's sensitivity. Now, we consider only the first generation of the electron-positron pairs

produced by the gamma-ray absorption to obtain the cascade emission because the emission

from the second generation or more than second generation of created pairs can be negligible

at the GeV band [21]. The formulation of the cascade flux is given as follows [84]:

F
cascade
γ ðE, Lγ, z, ΓÞ ¼

81 π

16 λ3
c

ε2
c
mec

2

ð1þ zÞ4UCMB
ð

∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3εc=4εCMBð1þzÞ
p

dγ

γ8exp½3εc=4γ2εCMBð1þ zÞ−1�

·

ð

εmax

2γ

dε F
intrinsic
VHE

5:11· 105

106
ε, z, Lγ, Γ

� �

½1−e−τðε,zÞ� (12)

where λc ¼ 2:426 · 10−10 cm is the Compton length, the dimensionless energy εc ¼ E · 106=

ð5:11· 105Þ, UCMB ¼ 4:0· 10−13 erg cm−3 is the CMB energy density at z ¼ 0:0; εCMB ¼ 1:24·

109mec
2 is the average CMB photon energy at z ¼ 0:0 and εCMB ¼ 2:0· 108 corresponding to

EVHE ¼ 100TeV. Fintrinsic
VHE

ðEVHE, Lγ, z, ΓÞ represents the possible intrinsic TeV spectrum, which is

extrapolated to the TeV energy ranges from the observed GeV spectrum Eq. (10) by assuming a

power-law spectrum. In Eq. (9), using Eq. (12) in place of Eq. (10) allows us to compute the

contribution to the EGRB from the cascade emission of the source.

It is noted that there are two possible contributions for the cascade emission to the EGRB

because the pairs are deflected by the extragalactic magnetic field (EGMF), which is shown in

Figure 3. In case I, the cascade emission can contribute to the EGRB if the flux of the cascade

emission is lower than that of the LAT sensitivity. In case II, although the flux of the cascade

emission is larger than that of the LAT sensitivity, the angle between the redirected secondary

gamma-ray photons and the line of sight is larger than that of the LAT point-spread function

(PSF) (i.e., θ > θPSF). Thus, the cascade emission will not be attributed to a point source by the

LAT and it then contributes to the EGRB, where θPSF ¼ ð1:7π=180Þð0:001EÞ−0:74½1þ ð0:001E=
15Þ2�0:37 [85]. For more detailed information, see Refs. [81, 84].

3.1. Blazars

Blazars emit gamma rays via the inverse Compton scattering processes and/or hadronic

processes and dominate extragalactic gamma-ray sources. Therefore, it is naturally expected

that blazars contribute the main EGRB. However, its fraction was very uncertain in the EGRET

era due to its small samples. At the same time, its fraction also severely depends on GLF.

Blazars are divided into two main subgroups: BL Lac objects and FSRQs [37]. Figure 4 shows

FSRQs’ EGRB spectra with LDDE model and BL Lacs’ EGRB spectra with PDE model. Com-

pared to FSRQs, BL Lacs have lower gamma-ray luminosities, lower redshifts and harder

spectral indices in statistics (e.g., [86]). Thus, BL Lacs can provide a significant part in the
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contribution of blazar to the EGRB above 10GeV. From Figure 4, we find out that the cascade

emission from BL Lacs has a rather large fraction of the total EGRB energy flux and contrary to

that of FSRQs, which may be caused by harder spectrum for BL Laces. Therefore, the contri-

bution from BL Lacs cascade emission to the EGRB cannot be negligible. Based on the effect of

the EGMF on the cascade contribution from blazars, Yan [84] have studied the effect of cascade

radiation on the contribution to the EGRB using a simple semi-analytical model. They

suggested that if the strength of the EGMF is large enough (BEGMF > 10−12 G), the cascade

contribution can significantly alter the spectrum of the EGRB at high energies. If the small

strength of the EGMF is large enough (BEGMF < 10−14 G), then the cascade contribution is small,

but it cannot be ignored. Recently, Ajello et al. [33] used an updated GLFs to analyze the

redshift, luminosity and photon index distributions and obtained the best-fitting evolutionary

parameters of the GLFs. According to the GLFs and spectral energy distribution (SED) model

consistent with the Fermi blazar observations, their result shown that blazars account for 50þ12
−10

to the EGRB (see Figure 5).

Figure 3. The cascade radiation processes in no or non-zero extragalactic magnetic field (EGMF). Note that the pairs

produced by the interaction between very high energy (VHE) photons and ultraviolet-infrared photons of EBL are

detected by the EGMF. The figures are obtained from the report of Marco Ajello at Fermi Symposium.
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Figure 4. Comparison of predicted EGRB spectra from FSRQs and BL Lacs with the observed data of blazars. Note that

the EGRB spectra from FSRQs and BL Lac are estimated based on LDDE and PDE models, respectively. The two figures

are obtained from the report of Refs. [29, 30].

Figure 5. The EGRB spectrum of blazars [33], star-forming galaxies (gray band [4]) and radio galaxies (black striped band

[48]) as well as summation of these three populations (yellow band), compared to the intensity of the observed ERGB [5].

The figure is obtained from the report of Ref. [33].
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3.2. Radio galaxies

Radio galaxies are one of the largest subclasses of radio-loud AGNs. It is more in number than

blazars in the entire sky. Even though radio galaxies are fainter than blazars, Fermi-LAT has

just detected gamma rays from ~15 extragalactic sources, including 12 FR Is and 3 FR IIs [87].

In order to estimate the contribution to the EGRB from radio galaxies, their GLF is required.

We must obtain indirectly the GLF due to the limited Fermi radio galaxy samples. Relying on a

correlation between the luminosities in the radio and gamma-ray frequencies, Inoue [48]

converted the RLF [88] into the GLF and estimated about 25% of EGRB can be solved by radio

galaxies (see Figure 5). This uncertainty significantly depends on the limited sample and the

errors between the gamma ray and radio luminosity correlation.

3.3. Star-forming galaxies

The Fermi-LAT has detected gamma-ray from ~9 star-forming (SF) galaxies [2]. Those gamma

rays are produced by interactions between cosmic rays and gas or interstellar radiation fields,

including the decay of neutral pion and electron interactions (bremsstrahlung and inverse

Compton scattering). Similar to radio galaxies, it is not straightforward to construct the GLF

because of the limited star-forming galaxy sample. Generally, the correlations between the IR

wavelength and gamma-ray region are used to predict the gamma-ray diffuse emission for the

unresolved SF galaxy population. Different from other types of source, the SF gamma-ray

average spectrum is difficult to firmly establish due to the paucity of statistics. Milky Way-like

SF galaxies (MW model) and an assumed power-law spectrum (PL model) are proposed by

Ackermann et al. [89] to express an average spectrum of SF Galaxies. In particular, the two

predictions are different above 5GeV, where the MW model softens significantly. Therefore,

using the correlation between infrared and gamma-ray luminosities, based on the well-

established infrared luminosity functions and the SF gamma-ray average spectrum, the GLF

of star-forming galaxies is well built and the contribution of star-forming galaxies to the EGRB

can be estimated as 10–30% of the EGRB at >0.1GeV [89], which can be seen in Figure 5.

It should be noted that about 95% of the EGRB can be naturally explained by blazars, star-

forming galaxies and radio galaxies in the 0.1–820GeV range. Only modest space is left for

other diffuse processes such as dark matter interactions, which suggests that other gamma-

ray-emitting sources’ contribution can be neglected. Ajello et al. [33] also concluded that the

result of their simulation gave an upper limit on DM self-annihilation cross sections, which is

similar to that from the independent types of analysis (e.g., [59]).

4. Conclusion and discussion

In this chapter, we reviewed the origin of EGRB and estimated the contribution of unsolved

gamma-ray-emitting sources from Fermi-LAT to the EGRB based on the construction of the

corresponding GLFs. Since Fermi-LAT has higher sensitivity and provides numerous gamma-

ray-emitting sources for studies, we found two important results: (i) the redshift evolutionary

information of gamma-ray sources, particularly for blazars; HBLs show strong negative
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cosmological evolution, while FSRQs and luminous BL Lacs show positive evolution like as

Seyferts and the cosmic star formation history. (ii) Fermi sources’ contribution to the EGRB;

blazars clearly contribute to most of the EGRB (≈40-62%), as well as radio galaxies and star-

forming galaxies can occupy for the rest room of the EGRB [33, 36]. These results suggest that

the contributions of other emitting sources have only little space to the EGRB. However, the

uncertainties associated with these predictions from radio galaxies and star-forming galaxies

are still quite large because of the small samples. This situation is very similar to blazar studies

in the early EGRET era. Therefore, further data will be required to construct the GLFs and

precisely evaluate the contributions from those two populations.

Now, there are still some unresolved problems. We have not seen the signature of dark matter

particles in the EGRB spectrum, although they are considered as the possible origin of EGRB.

As we known, Fermi-LAT has accurately measured the EGRB spectrum and the anisotropy of

the EGRB [4] and the emission from dark matter is anisotropic and its spatial pattern is unique

and predictable [90]. Therefore, we can obtain an upper limit on the annihilation cross section

by comparing the expected EGRB angular power spectrum from dark matter annihilation with

the measured spectrum. The work of Ajello et al. [33] shown that an analysis of the EGRB and

its components can constrain diffuse emission mechanisms such as DM annihilation. Di Mauro

and Donato [36] probed a possible emission coming from the annihilation of WIMP DM in the

halo of our galaxy and found that the DM component can very well fit the EGRB data together

with the realistic emission from a number of unresolved extragalactic sources.

The value of the EGMF has still not been determined. Since the pairs scatter CMB photons to GeV

energies by Compton mechanism for cascade process around a TeV sources, Fermi-LAT could

measure those GeV photons, which would give a straight measurement of the EGMF. As continu-

ous accumulation of the data observed and the further development of detection equipment, the

imprint of the EGMFmay be found in the gamma-ray spectrum and/or flux [79, 80, 91]. The EGMF

imprint might also be found in the angular anisotropy of the EGRB [92]. If the effect of cascade

depending on the EGMF cannot be neglected [84], the electron-positron pairs produced in cascade

process could be deflected by a high value of the EGMF, whichmakes GeV photons more isotropic.

Therefore, the EGRB spectrum with the anisotropy could probe the strength of EGMF [87].
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