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Abstract

Apolipoprotein E4 (apoE4) and outer surface protein A (ospA) are pathogenic lipopro-
teins involved in the progression of Alzheimer’s disease and Lyme neuroborreliosis, 
respectively. Results from previous studies indicate that apoE4 exhibits neurotoxicity by 
activating amyloid beta pathways, and ospA causes damage to the brain by stimulating 
immune activity of microglia and astrocytes. These results, however, lack information 
about the specific interactions that develop between neurons and these two lipoproteins. 
It is essential to investigate the effect of these lipoproteins on neuronal morphology and 
function to better understand the mechanism of damage and disease of the brain. This 
chapter summarizes previous studies on the role of apoE4 and ospA in diseases of the 
brain and discusses experimental results from our own work that suggests new roles for 
apoE4 and ospA in neuronal outgrowth and synaptic loss.

Keywords: apolipoprotein E4, bacterial outer surface protein A, neurodegeneration, 
neuroinflammation, nerve regeneration, synaptic loss

1. Introduction

Lipoproteins in the brain are involved in the onset and progression of neurodegenerative 

diseases (e.g., Alzheimer’s disease) [1, 2] and neuroinflammatory disorders (e.g., neurobor-

reliosis) [3, 4]. These lipoproteins are either endogenously expressed by astrocytes [5] and 

microglia [6, 7] or exogenously produced by bacterial pathogens (e.g., Borrelia burgdorferi, 

Streptococcus pneumoniae) [8].

The most abundant endogenous lipoproteins in the brain include apolipoprotein E (apoE) and 

apoJ [2]. These endogenous lipoproteins mediate transport of lipids between various cells in 

the brain to maintain and regulate the brain structure and function [9, 10]. The apoE isoform, 

apoE4, has been investigated intensively because previous studies showed that lipidation of 
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apoE4 (i.e., apoE4 carrying cholesterol and phospholipids) is the major risk factor indicative 

of the onset of Alzheimer’s disease (AD) [11].

The exogenous lipoprotein most studied in the brain is the bacterial outer surface protein A 

(ospA), which is produced by B. burgdorferi [12, 13]. B. burgdorferi causes Lyme disease, which 

is the most common tick-borne infection in Europe and in North America [14]. A recent study 

using rats infected with B. burgdorferi demonstrated that B. burgdorferi was observed across the 

blood-brain barrier (BBB) and that the expression level of ospA was augmented significantly 
in the brain [4].

Thus, apoE and ospA have been of interest to both scientists and clinicians who seek to 

develop new strategies for treatment of brain injuries and brain disorders induced by these 

pathogenic lipoproteins. It still remains unclear however, if apoE and ospA interact directly 

with neurons to disrupt the structure and function of the brain, whereas it is documented 

extensively that these lipoproteins induce pathological states via amyloid beta (Aβ) aggre-

gation [15, 16] and immune activation of microglia and astrocytes [17, 18]. To address the 

absence of direct evidence of interaction between lipoproteins and neurons, we have studied 

the effect of apoE4 and ospA on neurons in terms of axonal outgrowth and synaptic loss. This 
chapter discusses these findings and the potential new roles of apoE4 and ospA in the context 
of previous studies on these lipoproteins in neurodegeneration and neuroinflammation.

2. ApoE4 and neuronal outgrowth

2.1. Lipidation of apoE isoforms

ApoE transports and clears lipids from one cell to another to maintain lipid homeostasis of the 

brain [9, 10]. To carry lipids (e.g., cholesterol, phospholipids, and lipoproteins), apoE is lipi-

dated (i.e., lipid-bound apoE) by adenosine triphosphate (ATP)-binding cassette A1 (ABCA1) 
transporters on astrocytes [19] (Figure 1a). The lipidation status of apoE depends on its three 

isoforms (i.e., apoE2, apoE3, and apoE4) coded by three alleles (ε2, ε3, and ε4 of APOE gene) 

on chromosome 19 [20]. The three isoforms of apoE differ from one another by amino acid 
interchanges at two residue sites (Table 1).

These minor variations cause a change in the structure and function of apoE, which eventu-

ally leads to distinct disease mechanisms in AD [21]. ApoE4 has an arginine at residue 112 

that connects the N terminus (Arg 61) to the C terminus (Glu 255) to form a folded structure of 
apoE called domain interaction [22]. ApoE2 and apoE3 have a cysteine at residue 112, which is 

less likely to create the folded structure of domain interaction. The presence of domain interac-

tion results in distinct lipid-bound forms among apoE isoforms. ApoE4 binds preferentially to 

larger lipid particles due to its folded structure, which interferes with internalization of lipids 

into neurons [11]. In contrast, apoE2 and E3 bind to various sizes of lipids in more ways that 

are efficient and thus facilitate lipid transport between cells in the brain. The lipidated apoE 
can be internalized into cells in the brain (i.e., astrocytes, microglia, and neurons) through the 

family of low-density lipoprotein receptors (LDLR), low-density lipoprotein receptor-related 

protein 1 (LRP1), or heparan sulfate proteoglycans (HSPGs) [11, 16].
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When the lipidated apoE is internalized into cells, Aβ monomers and oligomers are also 
cleared because they bind to both lipids and apoE at residues 12–28 [23]. Thus, Aβ clearance is 
dependent on the structural difference of apoE isoforms, and this mechanism helps to  prevent 

Figure 1. The interaction between apoE and neurons illustrated. (a) ApoE transports lipids to neurons by forming 

lipopeptide particles (i.e., lipidation of apoE). ApoE is lipidated by ATP-binding cassette A1 (ABCA1) transporters of 
astrocytes. The lipid-binding affinity of apoE4 is different from that of apoE2 and apoE3 because of structural differences 
in its domain interaction. Both lipid and apoE can bind to Aβ monomers and oligomers. The Aβ-lipidated apoE2/3 
complex can be internalized by LDLR, LRP1, or HSPG, which clears Aβ. The efficiency of internalizing large lipid-
bound apoE4 into cells is low, which increases the probability of Aβ plaque formation because of poor Aβ clearance. 
(b) ApoE alone can bind to Aβ monomers and oligomers regardless of its isoforms. The Aβ-nonlipidated apoE complex 
increases the probability of forming Aβ plaques because nonlipidated apoE cannot be internalized via LDLR or LRP1. 
(c) Nonlipidated apoE4 enhances neuronal adhesion, axon outgrowth, and neurite branching. The receptor in neurons 

that regulates growth-enhancing effects of nonlipidated apoE4 remains unknown. Abbreviations: ABCA1, ATP-binding 
cassette A1 transporter; LDLR, low-density lipoprotein receptor; LRP1, low-density lipoprotein receptor-related protein 1; 
HSPG, heparan sulfate proteoglycans.

 

ApoE isoforms ApoE amino acid residue

112 158

ApoE2 Cys Cys

ApoE3 Cys Arg

ApoE4 Arg Arg

Table 1. Differences of apoE isoforms in amino acid residues.
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the Aβ aggregation that is associated with the progression of AD. The Aβ-bound apoE, how-

ever, forms aggregates regardless of the isoform of apoE when they are not lipidated and 

thus, are not internalized [16, 23] (Figure 1b).

2.2. Nonlipidated apo E4 and neuronal outgrowth

When lipidated, apoE4 is known to be toxic to neurons through various pathogenic pathways 

such as Aβ aggregation and apoE fragment formation [21]. The effect of apoE4 on neurons 
when it is not lipidated, however, remains unclear. To address this knowledge gap, the effect 
of apoE4 on neuronal outgrowth was studied in vitro without lipids in the medium [24]. This 

study compared neuronal responses to various culture substrates including glass, laminin-

coated glass, and apolipoprotein E4-coated glass by quantifying key neuronal outgrowth 
parameters in terms of cell adhesion, axon length, number of neurites, and number of branches 

on axons. The results of this study demonstrated that apoE4 not only enhances neuronal adhe-

sion but also significantly increases axon outgrowth and branching when compared to lam-

inin, a protein that is recognized as one of the best extracellular matrix (ECM) proteins for 
enhancing neuronal growth [25]. As such, results from this study contradict the prevailing 

view that apoE4 has only a degenerative effect on cells in the brain. Although apoE4 when 
lipidated predominantly exhibits neurotoxicity when studied in vivo and in clinical models, it 

should be considered that both lipidated and nonlipidated apoE in these models constantly 

interact with neurons to mediate brain activity. Thus, the results from this study provide a 

complementary mechanism of action of apoE. In addition, the neuron-growing potential of 

apoE4 can be applied to transplantable therapeutic systems using stem cells or microstructure 

devices prior to interaction of lipids in vivo.

The mechanism by which nonlipidated apoE mediates axon outgrowth and branching 

remains elusive, whereas lipidated apoE is known to interact with cells via LRP1, LDLR, or 

HSPG [16]. It has been reported that apoE does not bind to LDLR or LRP1 without lipida-

tion [26, 27]. Integrin and HSPGs also were tested for their involvement in apoE4-induced 
axon outgrowth by inhibiting these receptors. Neither of these receptors was found to be 

responsible for apoE4-induced neuronal outgrowth (Figure 1c). The mechanism of interaction 

between neurons and nonlipidated apoE4 is the subject of ongoing studies.

3. Bacterial lipoprotein and synaptic loss

3.1. Bacterial lipoproteins and neuroinflammation

Bacterial surface components including lipoproteins and lipopolysaccharide (LPS) have 

been reported to be elevated in the cerebrospinal fluid (CSF) of patients suffering from a bac-

terial infection such as bacterial meningitis [28]. These components can cause neuropsychi-

atric manifestations such as lymphocytic meningitis, cranial and peripheral neuropathy, and 

cerebral infarcts [29, 30]. When compared to LPS, bacterial lipoproteins activate inflamma-

tory pathways more vigorously [31], leading to more severe damage to tissue [32]. Bacterial 

lipoproteins still remain in the tissue even after the degradation of bacteria by antibiotic 
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therapies [33, 34]. As a result, many studies suggest that minimizing the production of bac-

terial proteins or inhibiting bacterial protein synthesis is more effective at preventing neu-

ral injury from bacterial infections in animal models or patients [35, 36] than simply using 

antibiotics to kill bacteria. Bacterial lipoproteins in the brain trigger microglia activation via 

the toll-like receptors (TLRs) to produce inflammatory mediators (e.g., cytokines and reac-

tive oxygen species) [37–39] and induce migration of immune cells across the BBB [40, 41]. 

The result is damaged brain tissue including cell death of astrocytes, oligodendrocytes, and 

neurons [42, 43].

The outer surface protein (osp) is the most studied bacterial lipoprotein that includes ospA, 

ospB, and ospC from B. burgdorferi [12, 44, 45]. Three palmitoyl groups (i.e., the lipid portion) 

at the N-terminus of the peptide is responsible for immune activation and tissue injury [46, 47], 

whereas the peptide portion of ospA is not effective at activating immune pathways [32]. Thus, 

tripalmitoyl-S-glyceryl-cysteine (Pam3-Cys), a synthetic lipopeptide mimicking the N-termini 
of osp, is often used for studying bacterial infection in a wide range of research fields involving 
immunology and neuroscience [48, 49]. Although all of ospA, ospB, and ospC share common 
immune pathways (e.g., NF-κB activation) via TLR2, ospA shows higher toxicity to tissues 
when compared with ospB and ospC [32]. The reason for distinct toxic effects among these 
different lipoproteins continues to remain elusive.

3.2. OspA and presynaptic loss

OspA from B. burgdorferi is able to cross the BBB by binding to CD40 of brain-microvascular 
endothelial cells [4]. OspA in the brain activates TLR2 on microglia and astrocytes, which 

initiates immune activity and causes damage to brain tissue [14, 50]. However, information 

regarding the interaction between ospA and neurons is lacking because the expression level 

of TLR2 in neurons is extremely low when compared with that of microglia or astrocytes. 

Thus, the interaction between ospA and neurons has been overlooked [51, 52]. To address 

this question, the effect of ospA on neurons has been investigated with a specific focus on 
synaptic loss. The density and transmission of synapses are considered to be the key param-

eters in determining the functional state of brain tissue (e.g., information processing and 

storage) because neurons transmit electrical and biochemical signals to adjacent neurons 

through the synapse. The signal-sending synapse (i.e., presynapse) is located on the axon 

and the signal-receiving synapse (i.e., postsynapse) is located on the dendrite of a neuron. If 

neurons lose one of these synapses or have misaligned synapses, the brain cannot function 

properly even when neurons survive from brain injuries or diseases. Thus, the change in 

pre- and postsynaptic density was quantified following treatment of cultures of rat E18 hip-

pocampal neurons with ospA (2 μM) for 24 h (Figure 2). The quantification of synaptic den-

sity was determined by counting the number of synaptic sites (i.e., synapsin or postsynaptic 

density protein 95 (PSD-95)) in a randomly selected secondary dendrite. OspA expressed 

from Escherichia coli (prepared by the Biomaterials and Advanced Drug Delivery Laboratory 

at Stanford University) showed that ospA significantly decreased the number of presynaptic 
sites (i.e., synapsin) (p = 0.04), whereas it did not affect the number of postsynaptic sites (i.e., 
PSD-95) (p > 0.05) (Figure 2). This result suggests that ospA directly disrupts neuronal func-

tion by damaging presynapses exclusively.
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3.3. Mechanism of synaptic dysfunction induced by bacterial lipoproteins

A recent study demonstrated that viral infection leads to cognitive dysfunction by microg-

lial engulfment of presynapses via the complement C3 pathway [53]. Another recent study 

showed that viral infection impairs synaptic function via glycogen synthase kinase 3 (GSK-3) 
activation and intracellular accumulation of Aβ [54]. Thus, an increasing number of studies 

are being reported that elucidate the mechanism underlying synaptic dysfunction induced 

by viral infection. Although there is evidence that bacterial lipoprotein ospA also damages 

presynapses (Figure 2), information as to how bacterial infection impairs synaptic func-

tion is lacking. Three possible mechanisms may account for synaptic dysfunction during 

bacterial infection. First, bacterial lipoproteins damage synapses via activation of inflam-

matory pathways (e.g., TLR2 and TLR4) as discussed in Section 3.1. Second, bacterial lipo-

proteins damage synapses through neurotransmitter-mediated excitotoxicity. It has been 
demonstrated that the level of quinolinic acid, the N-methyl-D-aspartate (NMDA) receptor 
agonist, was elevated significantly in the CSF of Lyme neuroborreliosis patients [55]. The 

Figure 2. OspA and synaptic density. (a) Fluorescent images showing rat primary hippocampal neurons treated with 
vehicle (endotoxin-free water). (b) Fluorescent images showing rat primary hippocampal neurons treated with ospA 
(2 μM). (a) and (b) Neurons stained with anti-PSD-95 (postsynaptic protein), anti-synapsin (presynaptic protein), 
merge of PSD-95 and synapsin, merge of PSD-95, synapsin, and MAP2 (dendrite) from left to right are shown. (c) The 
postsynaptic density was measured by the number of postsynaptic sites (puncta) per length of selected dendrite. The 

postsynaptic density was not affected by ospA (P > 0.05). (d) The presynaptic density was measured by the number 

of presynaptic sites (puncta) per length of selected dendrite. The presynaptic density decreased significantly by ospA 
(P = 0.041).
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NMDA receptor mediates synaptic transmission, plasticity, and excitotoxicity in the central 

nervous system (CNS) and it exhibits excitotoxic effects when an excessive flux of calcium 
occurs by the increase of a neurotransmitter such as glutamate [56]. However, it is yet to be 

determined whether the presence of bacterial lipoproteins directly mediates the elevation 

of quinolinic acid. Third, bacterial lipoproteins damage synapses through physical interac-

tion with synapses independent of biochemical pathways (i.e., inflammation and receptor 
activation). It has been suggested that the physical properties of proteins (e.g., aggregate 

pattern and size) is a crucial determinant in mediating pathogenic toxicity [57, 58]. This 

toxicity occurs independent of their sequences or lengths [59] in a manner that is similar to 

the aggregation of Aβ in Alzheimer’s disease [60] or α-synuclein in Parkinson’s disease [61]. 

Previous studies showed that Pam3-Cys, the synthetic N-terminus of ospA, self-assembled 
and showed aggregating potential in vitro assays [58, 62], which can be related to brain tis-

sue damage including the disruption of synaptic function.

4. Conclusions

This chapter describes the new roles of apoE4 and ospA as major pathogenic endogenous 

and exogenous lipoproteins, respectively, in neuronal outgrowth and function by discuss-

ing recent experimental data in the context of previous reports. Recent studies show that 

apoE4 enhances neuronal adhesion and axonal outgrowth in vitro when it acts alone without 

lipids. New studies also demonstrate the possibility that ospA can induce synaptic dysfunc-

tion by damaging exclusively presynaptic sites. These results contribute to a new under-

standing of how lipoproteins are involved in developing neuropathology by interacting 

with neurons. Future studies should focus on the specific mechanism of interaction between 
apoE4 and neurons and the effect of ospA on synaptic function using in vivo models. Along 

with many pathogenic pathways governed by various cell types in the brain (e.g., microg-

lia, astrocytes, and oligodendrocytes), the effect of pathogenic factors on neuronal activity 
provides a deeper understanding of structural and functional abnormality in neurodegen-

eration and neuroinflammation [63]. Understanding the interaction between lipoproteins 

and neurons in the brain should yield new approaches to the treatment of brain injuries and 

brain disorders.
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