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1. Introduction    

Magnetorheological elastomers (MREs), also referred to as magnetosensitive (MS) 
elastomers, are smart materials composed of micron-sized ferrous particles dispersed in a 
polymer matrix. Commonly, magnetic fields are applied to the polymer composite during 
cross-linking so that chainlike columnar particle structures can be formed and fixed in the 
matrix after curing. The unique characteristic of MRE is that its shear modulus can be 
continuously controlled by the external magnetic field (Gong et al., 2005). Shearing of the 
cured composite in the presence of the magnetic field causes particle displacement from 
their low energy state, thereby requiring additional work. This work rises monotonically 
with applied magnetic field, thus resulting in a field dependent shear modulus. It has been 
reported (Jolly and all., 1996) that the maximum increase in the shear modulus due to the 
MR effect is about 50–60% of the zero-field modulus, depending on the matrix elastomer. 
For hard elastomers like natural rubber the relative increase has typically been 30–40%. The 
field-induced modulus increase is substantial even at kilohertz mechanical frequencies 
(Ginder et al., 2002). Such properties make MREs promising in many applications in 
automotive industry as variable stiffness suspension systems and active damping 
components (Carlson & Jolly, 2000, Lerner & Cunefare, 2007, Kalio et al., 2007, Deng & 
Gong, 2007).  
To provide basic guidelines for designing and optimization of MR devices it is necessary to 
simulate the static and dynamic behaviour of magnetosensitive materials submitted 
simultaneously to the action of the mechanical loading and magnetic field. Modern design 
practices in the rubber industry are largely based on finite element simulations and the 
accuracy of these analyses relies on the ability of the used constitutive model to predict the 
mechanical response of the MS material. 
Nowadays the so–called magnetoelastic coupling is widely used for simulations of the 
reciprocal effect between the magnetic and the elastic field. In particular, the linear elastic 
behaviour is usually considered along with the linear or non linear magnetic properties. 
Most of the simulations are based on very simple linear magnetoelastic models defined by 
using the magnetic forces as loads. In these weak-coupling models the magnetic equations 
and the mechanical equations are solved separately. More accurate linear elastic models, 
based on the strong coupling, solve simultaneously the governing equations of the problem 
(Belahcen, 2004, Hasebe et al., 2007, Zhou & Wang, 2006a,b).  
However, elastomers exhibit strongly nonlinear elastic behaviour and undergo large 
deformations. The truthful magnetoelastic models of MS elastomers should incorporate the 
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nonlinear response at finite strains in order to enable the simulation of basic features and 
important aspects of the experimentally observed behaviour. The mathematical theory of 
nonlinear elasticity, the application of this theory to the solution of boundary-value 
problems and the analysis of the mechanical properties of solid materials capable of large 
elastic deformations are available in the books by Ogden (1984) and Holzapfel (2000).  
A rigorous phenomenological theory of magnetoelastic interaction in elastic solids based on 
finite strain theory and the classical theory of ferromagnetism was developed by Brown (1966). 
His concepts of magnetic force and stress were used by Pao and Yeh (1973) who deduced the 
nonlinear field equations, boundary conditions and constitutive equations for soft 
ferromagnetic elastic materials and applied them to the magnetoelastic buckling of a plate. The 
comprehensive review of the basic principles, theories and equations in mechanics and 
electromagnetism can be found in the paper of Pao (1978) where the corresponding 
constitutive equations for solids and boundary conditions are discussed as well. Modern 
consistent electromagnetic theory is presented in the recent book by Kovetz (2000) where the 
complete set of laws of electromagnetism, mechanics and thermodynamics is treated.  
While the theory of magnetoelasticity is well-known and advanced, the theoretical basis of 
most current research in the field of MS elastomers is very recent. The full system of 
equations suitable for deformable MS solids in an electro-magnetic field was first considered 
by Brigadnov and Dorfmann (2003, 2004) who suggested a simple energy function for 
isotropic MS elastomers and derived the basic system of constitutive relations. The strain 
tensor and the magnetic induction vector are chosen as the basic variables. They presented 
also a numerical simulation of the simple shear of an incompressible MS elastomer between 
two infinite parallel plates subjected to a magnetic field perpendicular to shear direction.  
In the recent series of papers of Dorfmann and Ogden (2003-2005) a theory of nonlinear 
magnetoelasticity for MS elastomers was developed and applied to a number of simple 
boundary-value problems. Other recent related theoretical works are those by Steigmann 
(2004, 2007) and Kankanala and Triantafyllidis (2004, 2007). Important guidelines for the 
experimentalists and for people involved in numerical simulations of MS elastomer 
response can be found in further papers of Dorfmann et al. (2005) and Bustamante et al. 
(2006). In the recent paper of Ottenio et al. (2008) the linearized equations governing 
incremental effects in a magnetoelastic solid subject to finite deformation in the presence of 
a magnetic field are derived and the tensors of magnetoelastic moduli are defined. These 
equations are then used to examine the problem of surface stability of a homogeneously pre-
strained half-space.  
Mentioned papers also contain solutions to representative boundary-value problems for 
which exact solutions can be found. For the most part such solutions are idealized in the 
sense that they apply only to bodies of infinite extent in one or more directions so that edge 
effects are not present. The first numerical simulation of a boundary-value problem 
involving finite geometry is reported by Bustamante et al. (2007). In their paper the problem 
of a circular cylindrical tube of finite length that is deformed and then subjected to an axial 
magnetic field is examined. The magnetic field vector is chosen as the independent magnetic 
variable in the constitutive law and the resulting boundary-value problem is solved using a 
finite-difference method. 
The purpose of the present paper is to outline a possibility of the magnetoelastic problem 
implementation in the finite element code Comsol Multiphysics which is suitable for the 
simulation of coupled-field problems. 
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We adopt the formulation of Dorfmann and Ogden (2004) as the starting point. The relevant 
magnetic and mechanical balance equations and boundary conditions are summarized in 
Sect. 2.  
Then, in Sect. 3, the general constitutive equations for magnetoelastic interactions are 
summarized following Dorfmann and Ogden (2005) for both compressible and 
incompressible magnetoelastic materials and then specialized for specific application to 
incompressible, isotropic magnetoelastic materials.  
In Sect. 4, we present the simulation of the simple shear of a rectangular block of finite size 
subjected to a magnetic field, which, in the far field, is uniform and perpendicular to the 
shear direction. The constitutive equations are based on a modified free-energy function that 
depends, in addition to the deformation gradient, on the magnetic flux density vector as the 
independent magnetic variable.  

2. Governing equations 

In this section the equations for nonlinear magnetoelastic deformations, as developed by 
Dorfmann and Ogden (2003-2005), are summarized. We suppose that a body made of MS 
elastomer deforms under the common action of mechanical loading and magnetic field. The 
deformation is characterized by the deformation gradient tensor F and the strain tensors C 
or b. We describe the magnetic field by the magnetic flux density vector B, the magnetic 
field vector H and the magnetization vector M.  

2.1 Basic kinematics of finite deformations 

We consider a continuum body with fixed reference configuration B0
 and reference time 

t=0. Then an assumed motion χ  maps the reference configuration B
0

to the current 

configuration B  at time t. Hence a point X 
0
B∈  transforms to a point x B∈ , where X  and 

x (with material and spatial coordinates X1, X2, X3 and x1, x2, x3) characterize positions of a 
particle in the reference and current configurations.  The deformation gradient tensor F and 
its determinant J are 

 J
∂

= = >
∂

χ= i
ia

a

x
Grad , , det 0,

X
F F F  (1) 

where Grad is the gradient operation with respect to X and the Jacobian of the deformation 
gradient J is the volume ratio. If we consider a geometric setting relative to the reference 
configuration (Lagrangian description) it is appropriate to introduce a strain measure in 
terms of material coordinates which is the symmetric and positive definite right Cauchy-
Green tensor C=FTF. The strain measure in terms of spatial coordinates (Eulerian 
description) is the symmetric and positive definite left Cauchy-Green tensor b=FFT. 

2.2 Basic equations of magnetostatics 

When a magnetizable elastic solid is placed in the magnetic field, magnetic moments are 
induced in the body. The magnetic moment per unit volume of the deformed body is called 
the magnetization and it is denoted by M with units [A/m]. Inside the deformed body, the 
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magnetic induction vector is B with units [T] or [Wb/m2]. The induced magnetization is 
related to B by the relation 

 = µ +0( ),B H M  (2) 

where H is the magnetic intensity vector and μ0=4Ǒ·10-7 [H/m] is the permeability of 
vacuum. In a vacuum M=0 and B=μ0H. In a ponderable body, two of these three quantities 
are related by a constitutive law which depends on the properties of the solid under 
investigation. For example, once M is given in terms of B by an appropriate constitutive law 
Eq. (2) determines H.  
The B field satisfies Gauss’ law for magnetism and is solenoidal. The field H is governed by 
Ampère’s law. If we suppose the quasistatic deformation, the stationary magnetic field and 
non-conducting MS elastomeric material, we may omit the induced current effects and the 
statical magnetic field equations thus can be written in the global form 

  (3) 

After application of the divergence theorem to Eq. (3)1 and Stokes’ theorem to (3)2 we can 
deduce the local form  

 = =div 0, curl ,B H 0  (4) 

where div and curl relate to the spatial coordinates. Across a boundary surface of deformed 

body B∂ the boundary conditions for B and H are 

 + −⎡ ⎤ ⎡ ⎤⋅ − = × − =⎣ ⎦ ⎣ ⎦0, ,+ -n B B n H H 0  (5) 

where the square brackets indicate a discontinuity across the surface and n is the unit 
normal to the surface, which, at the material boundary, is taken as the outward pointing 
normal, thus the (−) subscript indicates interior of the body while (+) subscript is used to 
indicate the surrounding space.  

The fields B and H may be pulled back from B  toB0
to their Lagrangian forms, denoted Bl 

and Hl respectively. By using Nanson formula (Ogden, 1984) and relation dx=FdX in (3) we 
receive the pull-back of the field variables 

 Bl = JF−1B,    Hl = FTH. (6) 

In terms of these quantities the analogues of (4) in Lagrangian coordinates become  

 Div 0, urlB C H 0.= =l l  (7) 

Since H and M occur as a sum in (2), it is appropriate to define, similarly to (6)2, a 
Lagrangian form of M, denoted Ml, by Ml = FTM. The Lagrangian counterpart of (2) reads 

 J−1CBl = μ0 (Hl +Ml), (8) 

where C is the right Cauchy-Green deformation tensor. The boundary conditions (5) can 
also be expressed in Lagrangian form, namely 

 1 TJ 0, ,+ -N B F B N H F H 0− + −⎡ ⎤ ⎡ ⎤⋅ − = × − =⎣ ⎦ ⎣ ⎦l l  (9) 
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where N is the outward unit normal to the surface 
0
B∂ in the reference configuration. Under 

certain circumstances it can be helpful to formulate the problem in term of the magnetic 
vector potential A that is given by the equality B=curlA (Perez-Apparicio, 2004) or in term 

of a scalar magnetic potential function = − ϕgradH  (Bustamante, 2007) with appropriate 

boundary conditions. Such option ensures that the expression (41) or (42) will be fulfilled 
identically. 

2.2 Basic equations of mechanics 

From the mass balance we have the following relation between the mass density ρ0 in the 

material configuration B0
and the mass density ρ in the spatial configuration B 

 ρ = ρ-1
0J .  (10) 

Cauchy’s equations of motion of elastostatics resulting from the basic balance principles of 
mechanics such as the momentum balance principle and the angular momentum balance 
principle and Cauchy’s stress theorem (Holzapfel, 2000) are 

 Tdiv ǒ ǒ , , ,┫ f v  ┫ = ┫ t ┫ n+ = = ⋅$  (11) 

where ┫ is the symetric Cauchy’s stress tensor, f is the body force per unit mass and t 
represents the Cauchy’s traction vector (force per unit surface area).  
For the case of continuum magnetoelasticity there are several different ways of defining 
stresses, tractions and body forces. The influence of the magnetic field on the deforming 
continuum may be incorporated either through magnetic force per unit volume fm  

 mdiv ǒ + ,┫ f f 0+ =  (12) 

or through the total Cauchy stress measure ┬ which is symetric and includes both 
mechanical and electromagnetic contributions (Kovetz, 2000) 

 div ǒ┬ f 0.+ =  (13) 

The expressions for the magnetic force and for the total stress tensor depend on the type of 
the particular constitutive model. Summary of possible forms of constitutive equations, 
body forces and traction conditions can be found in Kankanala & Triantafyllidis (2004) and 
in Dorfmann et al. (2005). 
At the external boundary of the body the boundary condition for the total stress tensor is  

  ,┬ n t⋅ =  (14) 

where the traction vector t includes applied mechanical tractions and the contribution of  
Maxwell stress  in the surrounding. The Maxwell stress in the absence of material is 

 ( )1
0

1
- ,

2
┬ B B B B I− ⎡ ⎤

= µ ⊗ ⋅⎢ ⎥⎣ ⎦
 (15) 

where I is the unit second order tensor and ⊗ signifies the tensor product. 
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3. Constitutive equations 

Constitutive models for nondissipative MS elastic materials are based on modified free-
energy function Ω per unit volume (Dorfmann & Ogden, 2004, Bustamante et al., 2006) 
which depends on a deformation measure in addition to a magnetic field variable. This 
modified free-energy function incorporates the magnetic energy contribution.  
If the deformation gradient tensor F and the magnetic induction Bl are selected as the basic 
variables, the free-energy function reads Ω= Ω(F,Bl). The total nominal stress tensor T and 
the magnetic field vector Hl in the Lagrangian configuration, the total stress tensor ┬ and the 
magnetic field H in the current configuration are by sequel 

 1 T, , J , .T H ┬ F H F
F B F B

− −∂Ω ∂Ω ∂Ω ∂Ω
= = = =

∂ ∂ ∂ ∂
l

l l

 (16) 

Note that nominal stress tensor T corresponds to the transpose of first Piola-Kirchhoff stress 
tensor. Analogical relations in which the independent variable is the magnetic field Hl or the 
magnetization Ml are presented by Bustamante et al. (2006).  
For a volume preserving (isochoric) deformation we have J=0. It is the internal constraint for 
so called incompressible material which is a common idealization for rubberlike materials. 
The constitutive relations for stress in such materials include the Lagrange multiplier p as in 

 1p , p .−∂Ω ∂Ω
= − = −

∂ ∂
T F ┬ F I

F F
 (17) 

In order to be objective, the free-energy function is the scalar function of the invariants of an 
objective strain measure such is the right (or left) Cauchy-Green strain tensor C (or b) and its  
first three invariants. The magnetic field induces a preferred direction in the initially 
isotropic MS material. The constitutive expressions are similar to those of a transversely 
isotropic material and depend on the additional invariants involving the vector Bl 

 
( ) ( )( ) ( )

( ) ( )

2 2
1 2 3

2 2
4 5 6

1
I tr , I tr tr , I det ,

2

I , I , I .

⎡ ⎤= = − =⎣ ⎦

= = ⋅ = ⋅

C C C C

B CB B C B Bl l l l l

 (18) 

The explicit forms of the total stress tensor ┬ and the magnetic field vector H obtained from 
Eqs (6, 15-17) are 

 ( )

2
1 2 1 5 6

1
4 5 6

T

i

2 2 (I ) p 2 2 ( ) ,

2 ,

, .
I

−

= Ω + Ω − − + Ω ⊗ + Ω ⊗ + ⊗

= Ω + Ω + Ω

∂Ω
Ω = =

∂
i

┬ b b b I B B B bB bB B

H b B B bB

b FF

 (19) 

The constitutive theory developed by Dorfmann, Ogden and coworkers captures the basic 
features of the MS elastomer magnetoelasticity and constitutes comprehensive guidelines 
for experimentalists in the design of tests and loading conditions necessary for practical 
evaluations of the material response. The relatively simple formulation of the constitutive 
equations is suitable for the implementation into the finite element code.  

www.intechopen.com



Modelling of Magnetosensitive Elastomers 

 

251 

4. Modelling of magnetoelastic coupling in COMSOL Multiphysics 

COMSOL Multiphysics is the interactive software for modelling and solving scientific and 
engineering problems based on partial differential equations (PDEs). This environment runs 
finite element analysis together with adaptive meshing and error control using a variety of 
numerical solvers. COMSOL Multiphysics converts all application mode and PDE mode 
equation formulations and systems to the weak form before solving them with the finite 
element method. 
The software includes many built-in application modes which can be combined into a single 
multiphysics model capable of simultaneous solving of the coupled physical problem. The 
application modes consist of predefined templates and user interfaces already set up with 
equations and variables for specific areas of physics.  
The application mode interfaces consist of dialog boxes for the physics in subdomains and 
on boundaries, edges, and points along with PDEs. The equation system view provides the 
possibility to modify the underlying PDEs in the case where a predefined application mode 
does not exactly match the application. The predefined constitutive relations can be easily 
modified or replaced as well. 
We focused our FE simulation on the simple structure and loading as the highly nonlinear 
character of the coupled problem impedes so far the modelling of complicated boundary 
value problems. We present the FE solution of a simple quasistatic boundary value problem 
representing a feasible experimental set-up as well. We chose a block of MS elastomer  in 
plain strain subjected to the simple shear and to the action of the magnetic field which, due 
to the chosen magnetic far-field boundary conditions, is homogeneous and  perpendicular 
to the shear direction. We simplify the problem to two-dimensional due to the calculation 
time requirement however the extend to three dimensions is straightforward. 

4.1 Implementation 

We use the Structural Mechanics Module in combination with Magnetostatics Application 
Mode which allow the magnetic field and strain coupling in both directions. With regard to 
large displacements we adopt Moving Mesh Application Mode for the calculation of 
magnetic field.  
We utilize the free-energy function Ω= Ω(F,Bl) which is the combination of Mooney-Rivlin 
free-energy function for hyperelastic materials implemented in Comsol and two additional 
terms involving the invariant I4 and I5 mentioned in (18) 

 ( ) ( ) ( ) ( ) ( )2 1
10 1 01 2 0 4 5

1
, J - 1 + C I 3 C I 3 I I ,

2
−Ω = κ − + − + µ α + βF Bl  (20) 

where 1 2I and I are the modified invariants (18) and the coefficients ǂ and ǃ are 

dimensionless material parameters characterizing the magnetoelastic coupling. Similar 
function was proposed by Ottenio et al. (2008). From the Eqs (19) we see that the constant ǂ 
contained in Ω4 does not affect the stress but provides the coupling between the magnetic 
properties of material and the deformation. On the other hand the stress is influenced by 
means of the parameter ǃ contained in Ω5. The positive value of ǃ produces the stiffening of 
material in the direction of magnetic field i.e. a larger stress is required to achieve the given 
deformation. The parameter ǃ simultaneously furnish the linear term in the constitutive 
relation (192) of the magnetic field H. 
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Instead of the common approach, using the conjugate pairs second Piola-Kirchhoff stress 
and Green-Lagrange strain, Comsol uses the first Piola-Kirchhoff stress P and its conjugate 
strain measure the displacement gradient, Gradu. The first Piola-Kirchhoff stress P is then 
calculated as  

 
Grad

∂Ω
=

∂
P

u
 (21) 

and the variation of the corresponding part of the internal energy is 

 int : Grad dV.
e

W P uδ = δ∫
0B

 (22) 

The Magnetostatics Application Mode uses the magnetic vector potential A defined by the 
relation B=curlA together with the Coulomb gauge transformation defined by divA=0. The 
variation of the magnetic part of the internal energy is  

 int curl dv.δ = ⋅ δ∫mg
W H A

B

 (23) 

As we use the moving mesh for the magnetostatics and the magnetic variables are in the 

spatial configuration, the coupled part of the stress 52Ω ⊗B B must be pulled-back into 

material coordinates as well as the Maxwell stress (14) used for determination of the traction 
vector at boundaries where the displacements are not prescribed. 

4.2 Example-Simple shear  

In two recent papers (Brigadnov & Dorfmann, 2003; Dorfmann & Brigadnov, 2004) the 
closed-form solution of the problem of unidirectional shear of an incompressible MS 
elastomer between two infinite parallel plates subjected to a magnetic field perpendicular to 
shear direction was presented. We reconsider here this problem but for a finite geometry 
where the magnetic field is no longer homogeneous. The problem is considered as two-
dimensional restricted to x-z plane as illustrated in Fig.1. 
 

 

 
Figure 1. Block of MS elastomer in simple shear and its surrounding in Comsol geometry 
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The model consists of two parts – of a MS block in plain strain and of the surrounding 
representing the free space.  
The lower face of the MS block is fixed and the upper face is subjected to the prescribed 
displacement in the x-direction. The lateral faces of the MS elastomeric block are free to 
move.  
The magnetic field in the surrounding depends on the vector potential A prescribed to be 
the linear function of x-coordinate at the external boundaries. The direction of the resulting 
magnetic field in the surrounding space is then parallel with the y-axis. At the internal 
boundaries the conditions (5) for B and H are prescribed.  
The moving mesh is used for the calculation of the magnetic field values. The mesh 
movement inside the internal subdomain and at its boundaries is determined by the 
displacements of the deformed block. The deformation of the mesh is smoothed in the 
surrounding domain toward the external boundaries where the mesh is fixed. 
The loading proceeds in three stages: 

• the upper face of the block is displaced gradually up to the final x-distance w=h/8, in 
this stage the magnetic field is inactive  

• the block displacement w is constant and the magnetic field start to act gradually from 0 
to its final value 

• the magnetic field is constant and the upper face of the block returns gradually to its 
starting position 

The numerical values of the parameters used in the free energy function are C10=0.2 MPa, 
C01=0.2 MPa, κ=104 MPa, ǂ=0.5, ǃ=0.5. 

4.3 Results of the simulation 

The shear stress increases with the magnetic field intensity and rearranges simultaneously 
namely at free boundaries in consequence of the applied traction vector due to Maxwell 
stress at the  surrounding as shown at Fig. 2 and 3. 

 

Figure 2. Shear stress σxy in the deformed block without the magnetic field 
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Figure 3. Shear stress σxy in the deformed block with the magnetic field action 

 

Figure 4. Variation of the shear stress σxy  (solid line) and of normal stress σx (dashed) in the 
center of the block - constant deformation of the block, growing intensity of the   magnetic 
field 
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Figure 5. Rise of the normal stress σy in the center of the block - constant deformation of the 
block, growing intensity of the magnetic field 

 

 

Figure 6. Variation of the stresses in the center of the block - constant intensity of the   
magnetic field, decreasing deformation of the block 
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Figure 7. Norm of density of magnetic flux B – deformed block 

 

Figure 8. Norm of density of magnetic flux B – undeformed block 
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Figure 9.  Magnetic flux density  component Bx near the upper boundary level of the block 

 

Figure 10. Magnetic flux density  component Bx near the lower boundary level of the block 
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At the second stage of the loading, when the displacement of the upper boundary of the 
block is held constant and the magnetic field is switched on, the stress components start to 
grow cf. Fig. 4. Not only the shear stress increase with the increasing stiffness caused by the 
magnetic field, the component of stress σy spring up and grows also due to the 
magnetostriction, see Fig. 5. During the third stage of loading, when the magnetic field 
holds its maximum value and the block returns to its initial position, the component σy 

remains almost constant and even grows slightly in the final phase when the block becomes 
straight as can be seen at Fig. 6. The change of the norm of the magnetic flux density is 
obvious from the Figs 7. and 8. and from the graphs at Figs 9. and 10. where the component 
By near the block boundaries is displayed.  We can conclude that the results of the 
simulation are in the qualitative accordance with the reality. 

5. Conclusion 

We present an illustrative simulation of a simple nonlinear boundary value problem of 
magnetoelastic interaction at finite strains. The finite element software used proved a 
flexibility and ability of an easy implementation of fairly complicated coupled problem. Our 
FE simulation involved not only the edge effects due to the finite geometry of the body but 
also the influence of the large displacement of the boundaries. The free energy function that 
we have used is of a very simple form and represents only a first approach towards a 
valuable constitutive model. Appropriate experiments which are in preparation will allow 
the elaboration of the constitutive relations. The constitutive model should involve also the 
anisotropy of MS elastomers cured in the presence of the magnetic field and the complex 
dissipative behaviour of the material. 
In the thirties the renowned imaginative Czech artist Josef Sima painted a series of 
enigmatic pictures entitled “Mlno” (Czech archaic term for electromagnetism). Possibly, 
only artists can contemplate deep mysteries of this abstract science. 
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