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Abstract

We study relaxation dynamics of the mean field of many point vortices from quasi-
equilibrium to equilibrium. Maximum entropy production principle implies four con-
sistent equations concerning relaxation-equilibrium states and patch-point vortex
models. Point vortex relaxation equation coincides with Brownian point vortex equation
in micro-canonical setting. Mathematical analysis to point vortex relaxation equation is
done in accordance with the Smoluchowski-Poisson equation.

Keywords: point vortex, quasi-equilibrium, relaxation dynamics, maximum entropy
production, global-in-time solution

1. Introduction

The physical object studied in this chapter is non-viscous, noncompressible fluid with high
Reynolds number occupied in bounded, simply-connected domain. Q € R?>. Motion of this
fluid is described by the Euler-Poisson equation

W+ Vouw =0, AY=-w, u=V*y, Pyy=0 (1)
where
9
0
VJ_ = 2 , X = (X1, xZ)?
_9
6x1

and u, w and i stand for the velocity, vorticity and stream function, respectively.

In the point vortex model
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206  Vortex Structures in Fluid Dynamic Problems

N
system of Eq. (1) is reduced to
dxi 1 .
Oli—ZV _HN, 121,2,--',N (3)
dt Ai
associated with the Hamiltonian
1 2
HN(xl, ...xN) = E Ziai R(xi) + Zi<]’ aiajG(xi,x]-), (4)

where G = G(x,x') is the Green’s function of —A provided with the Dirichlet boundary condi-
tion and

R(x) = {G(x,x/) + %log|x—x,|]

x'=x

Onsager [1] proposed to use statistical mechanics of Gibbs to Eq. (3). In the limit N — o with
aN =1, local mean of vortex distribution is given by

@(x) = /1 & p (x)P(dd), x€Q (5)

where a; = &' @, @' €I = [-1,1] is the intensity of the i-th vortex, p‘Nt (x) is the existence prob-
ability of the vortex at x with relative intensity a, which satisfies

/p&(x)dx: 1, Vael,
Q

and P(da) is the numerical density of the vortices with the relative intensity a&. Under
Hy = E = constant, a?NB,, =B = constant and N — o, mean field equation is derived by
several arguments [2-7], that is,

AD = [a Y di), Ul = 6

Ay = Iaf e—ﬁ&@P( a), Yl = (6)
with N
g ey
w = 17[)7 P = er_ﬁ&J

where
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p ) = lim [ i (@ daz, -dx)

By — ; “BNHN Jy
pn’ (dxq, ---dxn) Z(N,ﬁN)e NN eeedxy

Z(N,By) = /Ne_ﬁNHNdx1---de.
Q

Since Ref. [8], structure of the set of solutions to Eq. (6) has been clarified in accordance with
the Hamiltonian given by Eq. (4) (see [9] and the references therein).

Quasi-equilibria, on the other hand, are observed for several isolated systems with many com-
ponents [10]. Thus, we have a relatively stationary state, different from the equilibrium, which
eventually approaches the latter. Relaxation indicates this time interval, from quasi-equilibrium
to equilibrium. To approach relaxation dynamics of many point vortices, patch model

wix.t) =3 ol () (7)

is used. It describes detailed vortex distribution, where N,,, 0; and Q,(t) denote the number of
patches, the vorticity of the i-th patch and the domain of the i-th patch, respectively. Mean field
equations for equilibrium and for relaxation time are derived by the principles of maximum
entropy [11, 12] and maximum entropy production [13, 14], respectively. For the latter case,
one obtains a system on p = p(x, 0, 1),

JoDV@ - VY
JoD(J0?pdo-") VY (8)
@ = /Iapda =-AY, YPlpg=0, u=V*y

d _
L+ -pii = V-D(Vp+f,(0@)pVY), B, =~

with the diffusion coefficient D = D(x, t) > 0.

In this chapter, we regard Eq. (2) as a limit of Eq. (7). First, point vortex model valid to the

relaxation time is derived from Eq. (8), that is, a system on p& = p& (x,t),a €1, in the form of

" +v.-p¥u= V-D(Vp‘32 +ﬁ&p&V@),

a:/apap(daz):—@, Vo =0, 7=V'Y
1

- JoDV@ - VY
- D [,a@%p@ P(da)|Vy|*. )

Second, the stationary state of Eq. (9) is given by Eq. (6). Third, Eq. (9) coincides with the
Brownian point vortex model of Chavanis [15]. Finally, system of Eq. (9) provided with the
boundary condition

207



208 Vortex Structures in Fluid Dynamic Problems

B gt | g (10)

satisfies the requirements of isolated system in thermodynamics.

In fact, averaging Eq. (9) implies

aa—i)+v @wu =V -D(Va+ o, V), —|—ﬁa)zaa:’/b =0
20 (1)
_ — - _ — DVa - VY
0 =-Ap, Plog=0, U=V, p= _fQ_——z
JoDwa| VY|
for
= [ ap¥P(da), @, = / a2p% P(d). (12)
I I
Then, we obtain mass and energy conservations
d — 1d 1
dt/Qw 0, (@0,¢) 2dt(a),(A) a)) 0 (13)

where (,) stands for the L inner product. Assuming p& > 0, we write the first equation

of (9) as
ap&Jrv.pé‘ﬁ:V-Dp&V(lOgP& +payp). (14)
ot
Then, it follows that
i | Do)+ patp! ) =- /QDP& [V (log p + pap) (15)

from Eq. (10), where
D(s) =s(logs-1) +120, s>0.

Hence, it follows that

% 5 ( /1 @(p‘j‘)P(d&)> =- /Q ( /1 Dp% |V (logp® + ﬁ&@)ﬁp(d&)) <0 (16)

from Eq. (13), that is, entropy increasing.
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2. Vorticity patch model

In Eq. (7), the vorticity o, is uniform in a region with constant area Q;(t), called vorticity patch.
A patch takes a variety of forms as the time ¢ varies. We collect all the vorticity patches in a
small region, called cell. Cell area A thus takes the relation |Q);| < A « |Q)|. The probability that
the average vorticity at x is o is denoted by p(x, 0, t)dx which satisfies

/p(x,a,t)da =1. (17)
Let
/Qp(x, o,t)dx = M(o) (18)
be independent of t. Since
Q| = // p(x,0,t)dxdo = / M(o)do (19)

equality (18) means conservation of total area of patches of the vorticity 0. Then, the macro-
scopic vorticity is defined by

w(x,t) :/ap(x,a, t)do, (20)

which is associated with the stream function ¢ = 1(x, t) and the velocity # = #u(x, t) through
©=-AP, Plo=0, u=V'y. (21)

To formulate equilibrium, we apply the principle of maximum entropy [11, 12], seeking the
maximal state of

S(p) = —// p(x,0)log p(x,0)dxdo (22)
under the constraint Egs. (17), (18) and
1/ -
E==- / Wy (23)
2Ja
With the Lagrange multipliers (ﬁp, c(o), C(x)), it follows that

05~ B,0F —/ c(o)doM(o)do —/QC(x) (6/ de) dx =0, (24)

which is reduced to

209



210 Vortex Structures in Fluid Dynamic Problems

p(x,0) = e’ (U)_<C(x)+l)_ﬁ”c@_ (25)

Here, f, and c(0) may be called inverse temperature and chemical potential, respectively. We
put ¢(0) = 0 because of the degree of freedom of c(c) admitted by Eq. (19). Then, it follows that

p(x.0) = plx, 0)e = HY (26)

and hence, Eq. (17) implies

o),
p(x,0) = — (27)
[ bty

From Egs. (18) and (26), similarly, it follows that

_ﬁpga
c(0) = log (fﬁ’}(:;;gfg) - dx) . (28)

The equilibrium mean field equation of vorticity patch model is thus given by Egs. (20), (21),
(27) and (28), which is reduced to

o _
“AY = /aM p(x.0)e gbfda, Dlag =0
Jap(x,0)e ¥ (29)

= / opdo = —-AY), /p(x, o,t)dx = M(o).
I Q

One may use the principle of maximum entropy production to describe near from equilibrium
dynamics [13, 14]. We apply the transport equation

P V) =V ], g =0 (30)

with the diffusion flux | = J(x,0,t) of p = p(x,0,t), where v denotes the outer unit normal
vector. We obtain the total patch area conservation for each o,

at at/pxot (31)

because # - v|y, = 0 follows from Eq. (21). Eq. (30) implies

&) _
5 TV @ia+],) =0, (32)

where |, = / oJ(x,0,t)do stands for the local mean vorticity flux. Since J,-v =0 on 00,
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Eq. (32) implies conservation of circulation I' = / @. Furthermore, |, is associated with the
o

detailed fluctuation of (w, u) from (w,u) by Eq. (1).

2
Here, we ignore the diffusion energy E; = 1 / ]Edadx to take

:%/{)5@

(33)

as the total energy of this system. Using maximum entropy production principle, we chose the

flux | to maximize entropy production rate S under the constraint

2
E =0, /]dazO, /;—pdaSC(x,t)

= _/ p(x,0,t)log p(x, o, t)dodx.

where

Using Lagrange multipliers (Bp, D,Q) = (ﬁp(t), D(x,t),C(x, t)), we obtain

65-B,0E~ /Q D! (5 / %do—)dx— /Q C (5 / ]da)dx =0.

E= dt /gb /]w Vi = //a] Vidodx
——s— //a (logp + 1)dodx = //] YP godx,

] =-D(Vp + B,0pVY + pQ).

Since

Eq. (35) is reduced to

From the constraint of Eq. (34), it follows that

0= [ Jao =~ [ D(Vp+ ,0p¥F + pdo = -D(E,@VF + O

and
0= // o - V{ dodx = // ~0D(Vp + B,opVip + pC) - Vipdodx
= // -oD (Vp + ﬂAGp—pE)V@) - Vipdodx
= —/QDVE- V@dx—ﬂp/QD(/ o?pdo-a?) |V [ dx

which implies

(34)

(35)

(36)

(37)

(38)

(39)

211
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(=-p,aVY (40)

and
_ JoDV@ - VY
JoD(J o?pdo-a? ) |V9I*

By (41)
Thus, we end up with
— JoDV@ - Vi

JaD ([ o?pdo—a?) Vi

D(Vp +ﬁp(o—5)pV$) V)yg =0, @= /apda =-AY, Ylyn=0, u=Vy
I

B4V (i) = V- D(Vp+ B (@YD), B,

(42)

by Eqgs. (30), (37), (40) and (41), where D = D(x, ) > 0.

3. Point vortex model

Point vortex model is regarded as a special case of vorticity patch model, where the patch size
shrinks to zero [16]. Here, we give a quantitative description of this limit process, using
localization. First, we derive the equilibrium mean field equation of point vortices from that
of vorticity patches. Then, we derive relaxation equation for the point vortex model. Funda-

mental quantities of point vortex model are circulation aa, probability p& (x,t) and number
density P(da). Circulation of each vortex is set to be small to preserve total energy and total
circulation in the mean field limit. In the vorticity patch model, on the other hand, vorticity o
and probability p(x, o, t) are the fundamental quantities (Figure 1).

(&7}

1 1, | T

s
Q patch . Q i -

Y

Figure 1. Vorticity distribution: vorticity patch model (left). point vortex model (right).

Here, we use the following localization in order to transform vorticity patch to point vortex
(Figure 2):
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1. Divide each patch into two patches with half area and the same vorticity.

2. Again, divide each patch into two patches with half area: one has doubled vorticity and
the other has 0 vorticity.

step 1 step2 — %
—_ > _>
b H H ;

T z x

o o

—

Y
Y

Figure 2. Sketch of localization procedure.

Under this procedure, the number of nonzero patches is doubled and their vorticities are also
doubled. At the same time, the area of each patch becomes 1/4 and the number of total patches
is quadrupled, while the total circulation is preserved. First, we describe the detailed process
for the stationary state of Eq. (7).

Let O be divided into many cells with uniform size A and let each cell be composed of many
patches. Let N¥ (x,0)dxdo be the number of patches in the cell after k-times of the above
procedure centered at x of which vorticity was originally o and let ¢® be the vorticity of these
patches after k-times localization. We assume that the number of total vorticity patches in the cell,

NO@) = [ NO(x.0)do, @)
is independent of x. Then, the number of total patches in ), the total area of the patches and

the total circulation of the patches after k-times localization procedures, with original vorticity
o, are given by

(k)
N9 (oo = [ N9 (o). MY ()do = [0] =D (44)
0 [ N®(6)do
and
YW (0)do = eV MP (6)do, (45)
respectively.
We obtain
N, = // NO(x,0)dodx, (46)
recalling Eq. (7). Since
o = 2kg, (47)

it holds that

213
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N®(x,0)dxdo = (4-25)NO(A)dg(do) + 2N (x, 0)dxdo.

From Eq. (48), the related probability

® (x, 0)dxd
o0 (x, o) dxdor = N 0)dxda

NE ()
satisfies
p® (x, 0)dxdo = (4"-2" N (A)8o(do) + 2N (x, 0)dxdo
(429N (A) + 25 [ NO(x,0)do
(425N (A)8o(do) + 2*N(x, 0)dxdo
4NC(A)
and hence,

lim p® (x, 0)dxdo = 6o(do).

k—eo

We also have

|Q]/A
MY (0)do = /P(k) (x,0)dx = lim M
e A0S N (A)

[

which implies

" o . & o]
M"Y (0)do 4kN ilg})ZN (xi,0 do—m M (0)do
©
~ 0| ((1—2*)60 (do) + 2™ N—A(;’)d")
P

y N§">A(A) = 4|k(ir| and Eq. (48). We have, therefore,

lim MW (¢)do = | Q6o (do).

k—eo

It holds also that

and

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

Fundamental quantities constituting of the mean field limit of point vortex model thus arise as k — <.
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To explore the relationship between the quantities in two models, we take regards to circulation of
one patch, total circulation of patches with original vorticity ¢ and local mean vorticity. Based on

oU‘)-&:&-a k>1 (57)
4kNp ] ’
and Eq. (47), we reach the ansatz 0|Q| = a, ﬁ = a,ZkNp = N. Similarly, we use
r
ol o) (0)do = aP(da) (58)
Ny
to put
NO@yde M9 (¢)do
= = P(da (59)
N, o
by
a|Q)| 1 NO()do . - s
—INO(¢)do = 0]|Q| - —— - 2N, - — == = @aNP(da) = aP(da). 60
N, N (oMo = ol 2N (d&) =aP@da).  (60)
Finally, we use the identity on local mean vorticity
/ op'9(x,0)do = / dpd (x)P(dar) (61)
to assign
1 q -
g (0)do = p (x)P(da), (62)
regarding
0 p(O) (X,G) ~ ~
/ op9(x,0)do = / a|Q)| -Tda = / ap” (x)P(da). (63)
These relations are summarized in the following Table 1:
Vorticity patch model Point vortex model
a|Q] a
1 o
2N,
2N, N
N(D;\(Ii)do P(d(j()
P (x,0)do p% (x)P(dat)

Table 1. Relation between vorticity patch model and point vortex model for a.

215
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After k-times localization, the first equation in Eq. (29) takes the form

—B gk
-AY = / p® (x,0)e P v .
) (x, 0)e Fre ¥
B2 ‘71/}
- [ SN p()( - do (64)
NP pr x,0 51”2 ‘717b
pr(k)(X, 5;1\9\‘7\9“,0 N

From Table 1, the right-hand side on Eq. (64) is replaced by

®) Say
/ A ) P(d&) (65)
Jap™( _m’b
for By = 4 N’j‘ﬁ = ‘Q| Sending k — oo, we obtain the first equation of (6) with = by ~F by

Eq. (51). This means that the vorticity patch model is transformed to the point vortex model
applied to the mean field limit by taking the localization procedure.

We can derive also relaxation equation of point vortex model from that of vorticity patch
model. By Eq. (37), the value of the diffusion flux J for 0 =0 is

J(%,0,8) = -D(x, 1) (Vp(x, 0,4) + p(x,0,)C(x, t)) (66)

and hence

B -1
) = D(x,t) ](;CEJ(C)’,S?:)— Vp(x,0,t) ' (67)

Flux is thus given by

J(x,0,t) =
-1
-D(x,t) ( (x,0,t) +ﬁ (t)op(x,0,t)V(x,t) -p(x,0,t) Dix.{) ](3;’8(’2 —:) Vp(x,O,t)>. (68)
We reach
-1
%%— V-(pu)=V- D(Vp + ﬁpﬁpV$—p [W} a—o) (69)
with

JoDV@ - Vg [, D [P v .

b =Byl =~ ] Da2p| VY Pdodx



Relaxation Theory for Point Vortices
http://dx.doi.org/10.5772/67075

Therefore, after k-times localization procedure, it holds that

35 ®)®)
o . tf’ LV, (G(k)p(k)ﬁ>

_ D10 Ly
_v. D(Vg(k)p(k) +B,(0®)*p0 v - o®p® [%} (,:0>'

(71)

Putting 8, = 4° %”‘ﬁp, similarly, we obtain

O /. 7 I — L. \ = Y, 155 — [
&< paP(da)> +V. (apaP(da)u) =V. <D<V (apap(da)> —i—ﬁazpap(da)Vl,b)), (72)
from
I{imp(k) (x,0,t) = & (do), ]ym]U‘) (x,0,£) =0
0) -
o x.0,8) = op (. 1) = ol - L0 ~ip Pl
k (0) k -
(0®2p® (x,0,t) = 2k - op OV (x,0,1) = ﬁa (a]Q)? '% z‘2_|6~¥2pa (x,H)P(da) (73)

Here, we assume lim J® (x,0,t) = 0, because / J®(x,0,t)do = 0 and the O-vorticity patch

k—eo

becomes dominant in the system. Then, we obtain Eq. (9) by Eq. (72).

4. Relaxation dynamics

If P(da) = 61(da), it holds that w = @, in Eq. (11). Then, we obtain

W+ VOV =V (Vo + V), B+ ol =0, @l =w(x)20  (74)

Vw -V
M= Yho=0, po—iETe R 75)
assuming D = 1. Conservations of total mass and energy
lw(- £l = A, (¢(-,t),w(-,t)) —e, (76)
are derived from Eq. (13), while increase in entropy of Eq. (16) is reduced to
& [ 0@ == [alvtogo-py)l* <. )
o) o)

where @(s) = s(logs-1) + 1.

217
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In the stationary state, we obtain logw + i = constant by Eq. (77). Hence, it follows that

AU = _ a)_L_W _ fQVC‘) Vi
M=o Yo =0 0=, P o= [y (78)

from Eq. (76). Here, the third equation implies the fourth equation as

(V. V) =5 [ @lVy, (79
Using
v =By, “:ﬁgﬁ’ (80)
therefore, Eq. (78) is reduced to
~Av = pe®,  oly, =0, % = % . (81)
20" v

In fact, to see the third equality of (81), we note
e=(w, ) =p " = (82)
Jae
which implies

- A Ja T (83)

and hence

e 1 Joe v__MVvﬁ (84)

A? H fQ _v) (39—3—3)2

If u <0, system of Eq. (81) except for the third equation is equivalent to the Gel'fand problem

-Aw = 0e”, wlyn =0 (85)

with 0 =—p. If (J is simply connected, there is a non-compact family of solutions as 1 1 0, which
are uniformly bounded near the boundary [8, 9]. Hence, there arises

lHm — = +oo (86)
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for this family. For 1 > 0, on the contrary, system of Eq. (81) except for the third equation admits
a unique solution v = v,,(x). Regarding Eq. (76), therefore, it is necessary that

1V, 112
lim —— 72 _ (87)

pieo 0.\ 2
0 v

for any orbit to Egs. (74), (75) to be global-in-time and compact, for any A,e > 0 in Eq. (76).

If Q=B={xeR?||x| <1}, it actually holds that Eq. (87). In this case, we have v = v(r),
r=|x|, and the result follows from an elementary calculation. More precisely, putting
u = v-log u, s = log r, we obtain

IVoll3 I
s+ €2 =0, s <0, u(0) = -logu, limue™ =0, = (88)
( ag_a)
( uds
where [ = = o Using w = u-2s, p = % (e™ 4+ 2)1/2, we have
p=-1+2(1-ce®)"’ (89)
with ¢ 1 1as p 1 +eo. It follows that
0
) e4s
with
0 e4s 1 1
ds = —log(1- 91
[w (1-ce)? i 2¢(1-c¢) u 2¢2 og(1-c) O
and hence
Iim I =0. (92)

ctl

If B is constant in Eq. (9), it is the mean field limit of Brownian vortices [15]. It is nothing but the
Smoluchowski-Poisson equation [9, 17] and obeys the feature of canonical ensemble, provided
with total mass conservation and decrease of free energy:

ar

dr = |elViogwtpy), Flw)= /Q O(w)-3 ((-A)'0,@). (93)

N =

219
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Then, there arises the blowup threshold = —87t/A [18]. Here, we show the following theorem,
where G = G(x,x") denotes the Green’s function for the Poisson part,

—AG(-,x') = 0y, G(‘7x')|aQ =0, x¥eQ (94)
and

p,(x.X) = Vo(x) - V.G(x,x) + Vo(x) - VyG(x,x), ¢@E€X, (95)

where X = {(pECz(ﬁ) g—f

o 0}. It holds that p o eL”(Q2x Q). The proof is similar as in
Lemma 5.2 of [17] for the case of Neumann boundary condition.
Theorem 1: Let 2 = B and wg be a smooth function in the form of wy = wy(r) > 0 with wy, < 0,

0 <r<1.Let T € (0, + ] be the maximal existence time of the classical solution to Egs. (74), (75)
and A be the total mass defined by Eq. (76). Then, it follows that

8
limsup,,f(t) < —77_( = T < oo (96)
and
T < 4o = lim infyrp(t) = —oo. (97)

In particular, we have

871

lim infy7f(t) > —eo = T = +eo, lim sup,,1B(#) 2—7 . (98)
Proof: From the assumption, it follows that (w, 1)) = <a)(r, t), P(r, t)> and
wr, P, <0, 0<r<1L
Then, we obtain
Mziz/r rwdrzw(r, t)/r rdr = fa) (99)
21t Jo 0 2
and hence
w(r,t)si—y, 0<r<1. (100)

It holds also that
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1
1 rd
= hothrdr (101
o wyirdr
which implies
wi = Aw + VY - Vo + BoAY = Aw + BV - Vo-Ba* 2 Aw + VY - Vo (102)
with
ow oy
Y Bt _ 103
3 ﬁwav>0 on 0Qx(0,T) (103)

The comparison theorem now guarantees w > 6 = min wy > 0 and hence
Q

/w|v¢|225/ IVi|* = de. (104)
Q Q
For Eq. (96) to prove, we use the second moment. First, the Poisson part of Eq. (75) is reduced to

-1, = /Or rawdr = A(r). (105)

Second, it follows that

1 1
i/ wridr = —/ (wy + Bawrp,)2r - rdr
dt Jo 0

1
= 21r%w|/—) + / drw-2Pan rdr
0

(106)
1
=2wl|,_; +4M + 28 / AA,dr
0
= 2w|,_; +4M + pM? <4M + pM?
from A(1) = M. Under the hypothesis of Eq. (96), we have 6 > 0 such that
4M + BM?<-5, HT. (107)
Then, T = +eo gives a contradiction.
Now, we assume T < +. First, equality in (106) implies
T
/ -p(t)dt<C (108)
0

by Eq. (100). Second, we have
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d _ p
g @ = /a)A(p +5 // p,wQw (109)
o

Q QxQ

and hence
dt<Cy,p€X. (110)

fd
/o dt/g‘”(‘)

Inequality (110) takes place of the monotonicity formula used for the Smoluchowski-Poisson

equation, which guarantees the continuation of w(x, t)dx up to t = T as a measure on Q [9, 17].
Thus, there is u = u(dx,t) EQ([O,T],M(@)) such that p(dx,t) = w(x,t)dx for 0 <t < T. By
Eq. (100), therefore, it holds that

w(x, t)dx—cdo(dx) + f(x)dx in M(Q), #T, (111)

with ¢ >0 and 0<f = f(x) € L' (Q). From the elliptic regularity, we obtain
1 —
lim infyr ¢(x, ) Zilogm loc. unif. in O~{0}. (112)

Then, e = (a)(-,t),t/1(-,t)>2<w(-,t),min{k,lp(-,t)}) implies e>;-min {k,log‘}c—‘} for k = 1,2,.
Hence, it holds that ¢ =0 in Eq. (111).

If the conclusion in Eq. (97) is false, we have the ¢ regularity in Egs. (74), (75) [9, 17]. Thus, there
is &g = &f > 0, such that

lim supllw(-. )1 o (g ry) < €0 = Imsuplo( Ol - o 5 < oo (113)

HT HT x0-R/2)
for 0 < R« 1. The hypothesis in Eq. (113) is valid for xo =0 by Eq. (111), ¢ = 0, which
contradicts to T < + .

5. Conclusion

We study the relaxation dynamics of the point vortices in the incompressible Euler fluid, using
the vorticity patch which varies with uniform vorticity and constant area. The mean field limit
equation is derived, which has the same form as the one derived for the Brownian point vortex
model. This equation governs the last stage of self-organization, not only in the point vortices
but also in the two-dimensional center guiding plasma and the rotating superfluid helium,
from quasi-equilibrium to equilibrium. Mathematical analysis assures this property for radi-
ally symmetric case, provided that the inverse temperature is bounded below.
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