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Abstract

During the past years, there has been an increasing interest in studying oscillation and
nonoscillation criteria for dynamical systems on time scales that harmonize the oscilla-
tion and nonoscillation theory for the continuous and discrete cases in order to combine
them in one comprehensive theory and eliminate obscurity from both. We not only
classify nonoscillatory solutions of two-dimensional systems of first-order dynamic
equations on time scales but also guarantee the existence of such solutions using the
Knaster, Schauder-Tychonoff and Schauder’s fixed point theorems. The approach is
based on the sign of components of nonoscillatory solutions. A short introduction to
the time scale calculus is given as well. Examples are significant in order to see if
nonoscillatory solutions exist or not. Therefore, we give several examples in order
to highlight our main results for the set of real numbers R, the set of integers Z and
qN" ={1, 4 qz, q3, ...}, >1, which are the most well-known time scales.

Keywords: dynamical systems, dynamic equations, differential equations, difference
equations, time scales, oscillation

1. Introduction

In this chapter, we investigate the existence and classification of nonoscillatory solutions of
two-dimensional (2D) nonlinear time-scale systems of first-order dynamic equations. The
method we follow is based on the sign of components of nonoscillatory solutions and the most
well-known fixed point theorems. The motivation of studying dynamic equations on time
scales is to unify continuous and discrete analysis and harmonize them in one comprehensive
theory and eliminate obscurity from both. A time scale T is an arbitrary nonempty closed subset
of the real numbers R. The most well-known examples for time scales are R (which leads to
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4 Dynamical Systems - Analytical and Computational Techniques

differential equations, see [1]), Z (which leads to difference equations, see Refs. [2, 3]) and
gV :={1,9,4%, -}, ¢>1 (which leads to g-difference equations, see Ref. [4]). In 1988, the
theory of time scales was initiated by Stefan Hilger in his Ph.D. thesis [5]. We assume that most
readers are not familiar with the calculus of time scales and therefore we give a brief introduc-
tion to time scales calculus in Section 2. In fact, we refer readers books [6, 7] by Bohner and
Peterson for more details.

The study of 2D dynamic systems in nature and society has been motivated by their applica-
tions. Especially, a system of delay dynamic equations, considered in Section 4, take a lot of
attention in all areas such as population dynamics, predator-prey epidemics, genomic and
neuron dynamics and epidemiology in biological sciences, see [8, 9]. For instance, when the
birth rate of preys is affected by the previous values rather than current values, a system of
delay dynamic equations is utilized, because the rate of change at any time depends on
solutions at prior times. Another novel application of delay dynamical systems is time delays
that often arise in feedback loops involving actuators. A major issue faced in engineering is an
unavoidable time delay between measurement and the signal received by the controller. In
fact, the delay should be taken into consideration at the design stage to avoid the risk of
instability, see Refs. [10, 11].

Another special case of 2D systems of dynamic equations is the Emden-Fowler type, which is
covered in Section 5 of this chapter. The equation has several interesting applications, such as
in astrophysics, gas dynamics and fluid mechanics, relativistic mechanics, nuclear physics and
chemically reacting systems, see Refs. [12-15]. For example, the fundamental problem in
studying the stellar structure for gaseous dynamics in astrophysics was to look into the
equilibrium formation of the mass of spherical clouds of gas for the continuous case, proposed
by Kelvin and Lane, see Refs. [16, 17]. Such an equation is called Lane-Emden equation in
literature. Much information about the solutions of Lane-Emden equation was provided by
Ritter, see Ref. [18], in a series of 18 papers, published during 1878-1889. The mathematical
foundation for the study of such an equation was made by Fowler in a series of four papers
during 1914-1931, see Refs. [19-22].

2. Preliminaries

The set of real numbers R, the set of integers Z, the natural numbers N, the nonnegative
integers Ny and the Cantor set, 4%, g > 1 and [0,1]u[2,3] are some examples of time scales.
However, the set of rational numbers Q, the set of irrational numbers R\Q, the complex
numbers C, and the open interval (0, 1) are not considered as time scales.

Definition 2.1. [6, Definition 1.1] Let T be a time scale. For t €T, the forward jump operator
0:T — Tis given by

o(t):=inf{[seT: s>t} forall teT

whereas the backward jump operator p : T — T is defined by
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p(t):=sup{seT: s<t} forall teT.

Finally, the graininess function u : T — [0,0) is given by u(t) := o(t)-t forall teT.

We define inf@ = supT. If o(t) > ¢, then t is called right-scattered, whereas if p(t) < t, t is called
left-scattered. If t is right- and left-scattered at the same time, then we say that ¢ is isolated. If
t < supT and o(t) = t, then t is called right-dense, while if ¢ > inf T and p(t) = ¢, we say that ¢ is
left-dense. Also, if t is right- and left-dense at the same time, then we say that t is dense.

Table 1 shows some examples of the forward and backward jump operators and the graininess
function for most known time scales.

qe tq

Table 1. Examples of most known time scales.

If supT < oo, then T* = T\(p(supT), supT| and T* = T if supT = . Suppose thatf : T — Risa
function. Then f : T — R is defined by f“(t) = f(c(t)) forall teT.

Definition 2.2. [6, Definition 1.10] For any ¢, if there exists a 6 > 0 such that

F(a()—f(s)-fA(t)(a(t)-s)| <elo(t)-s| forall se (t-5,t+ O)NT,

then f is called delta (or Hilger) differentiable on T* and f* is called delta derivative of f.
Theorem 2.3 [6, Theorem 1.16] Let f : T — R be a function with t € T*. Then
a. Iffis differentiable at t, f is continuous at t.

b. Iff is continuous at t and t is right-scattered, then f is differentiable at t and
o(t))—f(t
£y fOFB.
k()

c. Iftisright dense, then f is differentiable at t if and only if

s—t t—s

exists as a finite number.

d. Iff is differentiable at t, then f(o(t)) = f(t) + u(t)f* (t).

If T =R, then f* turns out to be the usual derivative f while f* is reduced to forward

difference operator Af if T = Z. Finally, if T = g™, then the delta derivative turns out to be
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g-difference operator A,. The following theorem presents the sum, product and quotient rules
on time scales.

Theorem 2.4 [6, Theorem 1.20] Let f,g : T — R be differentiable at t € T*. Then

a. Thesumf + g : T — R is differentiable at t with
(f +8)" () = () + g (8).

b. Iffg: T — Ris differentiable at t, then
(F9)" (1) = £ (Dg(t) + F(a(1)g” (B) = F(D" (1) +F* (g (1)

c. Ifg(H)g(o(t))=0, thené is differentiable at t with

(i)ﬂ(t) _F s Bgh )
g g(t)glo(t))

The following concepts must be introduced in order to define delta-integrable functions.

Definition 2.5. [6, Definition 1.58] f : T — R is called right dense continuous (rd-continuous),
denoted by C,q,Crq(T), or C(T,R), if it is continuous at right dense points in T and its left-
sided limits exist as a finite number at left dense points in T. We denote continuous functions
by C throughout this chapter.

Theorem 2.6 [6, Theorem 1.60] Let f : T — R.
a. Iff is continuous, then f is rd-continuous.
b. The jump operator o is rd-continuous.
Also, the Cauchy integral is defined by
be(t)At = F(b)-F(a) forall a,beT.

a

The following theorem presents the existence of antiderivatives.

Theorem 2.7 [6, Theorem 1.74] Every rd-continuous function has an antiderivative. Moreover, F
given by

F(t):Jf(s)As for teT

is an antiderivative of f.

Theorem 2.8 [6, Theorems 1.76-1.77] Let a,b,c € T,a €R, and f, g € C,4. Then we have:

1. Iff*>0, then f is nondecreasing.

2. Iff(t)20 for all a<t<b, then be(t)AtZO.

a
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8. | fmat=o.

Table 2 shows the derivative and integral definitions for the most known time scales for
a,beT.

b
£ J f(hat
R £ be(t) »
Z AF () =
90
g Af (1) 3 fhul)
te(a,b) y

Table 2. Derivatives and integrals for most common time scales.

Finally, we finish the section by the following fixed point theorems.

Theorem 2.9 (Schauder’s Fixed Point Theorem) [23, Theorem 2.A] Let S be a nonempty, closed,
bounded, convex subset of a Banach space X and suppose that T : S — S is a compact operator. Then, T
has a fixed point.

The Schauder fixed point theorem was proved by Juliusz Schauder in 1930. In 1934, Tychonoff
proved the same theorem for the case when S is a compact convex subset of a locally convex
space X. In the literature, this version is known as the Schauder-Tychonoff fixed point theorem,
see Ref. [24].

Theorem 2.10 (Schauder-Tychonoff Fixed Point Theorem). Let S be a compact convex subset of a locally
convex (linear topological) space X and T a continuous map of S into itself. Then, T has a fixed point.

Finally, we provide the Knaster fixed point theorem, see Ref. [25].

Theorem 2.11 (Knaster Fixed Point Theorem) If (S, <) is a complete lattice and T : S — S is order-
preserving (also called monotone or isotone), then T has a fixed point. In fact, the set of fixed points of T
is a complete lattice.

7
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3. Dynamical Systems on Time Scales

In this section, we consider the following system

{xﬂ(t) = f(t)f(y t)) (1)

where f,geC(R,R) are nondecreasing such that wuf(u) >0, ug(u) >0 for u#0 and
a,beCrd([tQ,m)T,R+). The main results in this section come from Ref. [26]. If T =R and

T =7, Eq. (1) turns out to be a system of first-order differential equations and difference
equations, see Refs. [27] and [28], respectively. Recent advances in oscillation and nonoscillation
criteria for two-dimensional time scale systems have been studied in Refs. [29-31].

Throughout this chapter, we assume that T is unbounded above. Whenever we write t>t;, we
mean t & [ty, ) = [t;,)NT. We call (x,y) a proper solution if it is defined on [tg,o0); and
sup{|x(s)|, |y(s)| : s €[t.ee)} > 0O for t2ty. A solution (x,y) of Eq. (1) is said to be nonoscillatory if
the component functions x and y are both nonoscillatory, i.e., either eventually positive or
eventually negative. Otherwise, it is said to be oscillatory. The definitions above are also valid
for systems considered in the next sections.

Assume that (x,y) is a nonoscillatory solution of system (1) such that x oscillates but y is
eventually positive. Then the first equation of system (1) yields x* (t) = a(t)f (y(t)) > 0 eventu-
ally one sign for all large t>t;, a contradiction. The case where y is eventually negative is
similar. Therefore, we have that the component functions x and y are themselves
nonoscillatory. In other words, any nonoscillatory solution (x,y) of system (1) belongs to one
of the following classes:

M*' :={(x,y)eM: xy >0 eventually}

M ={(x,y)eM: xy <0 eventually},

where M is the set of all nonoscillatory solutions of system (1).

In this section, we only focus on the existence of nonoscillatory solutions of system (1) in M
whereas M" is considered together with delay system (12) in the following section.

For convenience, let us set
Y(t) = J a(s)As and Z(t) = J b(s)As. (2)
t t

We begin with the following results playing an important role in this chapter.

Lemma 3.1 Let (x,y) be a nonoscillatory solution of system (1) and to€T. Then we have the
followings:

a. [29, Lemma 2.3] If Y(ty) < oo and Z(ty) < oo, then system (1) is nonoscillatory.
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b. [29, Lemma 2.2] If Y(ty) = o0 and Z(ty) = oo, then system (1) is oscillatory.
c. IfY(ty) <eoand Z(ty) = o, then M = @.

d. If Y(ty) = oo and Z(ty) < oo, then M~ = @.

e. Let Y(ty) < oo. Then x has a finite limit.

f. If Y(ty) = or Z(ty) < oo then y has a finite limit.

Proof. Here, we only prove (a), (c) and (e) and the reader is asked to finish the proof in Exercise
3.2. To prove (a), choose t; € [ty,%°) such that

oo

[Oa(t)f(l +g(2)J b(s)As)At < 1.

t

Let X be the space of all continuous functions on T with the norm llxl = sup |x(¢)| and with
te [tl N °°)T

the usual point-wise ordering <. Define a subset (2 of X as

Q:={xeX: 1=x(t)<2, t=h}.

For any subset S of 2, we have infS € 2 and supS € Q. Define an operator F : (2 — X such that

oo

t

(Fx)(t) =1 +J

21

a(s)f<1 +J

S

b(u)g(x(u))Au)As, 2t;.

By using the monotonicity and the fact that x € (2, we have

t

oo

1<(Fx) (<1 + J ao)f (1+ g(2)J

S

b(u)Au)As <2, 4.
t

It is also easy to show that F is an increasing mapping. So by Theorem 2.11, there exists x € (2
such that Fx = x. Then we have

Setting
yit) =1+ rb(u)g(f(u))Au >0, =4
gives us
v (1) = -b(Hg(x(1)) and  x(t) = a(t)f (1)),

that is, (x,¥) is a nonoscillatory solution of Eq. (1). In order to prove part (c), assume that there
exists a nonoscillatory solution (x,y) of system (1) in M" such that x(t) > 0 for t2t;. Then by
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monotonicity of x and g, there exists a number k > 0 such that g(x(t))>k for £>t;. Integrating the
second equation of system from t; to t gives us
t

vt su(t)-k| bods.

3]

As t — oo, it follows y(f) — —oo. But this contradicts that y is eventually positive. Finally for
part (e), without loss of generality, we assume that there exists t;2t; such that x(¢) > 0 for £t;.
If (x,y) € M, then by the first equation of system (1), x*(t) < 0 for t>t;. Hence, the limit of x
exists. So let us show that the assertion follows if (x,y) € M™. Suppose (x,y) € M". Then from
the first equation of system (1), we have x?(#) > 0 for £>t;. Now let us show that lim;_..x(f) = o
cannot happen. Integrating the first equation of system (1) from t; to t and using the monoto-
nicity of y and f yield

t

() 5x(t) + fly(t) | a(s)as.

5]

Taking the limit as t — oo, it follows that x has a finite limit. This completes the proof.
Exercise 3.2. Prove the remainder of Lemma 3.1.

Throughout this section, we assume Y(fy) < e and Z(tp) = . Note that Lemma 3.1 (c) indi-
cates M* = @. Therefore, every nonoscillatory solution of system (1) belongs to M". Let (x,y)
be a nonoscillatory solution of system (1) such that the component function x of solution (x,y)
is eventually positive. Then, the second equation of system (1) yields y < 0 and eventually
decreasing. Then for k < 0, we have that y approaches k or —ce. In view of Lemma 3.1 (e), x has
a finite limit. So in light of this information, any nonoscillatory solution of system (1) in M~
belongs to one of the following subclasses for 0 < ¢ < < and 0 < d < ee:

Mgy = {(xy) €M : limfx(5)| =0, limly(t)| = d},

Mg p = {(x.y) €M :lim[x(t)] = ¢, lim|y(£)] = d},

oo f—sc0

M. = {(x,y) €M : lim|x(£)| = 0, lim|y(t)| = e},

f—oo t—o0

Mg .. ={(x,y) eM :lim|x(t)| = ¢, lim|y(t)| = o}.

f—o0 f—o0

Nonoscillatory solutions in M, is called slowly decaying solutions in literature, see [32]. The

following theorems show the existence of nonoscillatory solutions in subclasses of M~ given
above. Our approach for the next two theorems is based on the Schauder fixed point theorem,
see Theorem 2.9.

Theorem 3.3 M, z#@ if and only if

oo

rb(t)g(cl J a(s)As)At<oo, c1#0. 3)

Proof. Suppose that there exists a solution (x,y) € M,  such that x(t) > 0 for £2t, x(t) — 0 and
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y(t) — —d ast — oo, where d > 0. Integrating the first equation of system (1) from ¢ to e and the
monotonicity of f yield that there exists ¢ > 0 such that

00

x(t)ZCJ a(s)As, tty. (4)

t

By integrating the second equation from f, to t, using inequality (4) with ¢ =c; and the
monotonicity of g, we have

t t

b(e)g(x(s)) A= be)g e

S

oo

y(t) = y(fO)_J a(u)Au)As.

fo

So as t — oo, the assertion follows since y has a finite limit. (For the case x < 0 eventually, the
proof can be shown similarly with ¢; < 0.)

Conversely, suppose that Eq. (3) holds for some c¢; > 0. (For the case ¢; < 0 can be shown
similarly.) Then there exist t;>t; and d > 0 such that

oo o

J b(t)g(clj a(s)As)At< d, 2, (5)

where c; = —f(=3d). Let X be the space of all continuous and bounded functions on [t, %) with
the norm lyll = sup |y(t)|. Then X is a Banach space, see Ref. [33]. Let Q2 be the subset of X

fe[tl,‘x’)T
such that
Q:={yeX: -3d<y(t)s-2d, 2t}

and define an operator T : (2 — X such that

(Ty)(t) =3+ | bs)g (- atwrty(w)au) s

t

oo

It is easy to see that T maps into itself. Indeed, we have

oo

_3ds(Ty)(t)5—3d+L b(s)g(—r

S

a(u)f (-3d)A u) As<-2d

by Eq. (5). Let us show that T is continuous on (2. To accomplish this, let y, be a sequence in Q2
such thaty, — y€Q = Q. Then

Ty, )OI 0] )
< | vOlis(-] at0rt,w)au)-g(-| awrw)an))as

Then the Lebesque dominated convergence theorem and the continuity of g give II(Ty,)
—(Ty)l = 0as n — oo, ie, T is continuous. Also, since

1"
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oo

0 < ~(Ty) (1) = bit)g (- atwftylu)an) <

t

it follows that T(Q) is relatively compact. Then by Theorem 2.9, we have that there exists y €
such that y = Ty. So as t — oo, we have y(t) — —3d < 0. Setting

X(t) = —J:oa(u)f(y(u))Au >0, =2h

gives that X(t) — 0 as t — o and implies ¥* = af(y), i.e., (X,7) is a nonoscillatory solution in
Mo -

In the following example, we apply Theorem 3.3 to show the nonemptiness of M .

Example 3.4 Let T = g™, q > 1 and consider the system

t% 1
Agx(t) = Ty3(t)
5
t+1)3 s
Agy(t) = —%xS(t).
qt
Since
T 4
s3 1
| aas =1 > <) Y
i el GHDE D) ey 8
where t = q" and s = tq"™, n,m € Ny, we obtain
Y(1)<(g-1)) (—2> < o,
n=0 \{?3
Also,
T 5 ) =
J b(s)As = Z (5;12)3 (q—l)sZ% Z 53 implies Z(l)Z%Z(q%)m =oco. Now let us
1 s€[LT) v s€[LT) m=0

show that Eq. (3) holds. First,

r 1 T 1 g3(g-1

J a(s)As<(g-1) Z —  implies J a(s)As<(g-1) - = qSZ(q )2.

t selt, T)qNO S3 t se [t’w)qNO S3 (qg—l)tg

Therefore,
T oo 5
t+1)3
J b(t)g(qj a(s)As)AtSa Z #,
1 t te[1,T) 5, t10
, 1

where o = M. So as T — oo, we have that Eq. (3) holds by the Ratio test. One can also show that

(q§—1)§

(H%,—Z + %) of system (6) such that x(t) — 0 and y(t) — —2 as t — o, i.e., M z#@.
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The proof of the following theorem is similar to the proof of Theorem 3.3.

Theorem 3.5 My p#@ if and only if

oo

rb(t)g(dl—clj a(s)As)At < oo

for some ¢y < 0anddy > 0. (Orcy >0andd; <0.)
Exercise 3.6. Prove Theorem 3.5 by means of Theorem 2.9.
The following theorem follows from the Knaster fixed point theorem, see Theorem 2.11.

Theorem 3.7 My . #@ if and only if
J a(s)f (clj
fo

for some ¢1#0, where f is an odd function.

s b(u)Au)As <o (7)

to

Proof. Suppose that there exists a nonoscillatory solution (x,y) € Mj .. such that x > 0 eventu-

ally, x(t) — c; and y(t) — — as t — oo, where 0 < ¢, < 0. Because of the monotonicity of x and
the fact that x has a finite limit, there exist t;>fy and ¢z > 0 such that

<x(t)<es  for 2. (8)

Integrating the first equation from #; to  gives us

c<x(t) =x(h) + Jt a(s)f(y(s))As<cs, 2.

2]

So by taking the limit as t — <, we have

fa(sw(y(smm <o 9)

The monotonicity of g, Eq. (8) and integrating the second equation from t; to ¢ yield

y(t)ﬁy(tl)—g(ffz)J

t

b(s)As< —g(cz)J b(s)As.

tl tl

Since f(-u) = —f(u) for u#0 and by the monotonicity of f, we have

t

Fye)lf (glea) | bio)as). e, (10)

2]

By Egs. (9) and (10), we have

t S

[ atrytspiass|

t

a(s)f(g(cz)J b(u)Au)As, where  g(c2) = c1.

tl tl

Ast — o, the proof is finished. (The case x < 0 eventually can be proved similarly with ¢; < 0.)

13
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00

S

Conversely, suppose J b(u)Au)As < o for some c1#0. Without loss of generality,

a)f(er],

assume c; > 0. (The case ¢; < 0 can be done similarly.) Then, we can choose t;>t; and d > 0
such that

Sl S

Jt a(s)f(clL b(u)Au)As <d, t,

where c; = g(2d) > 0. Let X be the partially ordered Banach space of all real-valued continuous

functions endowed with supremum norm llxll = sup [x(t)| and with the usual pointwise
te [tl 5 oo),ﬂ,

ordering <. Define a subset (2 of X such that

Q= 1{xeX: d<x(t)<2d, =4}

For any subset B of Q, infBe (2 and supBe (), i.e. (Q, <) is complete. Define an operator
F:0Q — Xas

S S

(Fx)(t) =d + Jt a(s)f(J b(u)g(x(u))Au)As, >t .

t

The rest of the proof can be completed similar to the proof of Lemma 3.1(a). So, it is omitted.

Exercise 3.8 Let T =7. Use Theorem 3.7 to justify that (x,,y,) = (1+4+27",-2") is a
nonoscillatory solution in My . of

Axn: 2_6%_1(]/;1)%
4”
Ay, = _W<x”)'

For convenience, set

oo

I= ra(t)f<kJ b(s)As)At, k0. (11)

In order to obtain the nonemptiness of M, ., we apply Theorem 2.11 and use the similar
discussion as in Lemma 3.1(a).

Theorem 3.9 M, _.#@ if for some k > 0 and any dy > 0 (k <0 and dy < 0)

oo

[ <o and rb(t)g<d1J a(s)4s) At = o,

where I is defined as in Eq. (11) and f is an odd function.
Exercise 3.10. Prove Theorem 3.9.

We reconsider system (1) in the next section to emphasize the existence of nonoscillatory
solutions in M.
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4. Delay Dynamical Systems on Time Scales

This section is concerned with the delay system

{ri = mepie) 12)

~b(t)g(x(7()))
with  a,b€Cuy([ty, )7, R"), 1€ Cu([to, ), [fo,2°)), T(H)<t and 1(t) — e as t— oo
f,g€C(R,R) are nondecreasing functions such that uf(u) > 0 and ug(u) > 0 for u#0. Moti-
vated by Ref. [34] in which 7(t) = t-n, n > 0, our purpose in this section is to obtain the criteria
for the existence of nonoscillatory solutions of Eq. (12) based on Y (¢p) and Z(#,). However, note

that the results in Ref. [34] do not hold for any time scale, e.g., T = g™, g > 1, because t-7 is
not necessarily in T. In fact, theoretical claims in this section follow from Ref. [35].

Since system (12) is oscillatory for the case Y(ty) =« and Z(fy) = oo, the existence results on
any time scale are obtained in the next subsections based on the other three cases of Y(#p) and
Z(t). Let (x,y) be a nonoscillatory solution of system (12) in M" such that the component
function x is eventually positive. Then by the second equation of system (12), y is eventually
decreasing. In addition, using the first equation of system (12), we have that x(t) — c or > and
y(t) =dor 0ast— o for 0 <c <o and 0 < d < . Therefore, we have the following sub-
classes of M":
Mg g ={(x,y) eM" : lim|x(t)] = ¢, lim|y(t)| = d},

t—o0

Mjy = {(x,y) eM" : lim|x(t)| =c, lim|y()| =0},

Mz p = {(x,y) eM" : lim|x(£)| = o=, lim|y(t)| = d},

f—o0

My ={(x,y)eM" : lim|x(t)| = e, lim|y(t)| = 0}.

t—o0 f—o0
In the literature, solutions in MEO, Mj;’B and MI’O are called subdominant, dominant and inter-
mediate solutions, respectively, see Ref. [36]. Any nonoscillatory solution of system (12) belongs

to M* or M~ given in Section 3. Also, it is important to emphasize that Lemma 3.1 holds for
system (12) as well.

4.1. The case Y(tp) = ccand Z(ty) < oo

We restrict our attention to M" in this subsection because M~ = @ when Y(ty) = e and
Z(tg) < o. The following lemma specifies the limit behavior of the component functions of
nonoscillatory solutions (x,y) under the case Y(fy) = > and Z(t) < o°.

Lemma 4.1 If |x(t)| — ¢, then y(t) — 0ast — oo for 0 < ¢ < o.

Proof. Assume to the contrary. So y(t) — d for 0 < d < e as t — . Then since y(f) > 0 and
decreasing eventually, there exists #1>t; such that f(y(7(t)))2f(d) =k for t>t;. By the same
discussion as in the proof of Theorem 3.3, we obtain

15
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x(t)zkr a(s)As, £2h.

t

However, this gives us a contradiction to the fact that x(t) — ¢ as t — . So the assertion
follows.

Remark 4.2. The discussion above and Lemma 4.1 yield us MEB =Qg.
Theorem 4.3. My i#@ if and only if I < .

Proof. Suppose that there exists a solution (x,y) EMgo such that x(t) > 0, x(7(t)) > 0 for tto,
x(t) — ¢ and y(t) — 0 as t — oo. Because x is eventually increasing, there exist t1>ty and ¢; > 0
such that c; <g(x(7(t))) for £2t;. Integrating the second equation from ¢ to  gives

y(E) = fb(s)g(x(r(s)))As, >, (13)

Also, integrating the first equation from t; to ¢, Eq. (13) and the monotonicity of ¢ result in

t

oo

x(t)ZJt a(s)f(me(u)g(x(f(u)))Au>ASZJ b(u)Au)As.

tl S

o(s)f (e

t s

Setting ¢, = k and taking the limit as  — o prove the assertion. (For the case x < 0 eventually,
the proof can be shown similarly with k < 0.)

Conversely, suppose I < o« for some k > 0. (For the case k < 0 can be shown similarly.) Then,
choose t;2t) so large that

o0

J:oa(t)f (kL b(s)As) At < % Bt

where k = g(c1). Let X be the space of all continuous and bounded functions on [t;,%); with
thenorm llyl = sup |y(t)|. Then, X is a Banach space. Let (2 be the subset of X such that

te [t17°°)11‘

Q:=lxeX: %Sx(T(t))SCl, T(F)2H),

and define an operator F : (2 — X such that

00

(F)0) = - ats)r(|

S

o

b(u)g(x(f(u)))Au)As, T(b)2H.

It is easy to see that (2 is bounded, convex and a closed subset of X. It can also be shown that F
maps into itself, relatively compact and continuous on (2 by the Lebesques dominated conver-
gence theorem. Then, Theorem 2.9 gives that there exists x € (2 such that x = Fx. Ast — oo, we
get X(f) — ¢1 > 0. Setting
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() = | g an >0, (2
t
shows (t) — 0 as t — . Taking the derivatives of ¥ and ¥ yield that (X,¥) is a solution of
system (12). Hence, M (#@.
We demonstrate the following example to highlight Theorem 4.3.

Example 4.4 Let T= 2" and consider the system

245
Ayy(t) = -

1 ¢
Aox(t) = —5 (y(t)
&) "

t
pTarTeR

First, it must be shown Y (ty) = oo and Z(ty) < . Indeed,

r Z 55 implies :—%1522 (2™M) 5= o

to se 4,5,

and

t
.3 Lo
L) 1_6 implies  Z(tp) < E%EI;Z — < o
se [4 t)zN[)

by the geometric series, where t= 2", s= 2", m,n>2. Note that
Tb()A<i Z 1. I Z - 1 1Yy 3
°*>16 s e 16n135‘o i 8n—>°° i) s

t s€[t,T),n

Letting k = 1 and using the last inequality gives

[aor(ef soasars| L (2) = ()3 = 1

fo

Therefore, we have

oo

Ea<t>f (k

11
by the geometric series. It can be seen that (x,y) = (8—?, t_z) is a nonoscillatory solution of Eq. (14)

b(s)As)AtS (%)

such that x(t) — 8 and y(t) — O as t — oo, ie., Mg,o;é@-
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The existence in subclasses M_ ; and M:;O is not obtained on general time scales. The main
reason is that setting an operator including a delay function gives a struggle when the fixed
points theorems are applied. In fact, when we restrict the delay function to 7(f) = -7 for 20, it
was shown M:y 570, see Ref. [34]. Nevertheless, the existence in M:Q, 5 and Mi,o for system (1) is
shown in Subsection 4.4.

4.2. The case Y(ty) < ecand Z(tp) < oo

Because the component functions x and y have finite limits by Lemma 3.1(e) and (f), the
subclasses M::,B and Mj;o are empty. Since the existence of nonoscillatory solutions in Mgo is

shown in Theorem 4.3, we only focus on My, p in this subsection.

The Knaster fixed point theorem is utilized in order to prove the following theorem.

Theorem 4.5 M p#@ if and only if
J als)f (d + kJ
to

S

oo

b(u)Au)As < oo,k di#0. (15)

Proof. The proof of the necessity part is very similar to those of previous theorems. So for
sufficiency, suppose Eq. (15) holds. Choose t1>t), k > 0 and d; > 0 such that
J a(s)f<d1 n kJ b(u)Au)As <di,
t s

where k = g(2d;). (The case k,d; < 0 can be done similarly.) Let X be the Banach space of all

continuous real-valued functions endowed with the norm llxll = sup [|x(#)| and with usual
te [f] 5 W)T

point-wise ordering <. Define a subset (2 of X as
Q:={xeX: di<x(t(t))<2dy, 7t(H)>h}.

For any subset B of (), it is clear that infB € (2 and supB € Q. An operator F : 2 — X is defined as

t

oo

(Fx)(t) = ds + J afs)f (dr + J

S

b(u)g(x(T(u)))Au)As, T(b)>h.

f1

It is obvious that F is an increasing mapping into itself. Therefore,

oo

t

dy<(Fx)(t)<dy + j

51

o(s)f (i + g(2at)

S

b(u)Au)AsSZdl, T(F)2H.

Then, by Theorem 2.11, there exists X € (2 such that X = Fx. By setting

o

7(t) = dy +j bg(E(t(w)). T(H2h,

t

we get that



On Nonoscillatory Solutions of Two-Dimensional Nonlinear Dynamical Systems 19
http://dx.doi.org/10.5772/67118

v (1) = -b(t)g(x(x(1))). (16)

Also taking the derivative of ¥ and Eq. (16) give that (¥,¥) is a solution of system (12). Hence,
we conclude that X(t) — a and y(t) — dq as t — o, where 0 < a < 5, i.e,, My p#@. Note that a
similar proof can be done for the case k < 0 and d; < 0 with x < 0.

Example 4.6 Let T= 2" and consider the system

5 1
263(3t +1)3 (17)

t
J a(s)As 1 Z LN implies = —hmz 5 < oo

2 2 1 2 m 1
o selt iy, $3(3s +1)° mY3(3.2M 4 1)3

by the Ratio test for t= 2", s= 2", n22. Similarly,

f 1 1 o
J b(s)As =5 Z i implies 5%22262’”—4

to s€[4,1),n

Because Y(tg) < oo and Z(ty) < o, it is easy to show that Eq. (15) holds. One can also verify that
(6-1,3 +1) is a nonoscillatory solution of system (17) such that x(t) — 6 and y(t) — 3ast — o, i.e.,
My, g#@ by Theorem 4.5.

4.3. The case Y(t;) < < and Z(t,) =

Lemma 3.1(c) yields M* = @ for the case Y(ty) < e and Z(ty) = . Thus, we pay our attention
to M in this subsection. The proof of the following remark is similar to that of Theorem 3.7.

Remark 4.7 My, _#@ if and only if integral condition (7) holds.
Exercise 4.8 Prove Remark 4.7 and also show that (3 +},~#-1) is a nonoscillatory solution of

Agx(t) = ———— (y(®)

265 +1)3
212-1 £\ 3
day) =2 ()
2t5(3t +4)5

in My ..#@ when T= 2"

4.4. Dominant and intermediate solutions of Eq. (1)

Note that the existence of nonoscillatory solutions of system (1) in M, M  and M, j is not
shown on a general time scale. In fact, the existence in these subclasses is obtained for system
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(1) in Section 3. Since system (12) is reduced to system (1) when 7(¢) = ¢, notice that the results
obtained for system (12) in Section 4 also hold for system (1). Therefore, we only need to show
the existence of nonoscillatory solutions for Eq. (1) in M z and M., which are not acquired
for Eq. (12) on a general time scale. To achieve the goal, we assume Y (tp) = o and Z(ty) < o°.

Theorem 4.9 M z#@ if and only if

Sl S

J b(s)g(qj a(u)Au)As < oo, q#0. (18)

Proof. The necessity part is left to readers as an exercise. Therefore, for sufficiency, suppose that
Eq. (18) holds. Choose t;2ty, ¢; > 0 and d; > 0 such that

ied S

Lb(s)g(clLb(u)Au>A5 <d, 2, (19)

where ¢; = f(2d;) > 0. (The case ¢; < 0 can be done similarly.) Let X be the partially ordered
Banach space of all real-valued continuous functions endowed with supremum norm

Ixll = sup -2 and with the usual point-wise ordering <. Define a subset (2 of X such that

te [tl y°°)1r a(s)As
t

t

Q=1{xeX: f(dl)J: a(s)As<x(t) Sf(Zdl)J a(s)As, 2k}

f

For any subset B of Q, infBeQ and supBe (), ie. (Q, <) is complete. Define an operator
F:0Q — Xas

oo

t

(Ex)(8) :J als)f (i +J b(w)g(x(u)du)As, 2t

t t

It is obvious that it is an increasing mapping, so let us show F := Q — Q.

t

f<d1>J a(s) s < (Fx)(1

| SJ;a(s)f(dl + J

s
t

Sf(2d1)J a(s)As

f

oo

u

b(u)g(f(Zdl)J a(A)AA)Au)As

51

by Eq. (19). Then, by Theorem 2.11, there exists X € (2 such that X = Fx and so

() = a(t)f(ch + fb(wg(y(u)mu), B2t

oo

Setting y(t) = di + J b(u)g(%¥(u))Au leads us y* = -bg(¥) and so, (¥,¥) is a solution of system
t
(1) such that x(f) >0 and y(t) > 0 for t2t; and X(t) — o and y(t) —d; >0 as t — o, ie,

M:gy 57 D.
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Theorem 4.10 M_, ;#@ if

[ =o and J b(t)g(lJ a(s)As)At < oo,
to to

where I is defined as in Eq. (11), for any k > 0 and some | > 0 (k < 0and | <0).

Exercise 4.11 Prove Theorem 4.10 using Theorem 2.11.

5. Emden-Fowler Dynamical Systems on Time Scales

Motivated by the papers [28, 36, 37], we deal with the classification and existence of
nonoscillatory solutions of the Emden-Fowler dynamical system

{ (1) = a(t)ly(1)[3sgm y(1 (20)
v (1) = =b(O)lx" (1) Psgn 27 (1),

where a,f > 0a,b € Cy([tg, o), R") and x7 (£) = x (0(t)). The main results of this section follow
from Ref. [38]. If T =Z, system (20) is reduced to a Emden-Fowler system of difference
equations while it is reduced to a Emden-Fowler system of differential equations when
T = R, see Refs. [32, 39, 40], respectively. We also refer readers to Refs. [41-46] for quasilinear
and Emden-Fowler dynamic equations on time scales.

Note that any nonoscillatory solution of system (20) belongs to M" or M~ given in Section 3.
Also, it could be shown that Lemma 3.1 holds for system (20) as well.

5.1. The case Y(t;) = e and Z(tp) < oo

In this case, we have M~ = @, see Lemma 3.1(d). By a similar discussion as in Subsection 4.1,
solutions in M belongs to one of the subclasses My, M. 5 and M.

Let us set

o

Xo 1
I, = Loa(t) (L b(s)As) Y
Ky = fb(t) <r(t)a(s)As>ﬁ At.

fo

1
Note that integral I, defined as in Eq. (11), is reduced to ], by replacing f(z) = z« and g(z) = zF.
The following theorem can be proven similar to Theorem 4.3.

Theorem 5.1 My #@ if and only if ], < .
Exercise 5.2 Prove Theorem 5.1.

Next, we provide the existence of dominant and intermediate solutions of system (20) along
with examples.

21
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Theorem 5.3 M_, z#@ if and only if Ky < .

Proof. Suppose that there exists (x,y) € M* such that x > 0 eventually, x(t) — e and y(t) — d as
t — oo for 0 < d < oo. Integrating the first equation from #; to o(t), using the monotonicity of y
and integrating the second equation from t; to t of system (20) give us

a(t) o(t)

1 1
a(s)ya(s)As > daj a(s)As. (21)

5]

x7(t) = x7(t) + J

5]

and

t

w(tv() = | v () s (22)

51

respectively. Then, by Egs. (21) and (22), we have

Jt b(s) (JJ(S)a(u)Au>ﬁAs < d§r b(s) (xa(s))ﬁAs = d%ﬁ<y(t1)—y(t)>

t t t

So as t — oo, it follows K < eo.

Conversely, suppose Kz < . Choose t12ty so large that

fb(s) (JG(S)a(u)A u)ﬁAs < dzl—j

f

for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all real-valued

continuous functions with the norm ||x|| = sup*“'~ and the usual point-wise ordering <.

t>h a(s)As
t

Define a subset QQ of X as follows:

1t 1t
Q:{xeX: dEJ a(s)AsSx(t)S(Zd)EJ a(s)As for t>H}.

t 1]

First, since every subset of (2 has a supremum and infimum in Q, (Q, <) is a complete lattice.
Define an operator F : 2 — X as

0o 1

b(u) (x"(u))ﬁAT) “As.

t

(Fx)(t) = La(s) (a+ J

S

The rest of the proof can be finished via the Knaster fixed point theorem, see Theorem 4.9 and
thus is left to readers.
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Example 5.4 Let T = g™, g > 1 and consider the system

4= lyls
ylsgny
) T 142t +2t 23)

1
y = _W |xO|ﬁSgn X.

It is left to readers to show Y (ty) = oo and Z(ty) < e. In order to show Ky < oo, we first calculate

B
T o(t) B 1 52((]—1)
b(t) J a(s)As) At= > s > =2 (gDt
Jto ( fo ) T q1+ﬁtﬁ+ e o, 1+2s
(g-1)F*! 1 B g1 1
<T1+ﬁ > 1—+5( > S) <7 > e
te [LT)qNo se [1,U(f))qN0 te [1’T)qNO

where s = q" and t = q" for m,n € Ny. Since

by the geometric series, we have Kg < . It can be verified that (t, 1 + 2) is a nonoscillatory solution of
system (23) in M .

Theorem 5.5 M (*@ if |, = o and Kg < .

Proof. Suppose that ], = e~ and Kz < e hold. Since Y(fy) = <, we can choose t; and t; so large
that

00 o(t) B ty
J b(t) (J a(s)As) At<1 and J a(s)As=1, t2hH>t.
5]

fo 51

Let X be the Fréchet Space of all continuous functions on [t,%); endowed with the topology of
uniform convergence on compact subintervals of [t;,%0) . Set

t
={xeX: 1£x(t)sj a(s)As for 2t}
5]

and define an operator T : (Q — X by

t oo

tza(s) (L b(u) (x“(u))ﬁAu) . (24)

We can show that T : Q2 — Q is continuous on Q2CX by the Lebesque dominated convergence
theorem. Since

Q=

(Tx)(f) = 1 +J

23
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it follows that T is equibounded and equicontinuous. Then by Theorem 2.10, there exists x € (
such that x = Tx. Thus, it follows that x is eventually positive, i.e nonoscillatory. Then differ-
entiating x and the first equation of system (20) give us

() = (%) (z%))“ - fbm) (yﬁ(u))’g Au>0, 2. (25)

<

This results in that ¥ is eventually positive and hence (X,¥) is a nonoscillatory solution of
system (20) in M. Also by monotonicity of X, we have

t

) =1+ La(s) (Jm

S

t

() <)_Cg(u>>ﬁ4\u) %2 (a‘c(tz))ﬂLa(S) (Jm

S

Q=

b(u)Au> .

Hence as t — oo, it follows X(t) — . And by Eq. (25), we have y(t) — 0 as t — . Therefore
M *@.

Example 5.6 Let T = g™, g > 1 and B < 1. Consider the system

1
¥ = (14 t)ylasgny

A

(26)
Yo =

_ o|p
T

It is easy to verify Y (ty) = e and Z(ty) < . Letting s = q" and t = q", where m,n € Ny gives

T T ., (g-1)s -
L)a(t)(Jt b(s)As) At_te[;)q%(ut) GUXT:) 1+ +sq)f" (g-1)t

I t e t?
=1 Z 1+8 ((1 +£)(1+ tq)ﬁ+1>t = (¢-1) Z (1+ tq)ﬁﬂ 1

te(l, T)qNO te [l’T)qNO
So we have
S oo
1 1
== 17,5 1+t L+ )Pt

by the Test for Divergence and f < 1. Now let us show that Kg < oe. Since

Jg(t)u(S)As = Y (1+9)(g-Dsstg(l +tg),

to se “’t)qNO

we have
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JTb(t) (Jg(t)a(s)As> At< o (tq(l + tq))ﬁ Hg-1)
to to te[l,T)qNo (1 + t)(l + tq)
th
<qP(q-1) T
Therefore by the Ratio test,
t =~ (¢
lim g (q-1) — =471 <
oo e 1+t ;(1—#[1 )

gives Kg < . It can also be verified that (1 +t, H%) is a nonoscillatory solution of Eq. (26) in M .

Exercise 5.7 Show that the following system

' 1
{ x = eMylasgny
y = —ae @ tP)|xPsgn x
has a nonoscillatory solution (¢',e™") in M_ .

Next, we intend to derive a conclusion for the existence of nonoscillatory solutions of system
(20) based on o and . The proof of the following lemma is similar to the proofs of Lemmas 1.1,
3.2,3.3, 3.6 and 3.7 in [47].

Lemma 5.8

a. If], <o, or Kg < oo then Zj < oo.

b. If Kg = oo, then Y(ty) = oo or Z(ty) = .

c. If], = oo, then Y(ty) = o or Z(ty) = oo

d. Let a>1. If |, < o, then K, < o°.

e. Let B<1.If Kg < oo, then Jg < oo.

f. Leta < B.IfKg < oo, then |, < ooand Ky < oe.
g Leta>p.If], < oo then Ky <ooand [z < eo.

Exercise 5.9 Prove Lemma 5.8.

The following corollary summarizes the existence of subdominant and dominant solutions of
system (20) in this subsection by means of Lemma 5.8.

Corollary 5.10 Suppose that Y (ty) = oo and Z(ty) < . Then
a. My ,#@ if any of the followings hold:

(D], <o () a<p p2land [z < e,

25
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(iii) @ < and Kg < oo, (iv) a<1 and K, < oo,
b. M. z#@ if any of the followings hold:
(i) Kg < oo, (ii) a>1 and ]ﬁ < oo,

(iii) o« > pand |, < .

5.2. The Case Y(tp) < ccand Z(tj) < o

With the similar discussion as in Subsection 4.2, we concentrate on M 5 and M;{O. Actually, the
existence in My, is shown in Subsection 5.1. Also, we use the same argument of the proof of

Lemma 3.1(a) so that the criteria for the existence of nonoscillatory solutions of system (20) in
ME,B is Y(to) < o and Z(to) < oo,

The most important question that arose in this section is about the existence of nonoscillatory
solutions of the Emden-Fowler system in M. The existence of such solutions in My, ., M, .. can
similarly be shown as in Theorems 3.7 and 3.9. When concerns about and M, come to our
attention, we need to assume that o must be differentiable, which is not necessarily true on
arbitrary time scales, see Example 1.56 in [6]. The following exercise is a great observation
about the discussion mentioned above.

Exercise 5.11 Consider the system

Afpy — f Sson
B =7 (1) 420G [y(H)Fsgn y(t)

F4 1)} .
ay = - UHED" otsgn ()
/ 2312 (4t + 5)3 &

(27)

in T= 2" and show that (2 + HLZ , =3+ %) is a nonoscillatory solution of system (27) in Mg 3.
Note that o(t) = 2t is differentiable on T= 2",
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