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Abstract

During the past years, there has been an increasing interest in studying oscillation and
nonoscillation criteria for dynamical systems on time scales that harmonize the oscilla-
tion and nonoscillation theory for the continuous and discrete cases in order to combine
them in one comprehensive theory and eliminate obscurity from both. We not only
classify nonoscillatory solutions of two-dimensional systems of first-order dynamic
equations on time scales but also guarantee the existence of such solutions using the
Knaster, Schauder-Tychonoff and Schauder’s fixed point theorems. The approach is
based on the sign of components of nonoscillatory solutions. A short introduction to
the time scale calculus is given as well. Examples are significant in order to see if
nonoscillatory solutions exist or not. Therefore, we give several examples in order
to highlight our main results for the set of real numbers R, the set of integers Z and
qN0 = {1, q, q2, q3, …}, q >1, which are the most well-known time scales.

Keywords: dynamical systems, dynamic equations, differential equations, difference
equations, time scales, oscillation

1. Introduction

In this chapter, we investigate the existence and classification of nonoscillatory solutions of

two-dimensional (2D) nonlinear time-scale systems of first-order dynamic equations. The

method we follow is based on the sign of components of nonoscillatory solutions and the most

well-known fixed point theorems. The motivation of studying dynamic equations on time

scales is to unify continuous and discrete analysis and harmonize them in one comprehensive

theory and eliminate obscurity from both. A time scale T is an arbitrary nonempty closed subset

of the real numbers R. The most well-known examples for time scales are R (which leads to

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



differential equations, see [1]), Z (which leads to difference equations, see Refs. [2, 3]) and

qN0
:¼ {1, q, q2,⋯}, q > 1 (which leads to q-difference equations, see Ref. [4]). In 1988, the

theory of time scales was initiated by Stefan Hilger in his Ph.D. thesis [5]. We assume that most

readers are not familiar with the calculus of time scales and therefore we give a brief introduc-

tion to time scales calculus in Section 2. In fact, we refer readers books [6, 7] by Bohner and

Peterson for more details.

The study of 2D dynamic systems in nature and society has been motivated by their applica-

tions. Especially, a system of delay dynamic equations, considered in Section 4, take a lot of

attention in all areas such as population dynamics, predator-prey epidemics, genomic and

neuron dynamics and epidemiology in biological sciences, see [8, 9]. For instance, when the

birth rate of preys is affected by the previous values rather than current values, a system of

delay dynamic equations is utilized, because the rate of change at any time depends on

solutions at prior times. Another novel application of delay dynamical systems is time delays

that often arise in feedback loops involving actuators. A major issue faced in engineering is an

unavoidable time delay between measurement and the signal received by the controller. In

fact, the delay should be taken into consideration at the design stage to avoid the risk of

instability, see Refs. [10, 11].

Another special case of 2D systems of dynamic equations is the Emden-Fowler type, which is

covered in Section 5 of this chapter. The equation has several interesting applications, such as

in astrophysics, gas dynamics and fluid mechanics, relativistic mechanics, nuclear physics and

chemically reacting systems, see Refs. [12–15]. For example, the fundamental problem in

studying the stellar structure for gaseous dynamics in astrophysics was to look into the

equilibrium formation of the mass of spherical clouds of gas for the continuous case, proposed

by Kelvin and Lane, see Refs. [16, 17]. Such an equation is called Lane-Emden equation in

literature. Much information about the solutions of Lane-Emden equation was provided by

Ritter, see Ref. [18], in a series of 18 papers, published during 1878–1889. The mathematical

foundation for the study of such an equation was made by Fowler in a series of four papers

during 1914–1931, see Refs. [19–22].

2. Preliminaries

The set of real numbers R, the set of integers Z, the natural numbers N, the nonnegative

integers N0 and the Cantor set, qN0
, q > 1 and ½0, 1�∪½2, 3� are some examples of time scales.

However, the set of rational numbers Q, the set of irrational numbers R\Q, the complex

numbers C, and the open interval ð0, 1Þ are not considered as time scales.

Definition 2.1. [6, Definition 1.1] Let T be a time scale. For t∈T, the forward jump operator

σ : T ! T is given by

σðtÞ :¼ inf{s∈T : s > t} for all t∈T

whereas the backward jump operator ρ : T ! T is defined by
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ρðtÞ :¼ sup{s∈T : s < t} for all t∈T:

Finally, the graininess function μ : T ! ½0,∞Þ is given by μðtÞ :¼ σðtÞ−t for all t∈T:

We define inf∅ ¼ supT. If σðtÞ > t, then t is called right-scattered, whereas if ρðtÞ < t, t is called

left-scattered. If t is right- and left-scattered at the same time, then we say that t is isolated. If

t < supT and σðtÞ ¼ t, then t is called right-dense, while if t > inf T and ρðtÞ ¼ t, we say that t is

left-dense. Also, if t is right- and left-dense at the same time, then we say that t is dense.

Table 1 shows some examples of the forward and backward jump operators and the graininess

function for most known time scales.

If supT < ∞, then T
κ ¼ T\ðρðsupTÞ, supT� and T

κ ¼ T if supT ¼ ∞. Suppose that f : T ! R is a

function. Then f σ : T ! R is defined by f σðtÞ ¼ f ðσðtÞÞ for all t∈T:

Definition 2.2. [6, Definition 1.10] For any ε, if there exists a δ > 0 such that

jf ðσðtÞÞ−f ðsÞ−f ΔðtÞðσðtÞ−sÞj ≤ εjσðtÞ−sj for all s∈ ðt−δ, tþ δÞ∩T,

then f is called delta (or Hilger) differentiable on T
κ and f Δ is called delta derivative of f .

Theorem 2.3 [6, Theorem 1.16] Let f : T ! R be a function with t∈T
κ. Then

a. If f is differentiable at t, f is continuous at t.

b. If f is continuous at t and t is right-scattered, then f is differentiable at t and

f ΔðtÞ ¼
f ðσðtÞÞ−f ðtÞ

μðtÞ
:

c. If t is right dense, then f is differentiable at t if and only if

f ΔðtÞ ¼ lim
s!t

f ðtÞ−f ðsÞ

t−s

exists as a finite number.

d. If f is differentiable at t, then f ðσðtÞÞ ¼ f ðtÞ þ μðtÞf ΔðtÞ:

If T ¼ R, then f Δ turns out to be the usual derivative f ′ while f Δ is reduced to forward

difference operator Δf if T ¼ Z: Finally, if T ¼ qN0 , then the delta derivative turns out to be

T σðtÞ ρðtÞ μðtÞ

R t t 0

Z tþ 1 t−1 1

qN0 tq t

q
ðq−1Þt

Table 1. Examples of most known time scales.
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q-difference operator Δq: The following theorem presents the sum, product and quotient rules

on time scales.

Theorem 2.4 [6, Theorem 1.20] Let f , g : T ! R be differentiable at t∈T
κ. Then

a. The sum f þ g : T ! R is differentiable at t with

ðf þ gÞΔðtÞ ¼ f ΔðtÞ þ gΔðtÞ:

b. If f g : T ! R is differentiable at t, then

ðf gÞΔðtÞ ¼ f ΔðtÞgðtÞ þ f ðσðtÞÞgΔðtÞ ¼ f ðtÞgΔðtÞ þ f ΔðtÞgðσðtÞÞ:

c. If gðtÞgðσðtÞÞ≠0, then f
g is differentiable at t with

f

g

� �Δ

ðtÞ ¼
f ΔðtÞgðtÞ−f ðtÞgΔðtÞ

gðtÞgðσðtÞÞ
:

The following concepts must be introduced in order to define delta-integrable functions.

Definition 2.5. [6, Definition 1.58] f : T ! R is called right dense continuous (rd-continuous),

denoted by Crd,CrdðTÞ, or CrdðT,RÞ, if it is continuous at right dense points in T and its left-

sided limits exist as a finite number at left dense points in T. We denote continuous functions

by C throughout this chapter.

Theorem 2.6 [6, Theorem 1.60] Let f : T ! R:

a. If f is continuous, then f is rd-continuous.

b. The jump operator σ is rd-continuous.

Also, the Cauchy integral is defined by
ðb

a

f ðtÞΔt ¼ FðbÞ−FðaÞ for all a, b∈T:

The following theorem presents the existence of antiderivatives.

Theorem 2.7 [6, Theorem 1.74] Every rd-continuous function has an antiderivative. Moreover, F

given by

FðtÞ ¼

ðt

t0

f ðsÞΔs f or t∈T

is an antiderivative of f .

Theorem 2.8 [6, Theorems 1.76–1.77] Let a, b, c∈T,α∈R, and f , g∈Crd. Then we have:

1. If f Δ≥0, then f is nondecreasing.

2. If f ðtÞ≥0 for all a ≤ t ≤ b, then

ðb

a

f ðtÞΔt≥0:

Dynamical Systems - Analytical and Computational Techniques6



3.

ðb
a

½ðαf ðtÞÞ þ ðαgðtÞÞ�Δt ¼ α

ðb
a

f ðtÞΔtþ α

ðb
a

gðtÞΔt:

4.

ðb
a

f ðtÞΔt ¼ −

ða
b

f ðtÞΔt:

5.

ðb
a

f ðtÞΔt ¼

ðc
a

f ðtÞΔtþ

ðb
c

f ðtÞΔt.

6.

ðb
a

f ðtÞgΔðtÞΔt ¼ ðf gÞðbÞ−ðf gÞðaÞ−

ðb
a

f ΔðtÞgðσðtÞÞΔt

7.

ðb
a

f ðσðtÞÞgΔðtÞΔt ¼ ðf gÞðbÞ−ðf gÞðaÞ−

ðb
a

f ΔðtÞgðtÞΔt

8.

ða
a

f ðtÞΔt ¼ 0.

Table 2 shows the derivative and integral definitions for the most known time scales for

a, b∈T.

Finally, we finish the section by the following fixed point theorems.

Theorem 2.9 (Schauder’s Fixed Point Theorem) [23, Theorem 2.A] Let S be a nonempty, closed,

bounded, convex subset of a Banach space X and suppose that T : S ! S is a compact operator. Then, T

has a fixed point.

The Schauder fixed point theorem was proved by Juliusz Schauder in 1930. In 1934, Tychonoff

proved the same theorem for the case when S is a compact convex subset of a locally convex

space X. In the literature, this version is known as the Schauder-Tychonoff fixed point theorem,

see Ref. [24].

Theorem 2.10 (Schauder-Tychonoff Fixed Point Theorem). Let S be a compact convex subset of a locally

convex (linear topological) space X and T a continuous map of S into itself. Then, T has a fixed point.

Finally, we provide the Knaster fixed point theorem, see Ref. [25].

Theorem 2.11 (Knaster Fixed Point Theorem) If ðS, ≤ Þ is a complete lattice and T : S ! S is order-

preserving (also called monotone or isotone), then T has a fixed point. In fact, the set of fixed points of T

is a complete lattice.

T f ΔðtÞ

ðb
a

f ðtÞΔt

R f ′ðtÞ
ðb
a

f ðtÞdt

Z Δf ðtÞ Xb−1
t¼a

f ðtÞ

qN0 Δqf ðtÞ
X

t∈ ½a,bÞ
qN0

f ðtÞμðtÞ

Table 2. Derivatives and integrals for most common time scales.
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3. Dynamical Systems on Time Scales

In this section, we consider the following system

xΔðtÞ ¼ aðtÞf ðyðtÞÞ
yΔðtÞ ¼ −bðtÞgðxðtÞÞ,

�

(1)

where f , g∈CðR,RÞ are nondecreasing such that uf ðuÞ > 0, ugðuÞ > 0 for u≠0 and

a, b∈Crdð½t0,∞ÞT,R
þ
�

. The main results in this section come from Ref. [26]. If T ¼ R and

T ¼ Z, Eq. (1) turns out to be a system of first-order differential equations and difference

equations, see Refs. [27] and [28], respectively. Recent advances in oscillation and nonoscillation

criteria for two-dimensional time scale systems have been studied in Refs. [29–31].

Throughout this chapter, we assume that T is unbounded above. Whenever we write t≥t1, we

mean t∈ ½t1,∞ÞT :¼ ½t1,∞Þ∩T. We call ðx, yÞ a proper solution if it is defined on ½t0 ,∞ÞT and

sup{jxðsÞj, jyðsÞj : s∈ ½t,∞Þ
T
} > 0 for t≥t0: A solution ðx, yÞ of Eq. (1) is said to be nonoscillatory if

the component functions x and y are both nonoscillatory, i.e., either eventually positive or

eventually negative. Otherwise, it is said to be oscillatory. The definitions above are also valid

for systems considered in the next sections.

Assume that ðx, yÞ is a nonoscillatory solution of system (1) such that x oscillates but y is

eventually positive. Then the first equation of system (1) yields xΔðtÞ ¼ aðtÞf ðyðtÞÞ > 0 eventu-

ally one sign for all large t≥t0, a contradiction. The case where y is eventually negative is

similar. Therefore, we have that the component functions x and y are themselves

nonoscillatory. In other words, any nonoscillatory solution ðx, yÞ of system (1) belongs to one

of the following classes:

Mþ
:¼ {ðx, yÞ∈M : xy > 0 eventually }

M−
:¼ {ðx, yÞ∈M : xy < 0 eventually },

where M is the set of all nonoscillatory solutions of system (1).

In this section, we only focus on the existence of nonoscillatory solutions of system (1) in M−

,

whereas Mþ is considered together with delay system (12) in the following section.

For convenience, let us set

YðtÞ ¼

ð

∞

t

aðsÞΔs and ZðtÞ ¼

ð

∞

t

bðsÞΔs: (2)

We begin with the following results playing an important role in this chapter.

Lemma 3.1 Let ðx, yÞ be a nonoscillatory solution of system (1) and t0 ∈T. Then we have the

followings:

a. [29, Lemma 2.3] If Yðt0Þ < ∞ and Zðt0Þ < ∞, then system (1) is nonoscillatory.

Dynamical Systems - Analytical and Computational Techniques8



b. [29, Lemma 2.2] If Yðt0Þ ¼ ∞ and Zðt0Þ ¼ ∞, then system (1) is oscillatory.

c. If Yðt0Þ < ∞ and Zðt0Þ ¼ ∞, then Mþ ¼ ∅.

d. If Yðt0Þ ¼ ∞ and Zðt0Þ < ∞, then M− ¼ ∅.

e. Let Yðt0Þ < ∞. Then x has a finite limit.

f. If Yðt0Þ ¼ ∞ or Zðt0Þ < ∞, then y has a finite limit.

Proof. Here, we only prove (a), (c) and (e) and the reader is asked to finish the proof in Exercise

3.2. To prove (a), choose t1 ∈ ½t0,∞Þ
T
such that

ð

∞

t1

aðtÞf ð1þ gð2Þ

ð

∞

t

bðsÞΔsÞΔt < 1:

Let X be the space of all continuous functions on Twith the norm ‖x‖ ¼ sup
t∈ ½t1,∞Þ

T

jxðtÞj and with

the usual point-wise ordering ≤ . Define a subset Ω of X as

Ω :¼ {x∈X : 1 ≤ xðtÞ ≤ 2; t≥t1}:

For any subset S ofΩ, we have infS∈Ω and supS∈Ω. Define an operator F : Ω ! X such that

ðFxÞðtÞ ¼ 1þ

ðt

t1

aðsÞf
�

1þ

ð

∞

s

bðuÞgðxðuÞÞΔu
�

Δs, t≥t1:

By using the monotonicity and the fact that x∈Ω, we have

1 ≤ ðFxÞðtÞ ≤ 1þ

ðt

t1

aðsÞf
�

1þ gð2Þ

ð

∞

s

bðuÞΔu
�

Δs ≤ 2; t≥t1:

It is also easy to show that F is an increasing mapping. So by Theorem 2.11, there exists x∈Ω

such that Fx ¼ x. Then we have

xΔðtÞ ¼ aðtÞf
�

1þ

ð

∞

t

bðuÞgðxðuÞÞΔu
�

:

Setting

yðtÞ ¼ 1þ

ð

∞

t

bðuÞgðxðuÞÞΔu > 0, t≥t1

gives us

yΔðtÞ ¼ −bðtÞgðxðtÞÞ and xΔðtÞ ¼ aðtÞf ðyðtÞÞ,

that is, ðx, yÞ is a nonoscillatory solution of Eq. (1). In order to prove part (c), assume that there

exists a nonoscillatory solution ðx, yÞ of system (1) in Mþ such that xðtÞ > 0 for t≥t1. Then by

On Nonoscillatory Solutions of Two-Dimensional Nonlinear Dynamical Systems
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monotonicity of x and g, there exists a number k > 0 such that gðxðtÞÞ≥k for t≥t1. Integrating the

second equation of system from t1 to t gives us

yðtÞ ≤ yðt1Þ−k

ðt

t1

bðsÞΔs:

As t ! ∞, it follows yðtÞ ! −∞. But this contradicts that y is eventually positive. Finally for

part (e), without loss of generality, we assume that there exists t1≥t0 such that xðtÞ > 0 for t≥t1.

If ðx, yÞ∈M−, then by the first equation of system (1), xΔðtÞ < 0 for t≥t1. Hence, the limit of x

exists. So let us show that the assertion follows if ðx, yÞ∈Mþ. Suppose ðx, yÞ∈Mþ. Then from

the first equation of system (1), we have xΔðtÞ > 0 for t≥t1. Now let us show that limt!∞xðtÞ ¼ ∞

cannot happen. Integrating the first equation of system (1) from t1 to t and using the monoto-

nicity of y and f yield

xðtÞ ≤ xðt1Þ þ f ðyðt1ÞÞ

ðt

t1

aðsÞΔs:

Taking the limit as t ! ∞, it follows that x has a finite limit. This completes the proof.

Exercise 3.2. Prove the remainder of Lemma 3.1.

Throughout this section, we assume Yðt0Þ < ∞ and Zðt0Þ ¼ ∞. Note that Lemma 3.1 (c) indi-

cates Mþ ¼ ∅. Therefore, every nonoscillatory solution of system (1) belongs to M−. Let ðx, yÞ

be a nonoscillatory solution of system (1) such that the component function x of solution ðx, yÞ

is eventually positive. Then, the second equation of system (1) yields y < 0 and eventually

decreasing. Then for k < 0, we have that y approaches k or −∞. In view of Lemma 3.1 (e), x has

a finite limit. So in light of this information, any nonoscillatory solution of system (1) in M−

belongs to one of the following subclasses for 0 < c < ∞ and 0 < d < ∞:

M−

0;B ¼ fðx, yÞ∈M−
: lim
t!∞

jxðtÞj ¼ 0, lim
t!∞

jyðtÞj ¼ dg,

M−

B,B ¼ fðx, yÞ∈M−
: lim
t!∞

jxðtÞj ¼ c, lim
t!∞

jyðtÞj ¼ dg,

M−

0;∞ ¼ fðx, yÞ∈M−
: lim
t!∞

jxðtÞj ¼ 0, lim
t!∞

jyðtÞj ¼ ∞g,

M−

B,∞ ¼ fðx, yÞ∈M−
: lim
t!∞

jxðtÞj ¼ c, lim
t!∞

jyðtÞj ¼ ∞g:

Nonoscillatory solutions in M−

0;∞ is called slowly decaying solutions in literature, see [32]. The

following theorems show the existence of nonoscillatory solutions in subclasses of M− given

above. Our approach for the next two theorems is based on the Schauder fixed point theorem,

see Theorem 2.9.

Theorem 3.3 M−

0;B≠∅ if and only if

ð

∞

t0

bðtÞg
�

c1

ð

∞

t

aðsÞΔs
�

Δt < ∞, c1≠0: (3)

Proof. Suppose that there exists a solution ðx, yÞ∈M−

0;B such that xðtÞ > 0 for t≥t0, xðtÞ ! 0 and

Dynamical Systems - Analytical and Computational Techniques10



yðtÞ ! −d as t ! ∞, where d > 0. Integrating the first equation of system (1) from t to ∞ and the

monotonicity of f yield that there exists c > 0 such that

xðtÞ≥c

ð

∞

t

aðsÞΔs, t≥t0: (4)

By integrating the second equation from t0 to t, using inequality (4) with c ¼ c1 and the

monotonicity of g, we have

yðtÞ ¼ yðt0Þ−

ðt

t0

bðsÞgðxðsÞÞΔs ≤ −

ðt

t0

bðsÞg
�

c1

ð

∞

s

aðuÞΔu
�

Δs:

So as t ! ∞, the assertion follows since y has a finite limit. (For the case x < 0 eventually, the

proof can be shown similarly with c1 < 0:Þ

Conversely, suppose that Eq. (3) holds for some c1 > 0: ðFor the case c1 < 0 can be shown

similarly.Þ Then there exist t1≥t0 and d > 0 such that

ð

∞

t1

bðtÞg
�

c1

ð

∞

t

aðsÞΔs
�

Δt < d, t≥t1, (5)

where c1 ¼ −f ð−3dÞ. Let X be the space of all continuous and bounded functions on ½t1,∞ÞT with

the norm ‖y‖ ¼ sup
t∈ ½t1,∞ÞT

jyðtÞj. Then X is a Banach space, see Ref. [33]. Let Ω be the subset of X

such that

Ω :¼ {y∈X : −3d ≤ yðtÞ ≤ −2d, t≥t1}

and define an operator T : Ω ! X such that

ðTyÞðtÞ ¼ −3dþ

ð

∞

t

bðsÞg
�

−

ð

∞

s

aðuÞf ðyðuÞÞΔu
�

Δs:

It is easy to see that T maps into itself. Indeed, we have

−3d ≤ ðTyÞðtÞ ≤ −3dþ

ð

∞

t

bðsÞg
�

−

ð

∞

s

aðuÞf ð−3dÞΔu
�

Δs ≤ −2d

by Eq. (5). Let us show that T is continuous onΩ. To accomplish this, let yn be a sequence inΩ

such that yn ! y∈Ω ¼ Ω: Then

jðTynÞðtÞ−ðTyÞðtÞj

≤

ð

∞

t1

bðsÞj½g
�

−

ð

∞

s

aðuÞf ðynðuÞÞΔu
�

−g
�

−

ð

∞

s

aðuÞf ðyðuÞÞΔu
�

�jΔs:

Then the Lebesque dominated convergence theorem and the continuity of g give ‖ðTynÞ

−ðTyÞ‖ ! 0 as n ! ∞, i.e., T is continuous. Also, since
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0 < −ðTyÞΔðtÞ ¼ bðtÞg
�

−

ð

∞

t

aðuÞf ðyðuÞÞΔu
�

< ∞,

it follows that TðΩÞ is relatively compact. Then by Theorem 2.9, we have that there exists y∈Ω

such that y ¼ Ty: So as t ! ∞, we have yðtÞ ! −3d < 0. Setting

xðtÞ ¼ −

ð

∞

t

aðuÞf ðyðuÞÞΔu > 0, t≥t1

gives that xðtÞ ! 0 as t ! ∞ and implies xΔ ¼ af ðyÞ, i.e., ðx, yÞ is a nonoscillatory solution in

M−

0;B.

In the following example, we apply Theorem 3.3 to show the nonemptiness of M−

0;B.

Example 3.4 Let T ¼ qN0 , q > 1 and consider the system

ΔqxðtÞ ¼
t
1
3

ðtþ 1Þðtqþ 1Þð2t−1Þ
1
3

y
1
3ðtÞ

ΔqyðtÞ ¼ −
ðtþ 1Þ

5
3

qt2
x

5
3ðtÞ:

8

>

>

>

>

<

>

>

>

>

:

(6)

Since
ðT

1

aðsÞΔs ¼ ðq−1Þ
X

s∈ ½1,TÞ
qN0

s
4
3

ðsþ 1Þðsqþ 1Þð2s−1Þ
1
3

≤ ðq−1Þ
X

s∈ ½1,TÞ
qN0

1

s
2
3

,

where t ¼ qn and s ¼ tqm, n,m∈N0, we obtain

Yð1Þ ≤ ðq−1Þ
X

∞

n¼0

1

q
2
3

 !n

< ∞:

Also,
ðT

1

bðsÞΔs ¼
X

s∈ ½1,TÞ
qN0

ðsþ1Þ 53
qs2

ðq−1Þs≥ q−1
q

X

s∈ ½1,TÞ
qN0

s
2
3 implies Zð1Þ≥ q−1

q

X

∞

m¼0

ðq
2
3Þm ¼ ∞: Now let us

show that Eq. (3) holds. First,

ðT

t

aðsÞΔs ≤ ðq−1Þ
X

s∈ ½t,TÞ
qN0

1

s
2
3

implies

ð

∞

t

aðsÞΔs ≤ ðq−1Þ
X

s∈ ½t,∞Þ
qN0

1

s
2
3

¼
q

2
3ðq−1Þ

ðq
2
3−1Þt

2
3

:

Therefore,
ðT

1

bðtÞg
�

c1

ð

∞

t

aðsÞΔs
�

Δt ≤α
X

t∈ ½1,TÞ
qN0

ðtþ 1Þ
5
3

t
19
10

,

where α ¼ ðq−1Þ2q
1
9

ðq
2
3−1Þ

5
3

: So as T ! ∞, we have that Eq. (3) holds by the Ratio test. One can also show that

1
tþ1 , −2þ

1
t

� �

of system (6) such that xðtÞ ! 0 and yðtÞ ! −2 as t ! ∞, i.e., M−

0;B≠∅.
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The proof of the following theorem is similar to the proof of Theorem 3.3.

Theorem 3.5 M−

B,B≠∅ if and only if
ð

∞

t0

bðtÞg
�

d1−c1

ð

∞

t

aðsÞΔs
�

Δt < ∞

for some c1 < 0 and d1 > 0: ðOr c1 > 0 and d1 < 0:Þ

Exercise 3.6. Prove Theorem 3.5 by means of Theorem 2.9.

The following theorem follows from the Knaster fixed point theorem, see Theorem 2.11.

Theorem 3.7 M−

B,∞≠∅ if and only if
ð

∞

t0

aðsÞf
�

c1

ðs

t0

bðuÞΔu
�

Δs < ∞ (7)

for some c1≠0, where f is an odd function.

Proof. Suppose that there exists a nonoscillatory solution ðx, yÞ∈M−

B,∞ such that x > 0 eventu-

ally, xðtÞ ! c2 and yðtÞ ! −∞ as t ! ∞, where 0 < c2 < ∞. Because of the monotonicity of x and

the fact that x has a finite limit, there exist t1≥t0 and c3 > 0 such that

c2 ≤ xðtÞ ≤ c3 for t≥t1: (8)

Integrating the first equation from t1 to t gives us

c2 ≤ xðtÞ ¼ xðt1Þ þ

ðt

t1

aðsÞf ðyðsÞÞΔs ≤ c3, t≥t1:

So by taking the limit as t ! ∞, we have
ð

∞

t1

aðsÞjf ðyðsÞÞjΔs < ∞: (9)

The monotonicity of g, Eq. (8) and integrating the second equation from t1 to t yield

yðtÞ ≤ yðt1Þ−gðc2Þ

ðt

t1

bðsÞΔs ≤ −gðc2Þ

ðt

t1

bðsÞΔs:

Since f ð−uÞ ¼ −f ðuÞ for u≠0 and by the monotonicity of f , we have

jf ðyðtÞÞj≥f
�

gðc2Þ

ðt

t1

bðsÞΔs
�

, t≥t1: (10)

By Eqs. (9) and (10), we have

ðt

t1

aðsÞjf ðyðsÞÞjΔs≥

ðt

t1

aðsÞf
�

gðc2Þ

ðs

t1

bðuÞΔu
�

Δs, where gðc2Þ ¼ c1:

As t ! ∞, the proof is finished. (The case x < 0 eventually can be proved similarly with c1 < 0.)
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Conversely, suppose

ð

∞

t0

aðsÞf
�

c1

ðs

t0

bðuÞΔu
�

Δs < ∞ for some c1≠0. Without loss of generality,

assume c1 > 0. (The case c1 < 0 can be done similarly.) Then, we can choose t1≥t0 and d > 0

such that
ð

∞

t1

aðsÞf
�

c1

ðs

t1

bðuÞΔu
�

Δs < d, t≥t1,

where c1 ¼ gð2dÞ > 0: Let X be the partially ordered Banach space of all real-valued continuous

functions endowed with supremum norm ‖x‖ ¼ sup
t∈ ½t1,∞ÞT

jxðtÞj and with the usual pointwise

ordering ≤ . Define a subset Ω of X such that

Ω ¼: {x∈X : d ≤ xðtÞ ≤ 2d, t≥t1}:

For any subset B of Ω, infB∈Ω and supB∈Ω, i.e., ðΩ, ≤ Þ is complete. Define an operator

F : Ω ! X as

ðFxÞðtÞ ¼ dþ

ð

∞

t

aðsÞf
�

ðs

t1

bðuÞgðxðuÞÞΔu
�

Δs, t≥t1:

The rest of the proof can be completed similar to the proof of Lemma 3.1(a). So, it is omitted.

Exercise 3.8 Let T ¼ Z: Use Theorem 3.7 to justify that ðxn, ynÞ ¼ ð1þ 2−n, −2nÞ is a

nonoscillatory solution in M−

B,∞ of

Δxn¼ 2
−6n
5 − 1ðynÞ

1
5

Δyn ¼ −
4n

1þ 2n
ðxnÞ:

8

>

<

>

:

For convenience, set

I ¼

ð

∞

t0

aðtÞf
�

k

ð

∞

t

bðsÞΔs
�

Δt, k≠0: (11)

In order to obtain the nonemptiness of M−

0;∞, we apply Theorem 2.11 and use the similar

discussion as in Lemma 3.1(a).

Theorem 3.9 M−

0;∞≠∅ if for some k > 0 and any d1 > 0 ðk < 0 and d1 < 0Þ

I < ∞ and

ð

∞

t0

bðtÞg
�

d1

ð

∞

t

aðsÞΔs
�

Δt ¼ ∞,

where I is defined as in Eq. (11) and f is an odd function.

Exercise 3.10. Prove Theorem 3.9.

We reconsider system (1) in the next section to emphasize the existence of nonoscillatory

solutions in Mþ.
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4. Delay Dynamical Systems on Time Scales

This section is concerned with the delay system

xΔðtÞ ¼ aðtÞf ðyðtÞÞ
yΔðtÞ ¼ −bðtÞgðxðτðtÞÞÞ

�

(12)

with a, b∈Crdð½t0 ,∞ÞT,R
þÞ, τ∈Crdð½t0 ,∞ÞT, ½t0,∞ÞTÞ, τðtÞ ≤ t and τðtÞ ! ∞ as t ! ∞,

f , g∈CðR,RÞ are nondecreasing functions such that uf ðuÞ > 0 and ugðuÞ > 0 for u≠0. Moti-

vated by Ref. [34] in which τðtÞ ¼ t−η, η > 0, our purpose in this section is to obtain the criteria

for the existence of nonoscillatory solutions of Eq. (12) based on Yðt0Þ and Zðt0Þ. However, note

that the results in Ref. [34] do not hold for any time scale, e.g., T ¼ qN0 , q > 1, because t−η is

not necessarily in T. In fact, theoretical claims in this section follow from Ref. [35].

Since system (12) is oscillatory for the case Yðt0Þ ¼ ∞ and Zðt0Þ ¼ ∞, the existence results on

any time scale are obtained in the next subsections based on the other three cases of Yðt0Þ and

Zðt0Þ. Let ðx, yÞ be a nonoscillatory solution of system (12) in Mþ such that the component

function x is eventually positive. Then by the second equation of system (12), y is eventually

decreasing. In addition, using the first equation of system (12), we have that xðtÞ ! c or ∞ and

yðtÞ ! d or 0 as t ! ∞ for 0 < c < ∞ and 0 < d < ∞. Therefore, we have the following sub-

classes of Mþ:

Mþ
B,B ¼ fðx, yÞ∈Mþ

: lim
t!∞

jxðtÞj ¼ c, lim
t!∞

jyðtÞj ¼ dg,

Mþ
B;0 ¼ fðx, yÞ∈Mþ

: lim
t!∞

jxðtÞj ¼ c, lim
t!∞

jyðtÞj ¼ 0g,

Mþ
∞,B ¼ fðx, yÞ∈Mþ

: lim
t!∞

jxðtÞj ¼ ∞, lim
t!∞

jyðtÞj ¼ dg,

Mþ
∞;0 ¼ fðx, yÞ∈Mþ

: lim
t!∞

jxðtÞj ¼ ∞, lim
t!∞

jyðtÞj ¼ 0g:

In the literature, solutions in Mþ
B;0, M

þ
∞,B and Mþ

∞;0 are called subdominant, dominant and inter-

mediate solutions, respectively, see Ref. [36]. Any nonoscillatory solution of system (12) belongs

to Mþ or M− given in Section 3. Also, it is important to emphasize that Lemma 3.1 holds for

system (12) as well.

4.1. The case Yðt0Þ ¼ ∞ and Zðt0Þ < ∞

We restrict our attention to Mþ in this subsection because M− ¼ ∅ when Yðt0Þ ¼ ∞ and

Zðt0Þ < ∞. The following lemma specifies the limit behavior of the component functions of

nonoscillatory solutions ðx, yÞ under the case Yðt0Þ ¼ ∞ and Zðt0Þ < ∞.

Lemma 4.1 If jxðtÞj ! c, then yðtÞ ! 0 as t ! ∞ for 0 < c < ∞.

Proof. Assume to the contrary. So yðtÞ ! d for 0 < d < ∞ as t ! ∞. Then since yðtÞ > 0 and

decreasing eventually, there exists t1≥t0 such that f ðyðτðtÞÞÞ≥f ðdÞ ¼ k for t≥t1. By the same

discussion as in the proof of Theorem 3.3, we obtain
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xðtÞ≥k

ðt

t1

aðsÞΔs, t≥t1:

However, this gives us a contradiction to the fact that xðtÞ ! c as t ! ∞. So the assertion

follows.

Remark 4.2. The discussion above and Lemma 4.1 yield us Mþ
B,B ¼ ∅:

Theorem 4.3. Mþ
B;0≠∅ if and only if I < ∞:

Proof. Suppose that there exists a solution ðx, yÞ∈Mþ
B;0 such that xðtÞ > 0, xðτðtÞÞ > 0 for t≥t0,

xðtÞ ! c1 and yðtÞ ! 0 as t ! ∞. Because x is eventually increasing, there exist t1≥t0 and c2 > 0

such that c2 ≤ gðxðτðtÞÞÞ for t≥t1. Integrating the second equation from t to ∞ gives

yðtÞ ¼

ð

∞

t

bðsÞgðxðτðsÞÞÞΔs, t≥t1: (13)

Also, integrating the first equation from t1 to t, Eq. (13) and the monotonicity of g result in

xðtÞ≥

ðt

t1

aðsÞf
�

ð

∞

s

bðuÞgðxðτðuÞÞÞΔu
�

Δs≥

ðt

t1

aðsÞf
�

c2

ð

∞

s

bðuÞΔu
�

Δs:

Setting c2 ¼ k and taking the limit as t ! ∞ prove the assertion. ðFor the case x < 0 eventually,

the proof can be shown similarly with k < 0:Þ

Conversely, suppose I < ∞ for some k > 0: (For the case k < 0 can be shown similarly.) Then,

choose t1≥t0 so large that

ð

∞

t1

aðtÞf
�

k

ð

∞

t

bðsÞΔs
�

Δt <
c1
2
, t≥t1,

where k ¼ gðc1Þ. Let X be the space of all continuous and bounded functions on ½t1,∞ÞT with

the norm ‖y‖ ¼ sup
t∈ ½t1,∞ÞT

jyðtÞj. Then, X is a Banach space. Let Ω be the subset of X such that

Ω :¼ {x∈X :

c1
2
≤ xðτðtÞÞ ≤ c1, τðtÞ≥t1},

and define an operator F : Ω ! X such that

ðFxÞðtÞ ¼ c1−

ð

∞

t

aðsÞf
�

ð

∞

s

bðuÞgðxðτðuÞÞÞΔu
�

Δs, τðtÞ≥t1:

It is easy to see that Ω is bounded, convex and a closed subset of X. It can also be shown that F

maps into itself, relatively compact and continuous on Ω by the Lebesques dominated conver-

gence theorem. Then, Theorem 2.9 gives that there exists x∈Ω such that x ¼ Fx: As t ! ∞, we

get xðtÞ ! c1 > 0. Setting
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yðtÞ ¼

ð

∞

t

bðuÞgðxðτðuÞÞÞΔu > 0, τðtÞ≥t1

shows yðtÞ ! 0 as t ! ∞: Taking the derivatives of x and y yield that ðx, yÞ is a solution of

system (12). Hence, Mþ
B;0≠∅.

We demonstrate the following example to highlight Theorem 4.3.

Example 4.4 Let T¼ 2N0 and consider the system

Δ2xðtÞ ¼
1

2t
4
5

�

yðtÞ
�

3
5

Δ2yðtÞ ¼ −
3

4t2ð8t−4Þ
xð
t

4
Þ:

8

>

>

<

>

>

:

(14)

First, it must be shown Yðt0Þ ¼ ∞ and Zðt0Þ < ∞. Indeed,

ðt

t0

aðsÞΔs ¼
1

2

X

s∈ ½4, tÞ
2N0

s
1
5 implies Yðt0Þ ¼

1

2
lim
n!∞

X

n−1

m¼2

ð2mÞ
1
5 ¼ ∞

and

ðt

t0

bðsÞΔs ≤
3

16

X

s∈ ½4, tÞ
2N0

1

s
implies Zðt0Þ ≤

3

16
lim
n!∞

X

n−1

m¼2

1

2m
< ∞

by the geometric series, where t¼ 2n, s¼ 2m, m, n≥2. Note that

ðT

t

bðsÞΔs ≤
3

16

X

s∈ ½t,TÞ
2N0

1

s
implies ZðtÞ ≤

3

16
lim
n!∞

X

n−1

m¼2

1

2m
¼

3

8
lim
n!∞

1

t
−

1

t2n

� �

¼
3

8t
:

Letting k ¼ 1 and using the last inequality gives

ðT

t0

aðtÞf
�

k

ð

∞

t

bðsÞΔs
�

Δt ≤

ðT

t0

1

2t
4
5

3

8t

� �
3
5

Δt ¼
3

8

� �3
5 1

2

X

t∈ ½1,TÞ
2N0

1

t
2
5

:

Therefore, we have

ð

∞

t0

aðtÞf
�

k

ð

∞

t

bðsÞΔs
�

Δt ≤
3

8

� �
3
5 1

2

X

∞

n¼0

1

2
2n
5

< ∞

by the geometric series. It can be seen that ðx, yÞ ¼ 8−
1

t
,
1

t2

� �

is a nonoscillatory solution of Eq. (14)

such that xðtÞ ! 8 and yðtÞ ! 0 as t ! ∞, i.e., Mþ
B;0≠∅.

On Nonoscillatory Solutions of Two-Dimensional Nonlinear Dynamical Systems
http://dx.doi.org/10.5772/67118

17



The existence in subclasses Mþ
∞,B and Mþ

∞;0 is not obtained on general time scales. The main

reason is that setting an operator including a delay function gives a struggle when the fixed

points theorems are applied. In fact, when we restrict the delay function to τðtÞ ¼ t−η for η≥0, it

was shownMþ
∞,B≠∅, see Ref. [34]. Nevertheless, the existence inMþ

∞,B andMþ
∞;0 for system (1) is

shown in Subsection 4.4.

4.2. The case Yðt0Þ < ∞ and Zðt0Þ < ∞

Because the component functions x and y have finite limits by Lemma 3.1(e) and (f), the

subclasses Mþ
∞,B and Mþ

∞;0 are empty. Since the existence of nonoscillatory solutions in Mþ
B;0 is

shown in Theorem 4.3, we only focus on Mþ
B,B in this subsection.

The Knaster fixed point theorem is utilized in order to prove the following theorem.

Theorem 4.5 Mþ
B,B≠∅ if and only if

ð

∞

t0

aðsÞf
�

d1 þ k

ð

∞

s

bðuÞΔu
�

Δs < ∞, k, d1≠0: (15)

Proof. The proof of the necessity part is very similar to those of previous theorems. So for

sufficiency, suppose Eq. (15) holds. Choose t1≥t0, k > 0 and d1 > 0 such that
ð

∞

t1

aðsÞf
�

d1 þ k

ð

∞

s

bðuÞΔu
�

Δs < d1,

where k ¼ gð2d1Þ: (The case k, d1 < 0 can be done similarly.) Let X be the Banach space of all

continuous real-valued functions endowed with the norm ‖x‖ ¼ sup
t∈ ½t1,∞ÞT

jxðtÞj and with usual

point-wise ordering ≤ . Define a subset Ω of X as

Ω :¼ {x∈X : d1 ≤ xðτðtÞÞ ≤ 2d1, τðtÞ≥t1}:

For any subset B ofΩ, it is clear that infB∈Ω and supB∈Ω. An operator F : Ω ! X is defined as

ðFxÞðtÞ ¼ d1 þ

ðt

t1

aðsÞf
�

d1 þ

ð

∞

s

bðuÞgðxðτðuÞÞÞΔu
�

Δs, τðtÞ≥t1:

It is obvious that F is an increasing mapping into itself. Therefore,

d1 ≤ ðFxÞðtÞ ≤ d1 þ

ðt

t1

aðsÞf
�

d1 þ gð2d1Þ

ð

∞

s

bðuÞΔu
�

Δs ≤ 2d1, τðtÞ≥t1:

Then, by Theorem 2.11, there exists x∈Ω such that x ¼ Fx. By setting

yðtÞ ¼ d1 þ

ð

∞

t

bðuÞgðxðτðuÞÞÞ, τðtÞ≥t1,

we get that
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yΔðtÞ ¼ −bðtÞgðxðτðtÞÞÞ: (16)

Also taking the derivative of x and Eq. (16) give that ðx, yÞ is a solution of system (12). Hence,

we conclude that xðtÞ ! α and yðtÞ ! d1 as t ! ∞, where 0 < α < ∞, i.e., Mþ
B,B≠∅. Note that a

similar proof can be done for the case k < 0 and d1 < 0 with x < 0.

Example 4.6 Let T¼ 2N0 and consider the system

Δ2xðtÞ ¼
1

2t
5
3ð3tþ 1Þ

1
3

y
1
3ðtÞ

Δ2yðtÞ ¼ −
1

2tð6t−4Þ
x

t

4

� �

:

8

>

>

<

>

>

:

(17)

We first demonstrate Yðt0Þ < ∞ and Zðt0Þ < ∞.
ðt

t0

aðsÞΔs ¼
1

2

X

s∈ ½4, tÞ
2N0

1

s
2
3ð3sþ 1Þ

1
3

implies Yðt0Þ ¼
1

2
lim
n!∞

X

n−1

m¼2

1

ð2mÞ
2
3ð3 � 2m þ 1Þ

1
3

< ∞

by the Ratio test for t¼ 2n, s¼ 2m, n≥2. Similarly,
ðt

t0

bðsÞΔs ¼
1

2

X

s∈ ½4, tÞ
2N0

1

6s−4
implies Zðt0Þ ¼

1

2
lim
n!∞

X

n−1

m¼2

1

6:2m−4
< ∞:

Because Yðt0Þ < ∞ and Zðt0Þ < ∞, it is easy to show that Eq. (15) holds. One can also verify that

6− 1
t ; 3þ

1
t

� �

is a nonoscillatory solution of system (17) such that xðtÞ ! 6 and yðtÞ ! 3 as t ! ∞, i.e.,

Mþ
B,B≠∅ by Theorem 4.5.

4.3. The case Yðt0Þ < ∞ and Zðt0Þ ¼ ∞

Lemma 3.1(c) yields Mþ ¼ ∅ for the case Yðt0Þ < ∞ and Zðt0Þ ¼ ∞. Thus, we pay our attention

to M− in this subsection. The proof of the following remark is similar to that of Theorem 3.7.

Remark 4.7 M−

B,∞≠∅ if and only if integral condition (7) holds.

Exercise 4.8 Prove Remark 4.7 and also show that ð3þ 1
t , −t−

1
tÞ is a nonoscillatory solution of

Δ2xðtÞ ¼
1

2t
7
5ðt2 þ 1Þ

3
5

ðyðtÞÞ
3
5

Δ2yðtÞ ¼ −
2t2−1

2t
9
5ð3tþ 4Þ

1
5

xð
t

4
Þ

� �
1
5

8

>

>

>

>

<

>

>

>

>

:

in M−

B,∞≠∅ when T¼ 2N0 .

4.4. Dominant and intermediate solutions of Eq. (1)

Note that the existence of nonoscillatory solutions of system (1) in M−

0;∞,M
−

B,B and M−

0;B is not

shown on a general time scale. In fact, the existence in these subclasses is obtained for system
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(1) in Section 3. Since system (12) is reduced to system (1) when τðtÞ ¼ t, notice that the results

obtained for system (12) in Section 4 also hold for system (1). Therefore, we only need to show

the existence of nonoscillatory solutions for Eq. (1) in Mþ
∞,B and Mþ

∞;0, which are not acquired

for Eq. (12) on a general time scale. To achieve the goal, we assume Yðt0Þ ¼ ∞ and Zðt0Þ < ∞.

Theorem 4.9 Mþ
∞,B≠∅ if and only if

ð

∞

t0

bðsÞg
�

c1

ðs

t0

aðuÞΔu
�

Δs < ∞, c1≠0: (18)

Proof. The necessity part is left to readers as an exercise. Therefore, for sufficiency, suppose that

Eq. (18) holds. Choose t1≥t0, c1 > 0 and d1 > 0 such that
ð

∞

t1

bðsÞg
�

c1

ðs

t1

bðuÞΔu
�

Δs < d1, t≥t1, (19)

where c1 ¼ f ð2d1Þ > 0: (The case c1 < 0 can be done similarly.) Let X be the partially ordered

Banach space of all real-valued continuous functions endowed with supremum norm

‖x‖ ¼ sup
t∈ ½t1 ,∞ÞT

jxðtÞj
ðt

t1

aðsÞΔs

and with the usual point-wise ordering ≤ . Define a subsetΩ of X such that

Ω ¼: {x∈X : f ðd1Þ

ðt

t1

aðsÞΔs ≤ xðtÞ ≤ f ð2d1Þ

ðt

t1

aðsÞΔs, t≥t1}:

For any subset B of Ω, infB∈Ω and supB∈Ω, i.e., ðΩ, ≤ Þ is complete. Define an operator

F : Ω ! X as

ðFxÞðtÞ ¼

ðt

t1

aðsÞf
�

d1 þ

ð

∞

t

bðuÞgðxðuÞÞΔu
�

Δs, t≥t1:

It is obvious that it is an increasing mapping, so let us show F :¼ Ω ! Ω:

f ðd1Þ

ðt

t1

aðsÞΔs ≤ ðFxÞðtÞ

≤

ðt

t1

aðsÞf
�

d1 þ

ð

∞

s

bðuÞg
�

f ð2d1Þ

ðu

t1

aðλÞΔλ
�

Δu
�

Δs

≤ f ð2d1Þ

ðt

t1

aðsÞΔs

by Eq. (19). Then, by Theorem 2.11, there exists x∈Ω such that x ¼ Fx and so

xΔðtÞ ¼ aðtÞf
�

d1 þ

ð

∞

t

bðuÞgðxðuÞÞΔu
�

, t≥t1:

Setting yðtÞ ¼ d1 þ

ð

∞

t

bðuÞgðxðuÞÞΔu leads us yΔ ¼ −bgðxÞ and so, ðx, yÞ is a solution of system

(1) such that xðtÞ > 0 and yðtÞ > 0 for t≥t1 and xðtÞ ! ∞ and yðtÞ ! d1 > 0 as t ! ∞, i.e.,

Mþ
∞,B≠∅.
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Theorem 4.10 Mþ
∞;0≠∅ if

I ¼ ∞ and

ð

∞

t0

bðtÞg
�

l

ð

∞

t0

aðsÞΔs
�

Δt < ∞,

where I is defined as in Eq. (11), for any k > 0 and some l > 0 ðk < 0 and l < 0Þ.

Exercise 4.11 Prove Theorem 4.10 using Theorem 2.11.

5. Emden-Fowler Dynamical Systems on Time Scales

Motivated by the papers [28, 36, 37], we deal with the classification and existence of

nonoscillatory solutions of the Emden-Fowler dynamical system

xΔðtÞ ¼ aðtÞjyðtÞj
1
αsgn yðtÞ

yΔðtÞ ¼ −bðtÞjxσðtÞjβsgn xσðtÞ,

(

(20)

where α, β > 0 a, b∈Crdð½t0,∞ÞT,R
þÞ and xσ (t) = x (σ(t)). The main results of this section follow

from Ref. [38]. If T ¼ Z, system (20) is reduced to a Emden-Fowler system of difference

equations while it is reduced to a Emden-Fowler system of differential equations when

T ¼ R, see Refs. [32, 39, 40], respectively. We also refer readers to Refs. [41–46] for quasilinear

and Emden-Fowler dynamic equations on time scales.

Note that any nonoscillatory solution of system (20) belongs to Mþ or M− given in Section 3.

Also, it could be shown that Lemma 3.1 holds for system (20) as well.

5.1. The case Yðt0Þ ¼ ∞ and Zðt0Þ < ∞

In this case, we have M− ¼ ∅, see Lemma 3.1(d). By a similar discussion as in Subsection 4.1,

solutions in Mþ belongs to one of the subclasses Mþ
B;0, M

þ
∞,B and Mþ

∞;0:

Let us set

Jα ¼

ð

∞

t0

aðtÞ
�

ð

∞

t

bðsÞΔs
�

1
α
Δt

Kβ ¼

ð

∞

t0

bðtÞ
�

ðσðtÞ

t0

aðsÞΔs
�β

Δt:

Note that integral I, defined as in Eq. (11), is reduced to Jα by replacing f ðzÞ ¼ z
1
α and gðzÞ ¼ zβ.

The following theorem can be proven similar to Theorem 4.3.

Theorem 5.1 Mþ
B;0≠∅ if and only if Jα < ∞.

Exercise 5.2 Prove Theorem 5.1.

Next, we provide the existence of dominant and intermediate solutions of system (20) along

with examples.
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Theorem 5.3 Mþ
∞,B≠∅ if and only if Kβ < ∞:

Proof. Suppose that there exists ðx, yÞ∈Mþ such that x > 0 eventually, xðtÞ ! ∞ and yðtÞ ! d as

t ! ∞ for 0 < d < ∞. Integrating the first equation from t1 to σðtÞ, using the monotonicity of y

and integrating the second equation from t1 to t of system (20) give us

xσðtÞ ¼ xσðt1Þ þ

ðσðtÞ

t1

aðsÞy
1
αðsÞΔs > d

1
α

ðσðtÞ

t1

aðsÞΔs: (21)

and

yðt1Þ−yðtÞ ¼

ðt

t1

bðsÞ
�

xσðsÞ
�β

Δs, (22)

respectively. Then, by Eqs. (21) and (22), we have

ðt

t1

bðsÞ
�

ðσðsÞ

t1

aðuÞΔu
�β

Δs < d
−β
α

ðt

t1

bðsÞ
�

xσðsÞ
�β

Δs ¼ d
−β
α

�

yðt1Þ−yðtÞ
�

So as t ! ∞, it follows Kβ < ∞.

Conversely, suppose Kβ < ∞. Choose t1≥t0 so large that

ð

∞

t1

bðsÞ
�

ðσðsÞ

t1

aðuÞΔu
�β

Δs <
d1−β

2β

for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all real-valued

continuous functions with the norm ∥x∥ ¼ sup
t>t1

jxðtÞj
ðt

t1

aðsÞΔs

and the usual point-wise ordering ≤ .

Define a subset Ω of X as follows:

Ω : {x∈X : d
1
α

ðt

t1

aðsÞΔs ≤ xðtÞ ≤ ð2dÞ
1
α

ðt

t1

aðsÞΔs for t > t1}:

First, since every subset of Ω has a supremum and infimum in Ω, ðΩ, ≤ Þ is a complete lattice.

Define an operator F : Ω ! X as

ðFxÞðtÞ ¼

ðt

t1

aðsÞ
�

dþ

ð

∞

s

bðuÞ
�

xσðuÞ
�β

Δτ
�

1
α
Δs:

The rest of the proof can be finished via the Knaster fixed point theorem, see Theorem 4.9 and

thus is left to readers.
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Example 5.4 Let T ¼ qN0 , q > 1 and consider the system

xΔ ¼
t

1þ 2t
jyjsgn y

yΔ ¼ −
1

q1þβtβþ2
jxσjβsgn x:

8

>

<

>

:

(23)

It is left to readers to show Yðt0Þ ¼ ∞ and Zðt0Þ < ∞. In order to show Kβ < ∞, we first calculate

ðT

t0

bðtÞ
�

ðσðtÞ

t0

aðsÞΔs
�β

Δt ¼
X

t∈ ½1,TÞ
qN0

1

q1þβtβþ2

X

s∈ ½1,σðtÞÞ
qN0

s2ðq−1Þ

1þ 2s

0

B

@

1

C

A

β

ðq−1Þt

<
ðq−1Þβþ1

q1þβ

X

t∈ ½1,TÞ
qN0

1

t1þβ

�

X

s∈ ½1,σðtÞÞ
qN0

s
�β

<
q−1

q

X

t∈ ½1,TÞ
qN0

1

t
,

where s ¼ qm and t ¼ qn for m, n∈N0. Since

lim
T!∞

X

t∈ ½1,TÞ
qN0

1

t
¼

X

∞

n¼0

1

qn
< ∞

by the geometric series, we have Kβ < ∞. It can be verified that ðt, 1
t þ 2Þ is a nonoscillatory solution of

system (23) in Mþ
∞,B:

Theorem 5.5 Mþ
∞;0≠∅ if Jα ¼ ∞ and Kβ < ∞.

Proof. Suppose that Jα ¼ ∞ and Kβ < ∞ hold. Since Yðt0Þ ¼ ∞, we can choose t1 and t2 so large

that

ð

∞

t2

bðtÞ
�

ðσðtÞ

t0

aðsÞΔs
�β

Δt ≤ 1 and

ðt2

t1

aðsÞΔs≥1; t≥t2≥t1:

Let X be the Fréchet Space of all continuous functions on ½t1,∞ÞT endowed with the topology of

uniform convergence on compact subintervals of ½t1,∞ÞT: Set

Ω :¼ {x∈X : 1 ≤ xðtÞ ≤

ðt

t1

aðsÞΔs for t≥t1}

and define an operator T : Ω ! X by

ðTxÞðtÞ ¼ 1þ

ðt

t2

aðsÞ
�

ð

∞

s

bðuÞ
�

xσðuÞ
�β

Δu
�

1
α
: (24)

We can show that T : Ω ! Ω is continuous on Ω⊂X by the Lebesque dominated convergence

theorem. Since
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0 ≤ ½ðTxÞðtÞ�Δ ¼ aðtÞ
�

ð

∞

t

bðuÞ
�

xσðuÞ
�β

Δu
�

1
α

≤ aðtÞ
�

ð

∞

t

bðuÞ
�

ðσðuÞ

t1

aðλÞΔλ
�β

Δu
�1

α

< ∞,

it follows that T is equibounded and equicontinuous. Then by Theorem 2.10, there exists x∈Ω

such that x ¼ Tx: Thus, it follows that x is eventually positive, i.e nonoscillatory. Then differ-

entiating x and the first equation of system (20) give us

yðtÞ ¼
1

aðtÞ

� �α
�

xΔðtÞ
�α

¼

ð

∞

t

bðuÞ
�

xσðuÞ
�β

Δu > 0, t≥t1: (25)

This results in that y is eventually positive and hence ðx, yÞ is a nonoscillatory solution of

system (20) in Mþ. Also by monotonicity of x, we have

xðtÞ ¼ 1þ

ðt

t2

aðsÞ
�

ð

∞

s

bðuÞ
�

xσðuÞ
�β

Δu
�

1
α
≥

�

xðt2Þ
�β
ðt

t2

aðsÞ
�

ð

∞

s

bðuÞΔu
�

1
α
:

Hence as t ! ∞, it follows xðtÞ ! ∞. And by Eq. (25), we have yðtÞ ! 0 as t ! ∞. Therefore

Mþ
∞;0≠∅:

Example 5.6 Let T ¼ qN0 , q > 1 and β < 1: Consider the system

xΔ ¼ ð1þ tÞjyj
1
αsgn y

yΔ ¼ −
1

ð1þ tÞð1þ tqÞβþ1
jxσjβsgn x:

8

>

<

>

:

(26)

It is easy to verify Yðt0Þ ¼ ∞ and Zðt0Þ < ∞. Letting s ¼ qm and t ¼ qn, where m,n∈N0 gives

ðT

t0

aðtÞ
�

ðT

t

bðsÞΔs
�1

α

Δt ¼
X

t∈ ½1,TÞ
qN0

ð1þ tÞ
X

s∈ ½t,TÞ
qN0

ðq−1Þs

ð1þ sÞð1þ sqÞβþ1

0

B

@

1

C

A
ðq−1Þt

≥ðq−1Þ2
X

t∈ ½1,TÞ
qN0

ð1þ tÞ
t

ð1þ tÞð1þ tqÞβþ1

 !

t ¼ ðq−1Þ2
X

t∈ ½1,TÞ
qN0

t2

ð1þ tqÞβþ1
:

So we have

lim
T!∞

X

t∈ ½1,TÞ
qN0

t2

ð1þ tqÞβþ1
¼
X

∞

n¼0

q2n

ð1þ qnþ1Þβþ1
¼ ∞

by the Test for Divergence and β < 1. Now let us show that Kβ < ∞. Since

ðσðtÞ

t0

aðsÞΔs ¼
X

s∈ ½1, tÞ
qN0

ð1þ sÞðq−1Þs ≤ tqð1þ tqÞ,

we have
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ðT

t0

bðtÞ
�

ðσðtÞ

t0

aðsÞΔs
�β

Δt ≤
X

t∈ ½1,TÞ
qN0

1

ð1þ tÞð1þ tqÞβþ1

�

tqð1þ tqÞ
�β

tðq−1Þ

≤ qβðq−1Þ
X

t∈ ½1,TÞ
qN0

tβ

1þ t
:

Therefore by the Ratio test,

lim
T!∞

qβðq−1Þ
X

t∈ ½1,TÞ
qN0

tβ

1þ t
¼ qβðq−1Þ

X

∞

n¼0

ðqnÞβ

ð1þ qnÞ
< ∞

gives Kβ < ∞. It can also be verified that 1þ t,
1

tþ 1

� �

is a nonoscillatory solution of Eq. (26) in Mþ
∞;0:

Exercise 5.7 Show that the following system

x′ ¼ e2tjyj
1
αsgn y

y′ ¼ −αe−tðαþβÞjxjβsgn x

(

has a nonoscillatory solution ðet, e−αtÞ in Mþ
∞;0.

Next, we intend to derive a conclusion for the existence of nonoscillatory solutions of system

(20) based on α and β. The proof of the following lemma is similar to the proofs of Lemmas 1.1,

3.2, 3.3, 3.6 and 3.7 in [47].

Lemma 5.8

a. If Jα < ∞, or Kβ < ∞ then Zb < ∞.

b. If Kβ ¼ ∞, then Yðt0Þ ¼ ∞ or Zðt0Þ ¼ ∞.

c. If Jα ¼ ∞, then Yðt0Þ ¼ ∞ or Zðt0Þ ¼ ∞.

d. Let α≥1. If Jα < ∞, then Kα < ∞.

e. Let β ≤ 1. If Kβ < ∞, then Jβ < ∞.

f. Let α < β. If Kβ < ∞, then Jα < ∞ and Kα < ∞.

g. Let α > β. If Jα < ∞, then Kβ < ∞ and Jβ < ∞.

Exercise 5.9 Prove Lemma 5.8.

The following corollary summarizes the existence of subdominant and dominant solutions of

system (20) in this subsection by means of Lemma 5.8.

Corollary 5.10 Suppose that Yðt0Þ ¼ ∞ and Zðt0Þ < ∞. Then

a. Mþ
B;0≠∅ if any of the followings hold:

(i) Jα < ∞, (ii) α < β, β≥1 and Jβ < ∞,
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(iii) α < β and Kβ < ∞, (iv) α ≤ 1 and Kα < ∞.

b. Mþ
∞,B≠∅ if any of the followings hold:

(i) Kβ < ∞, (ii) α≥1 and Jβ < ∞,

(iii) α > β and Jα < ∞.

5.2. The Case Yðt0Þ < ∞ and Zðt0Þ < ∞

With the similar discussion as in Subsection 4.2, we concentrate onMþ
B,B andMþ

B;0. Actually, the

existence in Mþ
B;0 is shown in Subsection 5.1. Also, we use the same argument of the proof of

Lemma 3.1(a) so that the criteria for the existence of nonoscillatory solutions of system (20) in
Mþ

B,B is Yðt0Þ < ∞ and Zðt0Þ < ∞.

The most important question that arose in this section is about the existence of nonoscillatory
solutions of the Emden-Fowler system inM−. The existence of such solutions inM−

B,∞, M
−

0;∞ can

similarly be shown as in Theorems 3.7 and 3.9. When concerns about and M−

0;B come to our

attention, we need to assume that σ must be differentiable, which is not necessarily true on
arbitrary time scales, see Example 1.56 in [6]. The following exercise is a great observation
about the discussion mentioned above.

Exercise 5.11 Consider the system

xΔðtÞ ¼
t
1
2

2ðtþ 1Þðtþ 2Þð3t−1Þ
1
2
jyðtÞj

1
2sgn yðtÞ

yΔðtÞ ¼ −
ðtþ 1Þ

1
3

2
2
3t2ð4tþ 5Þ

1
3
jxσðtÞj

1
3sgn xσðtÞ

8

>

>

>

>

<

>

>

>

>

:

(27)

in T¼ 2N0 and show that ð2þ 1
tþ 2

, −3þ 1
t
Þ is a nonoscillatory solution of system (27) in M−

B,B.

Note that σðtÞ ¼ 2t is differentiable on T¼ 2N0 :
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