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Abstract

A large number of interferometric setups make use of non-linear phase modulators. In
the past, specific extraction methods have been proposed mostly to cover the important
case of sinusoidal phase modulation with certain limits in term of signal-to-noise ratio.
Recently, a detection method based on “Generalized Lock-in Amplifier” (G-LIA) was
proposed to extract optimally amplitude and phase information in two-arm interferom-
eters when nearly arbitrary phase modulations are used such as triangular or sinusoidal
phase modulations. This method offers the opportunity to develop highly sensitive
interferometers with simple-phase modulators such as piezo-actuated mirrors, piezo
stretchers, or power-modulated laser diodes in unbalanced interferometers. Here we
present the basics of the approach and we give application examples for monitoring
displacement, sensing, and digital holography. The case where an amplitude modula-
tion is also present is also detailed and discussed in the context of unbalanced interfer-
ometry and near-field nanoscopy.

Keywords: phase extraction method, unbalanced interferometry, digital holography,
near-field optics, cost-effective interferometry

1. Introduction

In order to determine amplitude and phase in a two-arm interferometer, a phase modulator

is often required to clearly discriminate phase changes from amplitude changes. Such

operation is straightforward when the phase modulation is a linear function of time. In this

case, a standard Lock-in Amplifier (LIA) gives the required information with an optimal

signal to noise ratio (SNR). Unfortunately, a number of phase modulators interesting in term

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of cost, achromaticity or integration offers non-linear responses, that are even sometimes

coupled with unwanted amplitude modulation. A critical question that arises is “How can

we extract phase and amplitude information in an optimal way when non-linear phase

modulation is used?”

To solve this issue while keeping the benefits of high SNR, approaches have been proposed

based on multiple lock-in detection at selected signal harmonics. These approaches were

mainly employed in the case where the phase modulation is a sine function [1–6]. Such

phase modulation is, for example, achieved using piezo-actuator, fiber stretchers, and other

phase modulators where a sine excitation typically offers the best response. The multiple

lock-in approach works fine but it is less direct and does not necessarily provide an optimal

SNR or a straightforward implementation. Especially, if an amplitude modulation is present

at the same frequency as that of the phase modulation. Alternately, the Generalized Lock-in

Amplifier (G-LIA) technique was recently introduced [7] to solve this issue with a procedure

similar to a single LIA operation. In this chapter, we first detail the principle of this method

when operated in the simplest case where no amplitude modulation is present. Application

is provided notably in the context of digital holography. Then we consider the case where

there is an additional amplitude modulation in the signal field. The first case which is

discussed is related to unbalanced interferometry where the phase modulation is achieved

via a power modulation of the laser source. Finally, we also discuss the case of phase-

sensitive near-field imaging.

2. Theory: introduction to G-LIA

In order to introduce the G-LIA technique, we need to provide an expression for the detected

signal. We consider the simplest configuration of a 2-arm interferometer comprising a refer-

ence arm and a signal arm (cf. Figure 1). The system is illuminated by a monochromatic

radiation. The detected signal intensity I(t) can be expressed as:

Figure 1. Pseudo-heterodyne approach. A quasi-linear phase modulation is achieved by a sawtooth modulation of the

optical path using a piezo-actuated optical mirror in the reference arm. The detected intensity exhibits a sine modulation

except during the flyback time of the mirror. Any phase change in the reference arm will produce a detectable phase shift

of the observed quasi-sinusoidal pattern.

Optical Interferometry212



IðtÞ∝E2
r þ E2

s þ 2mErEs cos
�

ΔφðtÞ
�

(1)

where Es and Er are, respectively, the amplitude of the field of interest and the reference field

impinging on the detector. The phase difference between the two fields is Δφ(t) while the factor

m ≤ 1 in the interferometric term accounts for the interference contrast. Alternately, it is

common to express the detected intensity as a function of the laser power P:

IðtÞ∝P½1þ s cos
�

ΔφðtÞ
�

� (2)

where s is proportional to the unknown signal amplitude Es, considered as constant during a

measurement. The unknown spatial phase φs of the signal field is also supposed to be constant

during the measurement although a phase modulator can be included inside the signal arm.

Any time dependence in Δφ(t) is therefore arbitrarily considered as coming from the reference

field:

ΔφðtÞ ¼ φRðtÞ −φS (3)

From the expression of I given by Eq. (2), different strategies can be proposed in order to

recover amplitude and phase information. In order to extract the two unknowns (s, φS) from

the signal I(t), the phase of one of the two beams can be modulated in time by a frequency

shifter or another phase modulator. When the time dependence is linear φr(t) ∝ t as in the

former case, (s, φS) are precisely determined by a Lock-in Amplifier (LIA) locked at the

single frequency component present in I(t). For other functions of time such as a sine

waveforme (i.e. φR = α sin Ωt, where a is the modulation depth), the use of a conventional

LIA is less trivial as the signal information is typically spread over a number of frequency

components (nΩ/2π) having different weights. The G-LIA method was introduced to handle

such cases, while keeping an extraction procedure very similar to a LIA. Hereafter, the two

approaches are provided to highlight the similitudes and differences.

2.1. Amplitude and phase determination using a standard LIA

2.1.1. Case of linear phase modulation (LIA)

Considering the general Eq. (2), the use of LIA is direct when Δφ(t) is linearly modulated by

φR (t) = Ωt = 2πΔFt, where the phase modulation rate Ω can be induced in different ways.

These ways include notably the use of a frequency shifter in one of the two arms (where ΔF

is the frequency shift), a linear translation of one of the mirror (where ΔF is the associated

Doppler shift), or a linear variation of the laser frequency1 if the two arms are unbalanced.

Amongst the cited methods, heterodyne measurement based on the use of frequency

shifters is often considered as more favorable as a purely linear displacement of the mirror

is hardly achievable in practise without alignment or coherence issues, while unbalanced

1

In this case ΔF is function of the unbalance, that is, the optical path difference.
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interferometry is subject to noise [8] induced by small wavelength fluctuation typically

related to temperature drifts.

The two unknowns (s, φS) are simply the amplitude and phase of the sine waveform present in

Eq. (1) which is modulated at the frequency shift ΔF. This determination is optimally carried

out by a dual-output (X, Y) LIA locked at the frequency ΔF that is precisely provided by the

modulator driver. Depending on the output, the detected signal I is multiplied by an in-phase

or a quadrature sinusoids modulated at the same angular frequency ΔF and it is averaged over

a time tint:

XðIÞ ¼
1

tint
∫
tint
0 I cos ðΩtÞdt∝s cos ðφSÞ (4)

YðIÞ ¼
1

tint
∫
tint
0 I sin ðΩtÞdt∝s sin ðφSÞ (5)

From these two outputs, the quantities s∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

and φS ¼ atan 2ðX,YÞ are obtained with a

signal to noise ratio that can be increased using longer integration time. We note that the two

in-phase and quadrature sine waveforms are the LIA reference signals built from the frequency

shift precisely provided to the LIA. If the LIA is not locked exactly at the angular frequency Ω,

the measured values of φs will drift in time, while the extracted signal amplitude will decay for

long integration time.

2.1.2. Case of a non-linear phase modulation (LIA)

Achieving φr (t) ∝ t is not possible for a number of phase modulators, notably because

they have a finite range of phase modulation. Pseudo-heterodyne approaches were pro-

posed long ago to circumvent this problem [9] by using a sawtooth modulation of the

optical path, where the peak to peak amplitude of the sawtooth corresponds to an

integer number of times 2π in term of phase. The approach is illustrated by Figure 1,

in the case where the phase ramp is achieved by a piezo-actuated mirror in a balanced

interferometer.

As can be seen, the detected intensity mimics the sinusoidal beating observed in heterodyne

setups. Such approach is not widely used since errors are induced during the flyback time on

the sawtooth edges, especially if the modulation is fast.

As mentioned, the use of sine modulation φR = α sin Ωt is regarded as much more desirable as

most of the modulator can operate better and faster when they are sinusoidal excited. It was

early highlighted in this context [10] that for such modulation, the Fourier spectrum of the

signal has harmonic sidebands coming from the interferometric term Imod ∝ P s cos (Δ φ (t)) in

Eq. (2), as shown in Figure 2.

The amplitudes of these frequency components are obtained by developing the term in Imod ∝ P

[cos (φs) cos (φR) + sin(φs) sin (φR)] and using the Jacobi-Anger expansion of cos (φR) (even

Optical Interferometry214



harmonics) and sin (φR) (odd harmonics) [11]. From this expansion, we see that a LIA locked at

an angular frequency harmonics mΩ, with m ≠ 0, gives:

XmðIÞ ∝ s cos ðφSÞ
JmðaÞ f or m even
0 f or m odd

�

�

�

�

�

(6)

YmðIÞ ∝ s sin ðφSÞ
0 f or m even

JmðaÞ f or m odd
,

�

�

�

�

�

(7)

where Jm (a) is the m-th Bessel function. The amplitude and phase can then be extracted using

both odd and even harmonics, for example, using s ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
1=J

2
1ðaÞ þ Y2

2=J
2
2ðaÞ

q

and

φS ¼ atan 2
�

X1=J1ðaÞ, Y2=J2ðaÞ
�

:

When only two harmonics m = (1, 2) are used, caution must be exercised in the choice of the

modulation depth a in order to maximize the power density on the selected harmonics. The

optimum value of a in this case is a = 2.19 rad (maximum of J1 (a)
2 + J2(a)

2).

2.2. G-LIA method

The main benefit of the G-LIA method is that all the weighted harmonics are used to retrieve

phase and amplitude with an operation similar to that of a LIA. To introduce this method, we

also remark that the interferometric term Imod ∝ P s cos (Δφ(t)) in Eq. (2) can be expressed as

Imod ∝ P s [cos (φs) C(t) + sin (φs) S(t)], with C(t) = cos(φR) and S(t) = sin(φR). From this

expression, it appears that C(t) and S(t) can be used as relevant reference signals within a

modified LIA having the two following outputs:

Figure 2. Signals in the case of a sinusoidal phase modulation. (a) Top: example of detected intensity for different signal

phases. Bottom: corresponding reference functions. (b) Schematic example of Fourier transform of and associated refer-

ences and in the case of an arbitrary sine phase modulation and φs ¼ π=4.
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XφRðImodÞ ¼
1

tint
∫
tint
0 ImodCðtÞ dt ¼< ImodCðtÞ > , (8)

YφRðImodÞ ¼
1

tint
∫
tint
0 ImodSðtÞdt ¼< ImodSðtÞ > , (9)

These references contain the same frequency components than the interferometric term since

Imod(t) is a function of C(t) and S(t). These frequency components are naturally weighted so that

the contribution of stronger harmonics will be favored. Figure 2(b) exemplifies the case where

the phase modulation function is a sine function.

We note that in the particular case where φr(t) = Ωt, C(t) = cos(Ωt) and S(t)=sin(Ωt) and the

G-LIA operation degenerates to that of a standard LIA. More generally, by replacing the

expression of Imod in Eqs. (8) and (9), we see that for any phase modulation we have:

XφRðImodÞ∝S½kx � cos ðφsÞ þ k′x � sin ðφsÞ�, (10)

YφRðImodÞ∝s½k
′

y � cos ðφsÞ þ ky � sin ðφsÞ�, (11)

where kx = < C2(t) >, k′x ¼ k′y ¼ < CðtÞSðtÞ >, and ky ¼ < S2ðtÞ > are constants that can be

calculated numerically or analytically for the considered phase modulation. But for most of the

phase modulation functions that can be used C(t) and S(t) are orthogonal, that is,

k′x ¼ k′y ¼ < SðtÞCðtÞ >¼ 0, so that the XφR and YφR outputs are:

XφRðImodÞ∝skx cos ðφsÞ, (12)

YφRðImodÞ∝sky sin ðφsÞ, (13)

The G-LIA outputs are then similar to that of the LIA in the linear case (cf. Eqs. (4)–(5)). The

difference is the presence of the additional proportionality constants kx and ky which need to be

evaluated by calculating the average values <C2(t)> and <S2(t)>, respectively. In the case of sine

phase modulation φR = a sin Ωt, the constants have analytical expressions obtained from the

integral representations of Bessel functions and simple trigonometric developments:

kx ¼ 1þ J0ð2aÞ (14)

ky ¼ 1þ J0ð2aÞ (15)

where J0 is the Bessel function of first kind. However, it is difficult to extract Imod from I(t) to

feed the G-LIA input as it requires to precisely remove the signal and reference field intensities

from the detected intensity I(t). In general, it is not possible either to use directly I(t) to perform

the G-LIA operation described above. The reason is that for phase modulation function such as

sine or triangle, the useful term Imod also contains a DC component. In consequence the

references C(t) and/or S(t) also contain a DC term so that the constant, non-interferometric

term P in Eq. (2) is also detected by the G-LIA if I(t) is used directly. To avoid this problem,

specific phase modulation depths for which both C(t) and S(t) do not have a DC component

Optical Interferometry216



can be used.2 For a sine phase modulation, this specific depth of modulation a corresponds to

the zeros of the J0(a), for example, a = 2.405 rad. We note that there is no prejudice in term of

signal to noise ratio using this a since all the harmonic contents is detected by the G-LIA

operation.

Alternately, a satisfactory solution is to filter the detected intensity to remove all DC compo-

nent from the signal. In fact, such operation is easy to do and is often highly desirable to

directly remove the ambient light contribution in normal conditions [12]. In this case where the

signal is filtered, the G-LIA operation is:

XφRð~IÞ ¼< ~I CðtÞ > ∝s Kx cos ðφsÞ, (16)

YφRð~IÞ ¼< ~ISðtÞ > ∝s Ky sin ðφsÞ, (17)

where the Ĩ denotes a DC-filtered quantity,3 that is, ~IðtÞ ¼ IðtÞ − < IðtÞ >. The new proportion-

ality constants are Kx ¼< ~C
2
ðtÞ > and Ky ¼< ~S

2
ðtÞ >, where ~CðtÞ ¼ CðtÞ − < CðtÞ > and

~SðtÞ ¼ CðtÞ − < CðtÞ > are used to evaluate these proportionality factors numerically or analy-

tically.4 Amplitude and phase are then provided by:

s∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
φRð

~I
q

Þ=K2
x þ y2φRð

~IÞ=K2
y (18)

φs ¼ a tan 2
�

XφRð~IÞ=Kx,YφRð~IÞ=Ky

�

(19)

In the useful case of a sine modulation of the form φR = a sin Ωt, the constants Kx and Ky have

the following analytical expressions:

KX ¼ kx − J
2
0ðaÞ ¼ 1þ J0ð2aÞ − J

2
0ðaÞ (20)

KY ¼ ky ¼ 1 − J0ð2aÞ (21)

2

Amplitude and phase are then determined using: s∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
φRðIÞ=k

2
x þ Y2

φR
ðIÞ=k2y

q

and φs ¼ a tan2ðXφR
ðIÞ=k2x,YφR

ðIÞ=k2yÞ.
3

An analog filter can be used. Alternately, it is possible to filter the DC component of the reference functions C(t) and S(t)

only, or to filter both I and the references, with the same result. The operations < ~ICðtÞ > , < I~CðtÞ > and < ~I ~CðtÞ > are

theoretically equivalent. The interest of filtering both the signal and the references is that if the system operates at small

modulation frequencies some filters may create a distortion of the modulated signal by changing the amplitudes of peaks

and by creating phase shifts for the lowest frequency components. By filtering both the references and the signal, the

distortion is similar for both the signal and references so that the distortion effect is cancelled out.
4

A comment should also be made regarding the references C(t) and S(t). Building these references require the knowledge

of φ ¼ a sinΩt. In a number of setup φR can be monitored with sensors and it is then possible to take the sine and cosine

of this quantity. The references can also be built numerically from the knowledge of the modulation depth a and

frequency Ω, but C(t) and S(t) must be synchronized with φR ¼ a sinΩt. In other word, we should not use an ersatz

φ′

R ¼ a sin ðΩtþ φoÞ as an argument for CðtÞ ¼ cosðφRÞ and SðtÞ ¼ sinðφRÞ. If a phase shit φ0 exists, a phase adjustment of

the references or the modulation drive signal can be made. This phase shift can be measured by the phase output of a

standard LIA locked at the frequency Ω.
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where the negative extra term in Kx comes from the filtering of the DC component which is not

zero for C(t). As shown in Figure 3, for certain phase modulation amplitude the two constants

are identical and approximately equal to unity. This is obtained for a ≈ 2.814 rad, but any phase

modulation can be used. A better signal to noise ratio (SNR) is naturally achieved when there

is no DC component in C(t) and S(t), since this part is filtered. These cases correspond to the

zeros of J0(a) as previously mentioned (e.g. a = 2.405 rad), however the SNR is nearly optimum

for a continuous range of values above a = 2 rad. Other analytical expressions can be given, for

example, for a triangular modulation [7], however the constants estimation can be made

numerically without difficulty for a variety of phase modulation functions.

3. Application examples

In this section we review and present several results of interferometric measurements

performed with the G-LIA approach described in the previous section. Results include mea-

surement with a point detector reported elsewhere and interferometric measurement with 2D

detector in the framework of holographic measurement.

3.1. Measurement with a point detector

Figure 4 shows measurement results adapted from the Ref. [7], where the G-LIA can be used

with or without filtering to monitor an arbitrary displacement (here a triangle-shaped dis-

placement).

Figure 3. Proportionality factors and used in a G-LIA working with a sine phase modulation as a function of the phase

modulation depth. The analytical evaluations are plotted in solid lines; the markers correspond to the numerically

calculated values.
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3.1.1. Displacement measurement

The setup is shown on Figure 4(a). In this example, the phase modulation is a sine function φR

= a sinΩt, with a modulation depth approximately equals to a = 2.405 rad. As explained before,

with this value it is not necessary to filter the detected intensity to extract amplitude and phase

from the G-LIA operations X = <I C(t)> and Y = <I S(t)>. However, it is a common practise to

filter the DC signal directly after the detector to get rid of the environmental light condition

before acquisition in order to optimize the analog to digital conversion. In the Michelson

configuration shown here, the value of a corresponds to a peak to valley oscillation of the

reference mirror of about 38.3% of the wavelength. If no position sensor is present on the

reference mirrors, several methods can be used to achieve the desired phase modulation depth

a used in the references C(t) and S(t), notably by inspecting the signal I(t) whose shape changes

continuously with increasing value of a. Alternately the modulation depth can be precisely

adjusted to recover precisely a controlled displacement of the signal mirror without affecting

the amplitude output.

3.1.2. Sensing

Determining the phase rather than the amplitude is known to offer potential advantage in term

of sensitivity in optical sensing systems [13]. More precisely, the phase detection coupled with

surface plasmon resonance (SPR) is known to improve the measurement sensitive by one to

several order of magnitude depending on the exact system geometry. Many different designs

on combining interferometry or heterodyne detection on Kretschmann configuration-based

SPR sensor have been done [14, 15].

Figure 5 shows the demonstration setup used in [7] to demonstrate the applicability of the G-

LIA for phase sensitive sensing application. The setup is similar to that of Figure 4(a), except

that an I2 gas cell was added in the reference arm. The phase modulation is still achieved with a

piezo-actuated mirror and the wavelength of a laser diode emitting near 660 nm is ramped

over 4pm across an absorption line of the gas. To avoid phase drift induced by the wavelength

ramp, the length of the arms must be precisely balanced, since even minute wavelength

fluctuation can create phase fluctuation in unbalanced interferometer. This balanced setting

Figure 4. Interferometric measurement with a single detector. (a) Setup for displacement measurement including capac-

itive sensors for comparison. (b) Displacement measurement obtained with G-LIA and the capacitive sensor.

Interferometry Using Generalized Lock-in Amplifier (G-LIA): A Versatile Approach...
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can be achieved by ramping the laser diode wavelength outside an absorption band, and

adjusting the position the reference mirror until the phase output of the G-LIA remains

constant.

As can be seen, the phase varies more abruptly at the absorption peak center. However, the

benefit of measuring the phase for monitoring a gas concentration is not clear since the

amplitude has similar variation on the two sides of the absorption peak which indicates a

similar sensitivity than the phase if the detection is made where the slope is maximum on the

amplitude.

The interest of phase sensitive detection in SPR-based measurement is more obvious. In fact,

strong plasmonic resonances can be reached by carefully adjusting the opto-geometrical

parameters of the plasmonic layer in order to obtain very sharp phase variation across a

resonance. One possible combination of phase sensitivity SPR bio-sensor using G-LIA for

phase extraction is proposed in Figure 6, where a cuvette is put on a plasmonic chip to convey

a fluid on the surface of a plasmonic chip. A coupling prism makes it possible to satisfy the

Kretschmann condition for which the reflectivity of a p-polarized incident beam reaches a

minimum corresponding the excitation of the plasmon-polariton surface mode. In order to

have a stable phase, immune to wavelength fluctuations, the length of the two arms are made

equal. Figure 6(b) presents the numerically calculated complex reflectivity as a function of the

incident beam angle in the case of a glass coupling prism coated by a gold layer of thickness h

covered by water and excited by a red laser. The best coupling angle is close to α = 70° in the

provided examples.

As can be seen, the phase variation across the resonance can be made very sharp by adjusting

the metal thickness h. It should be noted however that this fast variation is associated with a

strong attenuation of the reflected beam and a compromise between signal level and sensitiv-

ity can be made depending on the available laser power. For example, on Figure 6(b) the

reflection is about 1.6% for h = 48 nm at Kretschmann angle, but it drops to 2.5‰ for h = 50 nm.

Figure 5. (a) Interferometric measurement with a single detector, applied to gas sensing. (b) Phase-sensitive detection of

an absorption line. The obtained spectrum is adapted from Ref [7].
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If we consider a reasonable phase resolution of 10−3 rad, simple calculation show that the case

h = 50 nm shown on the figure leads to sensitivity slightly better than 8×10−7 RIU (refractive

index unit). On the other hand, if the thickness is slightly inferior, the RIU sensitivity drops

rapidly (about 2×10−6 for h = 48 nm). To obtain a similar sensitivity with the only amplitude

signal, the noise level on the amplitude measured at the maximum slope should be smaller

than 10−3%, which is hardly achievable.

3.2. Digital holography

In digital holography, the holograms of a sample object are recorded on a 2D detector such as a

Charge-coupled Device (CCD) or a Complementary Metal-Oxide-Semiconductor (CMOS)

camera. Such system can notably be used as an optical profilometer, or for sensing applications

[1, 6, 16]. Figure 7(a) presents the experimental setup of a lensless, compact, digital microscope

working with the G-LIA extraction method.

In the provided example, a metallic grid of slit is imaged in amplitude and phase. The Lead

Zirconate Titanate (PZT) oscillates in the reference arm at 10 Hz to generate the phase modu-

lation function φR = a sinΩt at a wavelength λ = 640 nm in the reference arm. During the piezo

Figure 7. (a) Lensless digital holography setup. A diaphgram may be to select the central zone of interest in the sample.

(b) Amplitude and phase of a grating of straight and tilted slits made in a steel surface.

Figure 6. Example of possible experimental setup for phase sensing based on an SPR chip. (b) Simulation of the complex

reflectivity (magnitude and phase) for a light beam impinging a gold layer with a thickness h as a function of the incident

angle. The wavelength is 670 nm.
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oscillation, a video is recorded at a frame rate of 120 Hz. Then, amplitude and phase of the

detected field is obtained on the camera by performing a G-LIA operation on each pixel using a

program code. In this 2D case, the operation was not made in real-time because of the non-

negligible processing time (In the order of 1 min or less depending on the computing resource).

Once the detected complex field is retrieved, the associated plane wave spectrum can be

obtained by Fourier transform. Then each plane wave can be back-propagated numerically to

any position before the CCD [17], typically up to the sample plane or surface.

In this example, the raw signal I(X,Y) is processed by the numeric, software-based, G-LIA,

without filtering. For a correct operation it is then mandatory to use an amplitude modula-

tion a of about 2.405 rad. Figure 7(b) shows the amplitude and phase of the complex field

which is back-propagated up to the sample plane. As we are dealing with a rough surface,

the recorded phase has a speckle-like distribution. Because the illumination direction is

normal to the sample surface, the system is strongly sensitive to any out-of-plane displace-

ment of the structure. To give an idea of the system sensitivity, the sample is slightly

rotated. By subtracting the phase image before rotation to the phase image after rotation,

we obtain the phase-shift associated with the out-of-plane displacements, as shown in

Figure 8.

Figure 8. Effect of slight rotation on the holographic images. By subtracting the complex field after rotation s
(2)(X,Y) from

the complex field before rotation s
(1)(X,Y), the out of plane displacement is revealed.
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4. G-LIA in the case of amplitude and phase-modulated signal

In some important cases, the signal field is modulated both in phase and amplitude. The

modulated term Imod ∝ P s cos (Δφ(t)) in the detected intensity can then be expressed as:

Imod∝f ðtÞ cos
�

ΔφðtÞ
�

(22)

where f(t) accounts for the amplitude modulation function. We can mention two relevant

examples in the context of phase-sensitive nanoscopy and unbalanced interferometry.

4.1. Unbalanced interferometry

In interferometers having a path unbalance, a phase modulation can be efficiently induced by a

wavelength modulation of the emission wavelength. For this purpose a spectrally single-mode

laser diode working at a central wavelength λ0 can be used. The wavelength modulation is

typically obtained by a current modulation which is associated with a power modulation. In

air, the phase modulation is related to the small wavelength modulation δλ(t) by:

φRðtÞ ¼
4πΔl δλðtÞ

λ2
0

, where Δl is the length difference between the two arms.

For modulation frequency below the MHz range, the change in wavelength is considered to be

primarily due to a change of temperature that increases with the current. Therefore, using a

sawtooth function to create a quasi-linear phase change is usually not an excellent choice, as the

thermal inertia of the system prevents the wavelength to precisely follow the driving excitation.

On the other hand, a sine power modulation will typically induce the desired sine wavelength

and phasemodulation. In this case, the detected intensitywithin an unbalanced interferometer is:

I∝P0

�

1þ μ sin ðΩtÞ
��

1þ s cos ðφr −φsÞ
�

(23)

with φR(t) = a sin (φR), where a ¼ 4πΔlaλ
λ2
0

with aλ corresponding to the depth of wavelength

modulation.

It is clear that in the case where the amplitude modulation is small (µ≪1 and µ≪s), the

amplitude modulation disappears and the G-LIA method can be applied directly using the

signal ~IðtÞ where the DC component is filtered, with the references C(t) = cos (φR) and S(t) = sin

(φR). The operations are identical to those given by Eqs. (16)–(21). However, while µ can be

small compared to 1, the signal s of interest can also be very small in some experiments and

setups so that µ≪s cannot be satisfied in general. To see how to handle this problem, we can

express the filtered intensity ~IðtÞ:

~I∝s½ cos ðϕr −ϕsÞ
�

μ sin ðΩtÞ þ 1
�

�f iltered þ μ sin ðΩtÞ (24)

where we have normalized the detected intensity by the constant laser power factor. The

brackets indicate the quantity is filtered from its DC component. We see that the main issue
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comes from the modulated term outside the bracket which is independent from the signal s. A

direct solution to get rid of this unwanted term is to use references without harmonic compo-

nent at Ω. This is achieved by choosing J1(a) = 0 (e.g. a = 3.832 rad). With this choice of a, the

G-LIA operation given by Eqs. (16)–(24) gives excellent results provided that µ is kept reason-

ably small in comparison with 1 (e.g. for µ = 0.1 the maximum error on the G-LIA X and Youtput

is about 2%).5 This condition is reasonably achieved in many cases. For example, if we consider

a standard single mode laser diode such as a Vertical Cavity Surface Emitting Laser (VCSEL)

with a tunability of 0.5 nm/mA and a bias current of 1 mA. We see that a current modulation of

4.4% is sufficient to achieve a = 3.8 rad for an unbalance of 10 mm at a wavelength of 850 nm. The

corresponding power modulation µ depends on its P(I) but will be typically smaller than 0.1.

4.1.1. Improved unbalanced configuration

Despite its advantages in term of cost, unbalanced interferometry is not currently widely used.

The main reason is also related to the extreme sensitivity of the system to minute wavelengths

changes. Figure 9(a) represents a compensation scheme to solve this issue. The idea is to

illuminate the interferometer with a linear polarization at 45° with respect to the horizontal

and vertical axis and to discriminate the two s and p polarization using polarization beam

splitters. An additional signal arm is equipped with a fixed mirror in order to measure the

phase fluctuation induced by any wavelength drifts in time. The light impinging on this mirror

is s-polarized and is selectively detected by the photodiode PD1, using a polarization beam

splitter in reflection. On the other hand, the p-polarized light impinging on the piezo-actuated

mirror is reflected back onto the second photodiode (PD2). Both amplitude and phases are

recorded with the above described G-LIA operation.

Figure 9. (a) Unbalanced interferometer with an extra arm for wavelength drifts compensation. The sine phase modula-

tion is induced by a power modulation of the VCSEL laser source. BS: Beam splitter. (b) Actual displacement of the piezo

actuated mirror (red); measured displacement without drift compensation (dotted blue); phase fluctuation induced by the

intentional wavelength fluctuation (black line), and final measurement (dashed black line) obtained by subtracting the

black line to the blue dotted line.

5

We note that the cases where µ is too large to be neglected can be handled exactly without approximation but it requires

to know µ in order to determine analytically or numerically all the coefficients of the G-LIA outputs (4 in this case). In

general, the percentage of power modulation µ can be measured without difficulty. The condition J1(a) = 0 is still required.
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Figure 9(b) shows a controlled triangular displacement which is correctly determined despite

the presence of intentional wavelength drifts. In this experiment, the wavelength of the VCSEL

is driven sinusoidally at about 10 kHz to create the phase modulation. The important wave-

length drifts are artificially created by adding a low frequency sine to this excitation signal. The

compensation is obtained by plotting the phase of the p-polarized light minus the phase of the

s-polarized light which is coming from the fixed mirror. Both signal phases are obtained by the

G-LIA method with a approximately equal to 3.83 rad.

Such system is really interesting in term of performance since VCSELs are very affordable laser

sources that can be driven at very sinusoidally at very high speed. In the described experiment

the phase modulation frequency was only limited by the acquisition card used to perform the

G-LIA measurement.

4.2. Phase-sensitive nanoscopy

Amodulation of the amplitude at an angular frequencyΩA can be introduced in the signal arm

to discriminate the amplitude-modulated signal from other unwanted contributions able to

interfere with the reference field. This is the case in near-field nanoscopy where the signal light

is coming from a near-field probe in interaction with a surface, oscillating at an angular

frequency Ωprobe. The situation is depicted in Figure 10.

In Figure 10, the near-field head is included in the signal arm of a Michelson interferom-

eter. Alternately the near-field microscope can be used in the signal arm of a Mach-

Zhender which is well adapted to the characterization of waveguiding photonic devices

as in [18–20]. Here, the sample is scanned under a nano-tip which is precisely positioned

in the focus spot of an objective lens. The light backscattered by the oscillating probe

operating in tapping mode contains information on the local optical properties of the

sample. This backscattered light can have a rich harmonic content due to its near-field

interaction with a sample. The amplitude modulation function appearing in Imod is therefore

f ðtÞ ¼ cteþ s1 cosðΩprobetþΦ1Þ þ s2 cosð2ΩprobetþΦ2Þ þ :::

Figure 10. Phase-sensitive nanoscopy experiment based on G-LIA, where the phase modulation is ϕR ¼ a sinΩt. (a) Basic

setup. (b) Illustration of the frequency spectra of (top) the detected intensity and (bottom) the references signal used in the

extraction process. In this example ΩA = 2Ωprobe. The condition (e.g. a = 2.405 rad) removes the unwanted peaks from the

references.

Interferometry Using Generalized Lock-in Amplifier (G-LIA): A Versatile Approach...
http://dx.doi.org/10.5772/66657

225



We note that Imod in this case refers to the interference term between the near-field signal from

the probe and the phase-modulated reference signal. However other parasitic fields can be

backscattered by the probe-sample system. When using a standard, cantilevered, AFM probe,

the oscillation amplitude is typically larger than the probe radius. In this case it is often

interesting to detect the contribution from a higher harmonics ΩA = kΩprobe as the unwanted

part of the light which is modulated by the shaft of the probe (rather than the apex) only

contributes to the first harmonic(s). This unwanted contribution modulated by the probe shaft

can be referred as modulated background contribution (MBC) in contrast with the unmodulated

background contribution (UBC) coming, for example, from the sample backscattering (nano-

dusts, roughness,…) which is also unwanted. In less stringent configurations, especially when

the oscillation is small compared to the tip radius (the near field varies almost linearly on the

excursion of the probe), the MBC is not perceived6 while keeping k=1.

As shown in Figure 10(b), because of the interference between the probe signal and the

reference field, the signal is split into sidebands at kΩprobe ± pΩwhere Ω characterize the phase

modulation frequency. In order to collect the information spread throughout all these side-

bands, the G-LIA can use the following references:

CðtÞ ¼ f
ΩAðtÞcosðφRtÞ (25)

SðtÞ ¼ f
ΩA

ðtÞsinðφRtÞ (26)

where fΩAðtÞ ¼ cosðΩAtþ ψÞ is the amplitude carrier at the frequency of interest ΩA. But even

in this favorable case where the MBC is easily excluded, the UBC can be especially detrimental

and has been described by several authors. UBC however can be efficiently removed with

interferometric detection. As noted elsewhere, the UBC is perceived because the unmodulated

background interferes with the modulated signal from the tip on the detector creating signal

peaks at the harmonics frequencies kΩprobe. Therefore a direct solution consists in excluding the

frequencies ΩA = kΩprobe from the references C(t) and S(t). In the case of a sine modulation, the

condition a = 2.405 rad (J0(a) = 0) is sufficient to exclude the unwanted frequencies component

by removing the possible DC contribution in cos(φRt).

First examples of phase-sensitive near-field imaging based on G-LIA can be found in Ref. [7].

In Figure 11, a simple demonstration experiment is made by using a bare tuning oscillating

fork to modulate part of the signal at an angular frequency ΩA. The trace of the experimentally

detected signal intensity exhibits clearly a slow modulation due the phase modulation (φR = a

sin Ωt with a frequency of 1 kHz) as well as a sine amplitude oscillation at the oscillation

frequency of the tuning fork ΩA (at about 32 kHz). An additional coverglass can be added to

6

Such case occurs when using elongated probes like tungsten probes, mounted on tuning fork working in tapping mode.

The elongated shape minimizes the possible modulation of the background light, while an oscillation amplitude of few

nanometers can also prevent a detectable modulation of the background light. In some other case where a Mach-Zehnder

interferometer is used, only the apex of the probe can be illuminated (e.g.when imaging waveguiding structures). In

general, reducing the amplitude of modulation of the probe reduces the background contributions more efficiently than

the near-field contribution.
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check the system immunity to UBC. In this example, the references are those given by

Eqs. (25)–(26) with fΩAðtÞ ¼ cosðΩAtþ ψÞ where ψ is adjusted to be in phase with the fork

oscillation, resulting in a maximized amplitude signal (not shown here). With a = 2.405 rad to

exclude the UBC, the two G-LIA outputs provide:

X ¼< IðdetÞ � CðtÞ > ∝kxs1 cos ðφsÞ,with kx ¼ 〈C2ðtÞ〉 (27)

Y ¼< IðdetÞ � CðtÞ > ∝kys1 cos ðφsÞ with ky ¼ 〈S2ðtÞ〉 (28)

where s1 corresponds to the amplitude of signal field modulated at ΩA. For a sine phase

modulation, an analytical expression can be derived for the proportionality constants kx and

ky.These expressions can be found in the summary table given in Appendix A.

Figure 11(b) shows the phase determined with this method when a triangular phase modula-

tion having a peak to peak phase modulation depth of about 2.0 rad is induced by the signal

mirror. The signal phase is precisely retrieved.

The value of ψ includes the mechanical phase shift existing between the driving signal and the

actual motion of the fork. In fact, in a near-field experiment, this shift can vary from one

position to another on the sample depending on the material in interaction with the probe.

Depending on the system, the value of ψ in fΩAðtÞ ¼ cosðΩAtþ ψÞ is not necessarily known if

only the driving signal is accessible. We note that the retrieved optical phase value is not

affected by the value of ψ, which only affects the amplitude, but the SNR can be strongly

decreased if we omit ψ.

If ψ is unknown, the G-LIA can be applied twice to solve this issue with two quadrature

amplitude modulation functions. In other word, we can calculate for outputs signals

ðX,Y,X′,Y′Þ ¼< I∗ref erenceðtÞ >, using, respectively, the following references:

Figure 11. (a) Demonstration setup with φR = a sin Ωt. An UBC can be added via a glass coverslip in the signal arm. (b)

Recovered signal phase for a triangular displacement of the signal mirror.
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CðtÞ ¼ cos

�

ΩAðtÞ
�

cosðφ
R
tÞ (29)

SðtÞ ¼ cos

�

ΩAðtÞ
�

sinðφ
R
tÞ (30)

C
0ðtÞ ¼ sin

�

ΩAðtÞ
�

cosðφ
R
tÞ (31)

S
0ðtÞ ¼ sin

�

ΩAðtÞ
�

sinðφ
R
tÞ (32)

The four outputs (X, Y, X′, Y′) can be evaluated numerically or analytically, they provide,

respectively, < CðtÞ2 > cosðφ
s
Þ, < SðtÞ2 > sinðφ

s
Þ, < C

0ðtÞ2 > cosðφ
s
Þ, < S

0ðtÞ2 > sinðφ
s
Þwhose

analytical expressions are given in Appendix A for the sine phase modulation φR(t).

5. Conclusion

We have detailed the principle of the G-LIA method, first in the case of pure phase modula-

tions then in the case where the amplitude of the signal is also modulated. For pure phase

modulations, the interest of the approach was illustrated in different contexts: position moni-

toring, sensing, and digital holography. In these experiments, the non-linear phase modulation

was achieved by mirrors mounted on sinusoidally driven piezo-actuators. In this case, the

main advantage of the G-LIA is to extract amplitude and phase information directly from all

the harmonic contents created by the phase modulation function. While the examples only

considered sine phase modulation functions which is often the most desirable one, the G-LIA

also provides a unified treatment to handle arbitrary phase modulation function.

We have also detailed the case where an amplitude modulation can be present. This is notably

the case in unbalanced interferometry where a non-negligible amplitude modulation can be

perceived at the same frequency than the phase modulation. Experimentally, we considered

the case of unbalanced interferometers where a fast sine phase modulation is provided by a

current-driven single mode laser diode. A simple yet efficient setup was described to neutral-

ize the impact of wavelength fluctuation on the system. Such approach offers the opportunity

to develop simple and cost-efficient system without sacrificing precision. Finally, we discussed

the case where the signal of interest is modulated in amplitude at a frequency different from

that of the phase modulation. This case was detailed in the context of phase sensitive SNOM,

where the low available signal requires to exploit all the available sidebands induced by the

phase modulation. Notably, the condition to cancel the effect of the unmodulated background

light was presented and attention was paid to the impact of the mechanical phase of the

oscillating probe.

Appendix A

The table (Figure 12) provides a summary of case handled by the G-LIA method.
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