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Abstract

In this chapter, we propose a mathematical epidemic model, with integer and fractional
order to describe the dynamics of Salmonella infection in animal herds. We investigate
the qualitative behaviors of such model and find the conditions that guarantee the
asymptotic stability of disease-free and endemic steady states. To assess the severity of
the outbreak, as well as the strength of the medical and/or behavioral interventions
necessary for control, we estimate basic reproduction number R0. This threshold param-
eter specifies the average number of secondary infections caused by one infected indi-
vidual during his/her entire infectious period at the start of an outbreak. We also
provide an unconditionally stable implicit scheme for the fractional-order epidemic
model. The theoretical and computational results give insight into the modelers and
infectious disease specialists.

Keywords: basic reproduction number, Salmonella infection, SIRC epidemic model,
stability

1. Introduction

Mathematical epidemic models, for Salmonella infections, provide a comprehensive framework

for understanding the disease transmission behaviors and for evaluating the effectiveness of

different intervention strategies [1, 2]. We recall here that the Salmonella infection, a major

zoonotic disease, is transmitted between humans and other animals. Reports conducted by

the National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) revealed that

the number of people infected by Salmonella, over the past few years, has remained increasing.

The most commonly developed symptoms of Salmonella include diarrhea, fever, and abdomi-

nal cramps that appear 12–72 hours after infection. The infected people usually recover

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



without medical aid within a period of 4–7 days [3, 4]. However, hospitalization may be

needed for some infected people in the case of severe diarrhea. Salmonella is found living in

the intestinal tracts of not only humans but also other creatures such as birds. The transmission

of bacterium to humans occurs through the ingestion of food that has been contaminated with

animal feces. These contaminated foods are commonly from an animal source, such as beef,

poultry, milk, or eggs [5]. However, vegetables and other foods may also become contami-

nated. Additionally, foods that have been contaminated are almost impossible to detect while

eating, due to their normal taste and smell. Therefore, Salmonella is considered as a serious

problem for the public health throughout the world. There are no doubts that mathematical

modeling of Salmonella infection plays an important role in gaining understanding of the

transmission of the disease in a specific environment and to predict the behavior of any

outbreak. Furthermore, mathematical analysis leads to determining the nature of equilibrium

states and to suggest recommended actions to be taken by decision makers to control the

spreading of the disease. The objective of this work is to adopt the fractional-order epidemic

model to describe the dynamics of Salmonella infections in animal herds.

Fractional-order (or free-order) differential models have been successfully applied to sys-

tem biology, physics, chemistry, and biochemistry, hydrology, medicine, and finance (see,

e.g., [6–12] and the references therein). In many cases, they are more contestant with the

real phenomena than the integer-order models, because the fractional derivatives and

integrals enable the description of the memory and hereditary properties inherent in

various materials and processes. Hence, there is a growing need to study and use the

fractional-order differential and integral equations in epidemiology and biological systems

with memory [13]. However, analytical and closed solutions of these types of fractional

equations cannot generally be obtained. As a consequence, approximate and numerical

techniques are playing an important role in identifying the solution behavior of such

fractional equations and exploring their applications (see, e.g., [14–16] and the references

therein).

A large number of work done on modeling biological systems have been restricted to

integer-order ordinary (or delay) differential equations (see, e.g., [17–22]). In Ref. [23], the

authors proposed the classical Susceptible-Infected-Recovered (SIR) model. The authors in Ref.

[24] introduced a new compartment into the SIR model, which is called cross-immune

compartment to be called SIRC model. The added compartment cross-immune CðtÞ

describes an intermediate state between the fully susceptible SðtÞ and the fully protected

RðtÞ one. A fractional-order SIRC model of influenza, a disease in human population, was

discussed in Ref. [25]. In the present chapter, we consider the fractional-order SIRC model

associated with evolution of Salmonella infection in animal herds. However, we will take into

account the disease-induced mortality rate m in the model. Qualitative behavior of the

fractional-order SRIC model is then investigated. Numerical simulations of the fractional-

order SRIC model are provided to demonstrate the effectiveness of the proposed method by

using implicit Euler's method.

Definitions of fractional-order integration and fractional-order differentiation/integration are

given in Appendix.
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2. Construction of the model

Assume that the Salmonella infection spreads in animal herds which are grouped as four

compartments, according to their infection status: SðtÞ is the proportion of susceptible at time

t (individuals that do not have the infection), IðtÞ is the proportion of infected individuals (that

have the infection), RðtÞ is the proportion of recovered individuals (that recovered from the

infection and have temporary immunity), and CðtÞ is the proportion of cross-immune individ-

uals at time t. The total number of animals in the herd is given by N ¼ Sþ I þ Rþ C. We

consider that initially all the animals are susceptible to the infection. Once infected, a suscepti-

ble individual leaves the susceptible compartment and enters the infectious compartment

where it then becomes infectious. The infected animals pass into the recovered compartment.

After recovery from an infection animals, the individuals enter a new class CðtÞ. Therefore, we

consider the disease transmission model consists of nonnegative initial conditions together

with system of equations.

_SðtÞ ¼ μN þ ηCðtÞ−ðβIðtÞ þ μÞSðtÞ;
_IðtÞ ¼ βSðtÞIðtÞ þ σβCðtÞIðtÞ−ðθþmþ μÞIðtÞ;
_RðtÞ ¼ ð1−σÞβCðtÞIðtÞ þ θIðtÞ−ðμþ δÞRðtÞ;
_CðtÞ ¼ δRðtÞ−βCðtÞIðtÞ−ðηþ μÞCðtÞ:

(1)

Here 0
:

′ ¼ D ¼ d

dt
. The parameter μ denotes the mortality rate in every compartment and is

assumed to equal the rate of newborns in the population. β is the contact rate and also called

the transmission rate for susceptible to be infected. η−1 is the cross-immune period, while θ−1 is

the infectious period and δ−1 is the total immune period. σ represents the fraction of the

exposed cross-immune individuals who are recruited in a unit time into the infective subpop-

ulation [24, 26]. The presented model (1) differs from existing model, we assume a disease

induced mortality rate m; see the diagram of Figure 1.

2.1. Fractional-order SIRC epidemic model

Most of biological systems have long-range temporal memory. Modeling of such systems by

fractional-order (or arbitrary order) models provides the systems with long-time memory and

Figure 1. Schematic diagram of SIRC epidemic model for Salmonella infection.
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gains them extra degrees of freedom [27]. A large number of mathematical models, based on

ordinary and delay differential equations with integer-orders, have been proposed in modeling

the dynamics of epidemiological diseases [18, 20, 28, 29]. In recent years, it has turned out that

many phenomena in different fields can be described very successfully by models using fractional-

order differential equations (FODEs) [13, 6, 27]. This is due to the fact that fractional derivatives enable

the description of the memory and hereditary properties inherent in various processes. Herein, we

replace the integer-order of the model (1) into a fractional-order (or free-order) and assume that

sðtÞ ¼ SðtÞ=N;  iðtÞ ¼ SðtÞ=N;   rðtÞ ¼ RðtÞ=N;   cðtÞ ¼ CðtÞ=N, where N is the total number of popu-

lation. Then the model with a fractional-order α (0 < α ≤ 1) takes the form

DαsðtÞ ¼ μþ ηcðtÞ−ðβiðtÞ þ μÞsðtÞ;

DαiðtÞ ¼ βsðtÞiðtÞ þ σβcðtÞiðtÞ−ðθþmþ μÞiðtÞ;

DαrðtÞ ¼ ð1−σÞβcðtÞiðtÞ þ θiðtÞ−ðμþ δÞrðtÞ;

DαcðtÞ ¼ δrðtÞ−βcðtÞiðtÞ−ðη þ μÞcðtÞ:

(2)

Here,

Dαf ðtÞ ¼
1

Γðn−αÞ

d

dt

� �nðt

0

ðt−sÞα−n−1f ðsÞds: (3)

When 0 < α ≤ 1,

Dαf ðtÞ ¼
1

Γð1−αÞ

ðt

0

f ′ðsÞ

ðt−sÞα
ds: (4)

(The initial conditions sð0Þ ¼ s0, ið0Þ ¼ i0, rð0Þ ¼ r0 should be given.) We note that the fractional

derivatives involve an integration and are nonlocal operators, which can be used for modeling

systems with memory; see the Appendix.

2.2. Stability criteria for the epidemic SIRC model (2)

To find the equilibria of the model (2), we put DαsðtÞ ¼ DαiðtÞ ¼ DαrðtÞ ¼ DαcðtÞ ¼ 0. We have

disease-free (infection-free) equilibrium state E0 and endemic equilibrium state Eþ:

E0 ¼ ð1; 0; 0; 0Þ   and   Eþ ¼ ðs�;i�;r�;c�Þ; (5)

where

s� ¼
θþmþ μ

β
−σð

δθi�

ðμþ δσÞβi� þ ðμþ δÞðμþ ηÞ
Þ;

r� ¼
θi�ðβi� þ ηþ μÞ

ðμþ δσÞβi� þ ðμþ δÞðμþ ηÞ
;

c� ¼
θδi�

ðμþ δσÞβi� þ ðμþ δÞðμþ ηÞ
:

(6)

The positive endemic equilibrium Eþ ¼ ðs�;i�;r�;c�Þ satisfies Eq. (2) and i� is the positive root of

A1i
�2 þ A2i

� þ A3, where
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A1 ¼ −β2½mðμþ δσÞ þ μðθþ μþ δσÞ�;
A2 ¼ β½βμðμþ δσÞ þ ηθδ−ðθþmþ μÞ½ðμþ δÞðμþ ηÞ þ ðμþ δσÞ� þ μδθ�;

A3 ¼ βμðμþ δÞðμþ ηÞ 1−
θþmþ μ

β

� �� �

:

(7)

The Jacobian matrix of the model (2) is

J ¼

−βiðtÞ−μ −βsðtÞ 0 η

βiðtÞ βsðtÞ þ σβcðtÞ−ðθþmþ μÞ 0 σβiðtÞ

0 ð1−σÞβcðtÞ þ θ −ðμþ δÞ ð1−σÞβiðtÞ

0 −βcðtÞ δ −βiðtÞ−ðηþ μÞ

0

B

B

B

@

1

C

C

C

A

: (8)

2.3. The reproduction number R0

The basic reproduction number1 R0 that includes the indirect transmission may be obtained

using next-generation matrix method [30]. The spectral radius of the next generation matrix

ðFV−1Þ, which is the dominant eigenvalue of the same matrix, gives the value of R0. Then, the

basic reproductive number R0 is obtained by the form

R0 ¼ ρðFV−1Þ; (9)

where the matrices F ¼ ∂ℱiðxÞ
∂xj

h i

x¼x0
and V ¼ ∂V iðxÞ

∂xj

h i

x¼x0
. ℱiðxÞ, where x is the set of all disease-

free states in the compartment i, is the rate of appearance of new infections in the compartment

i, and V iðxÞ is the net transfer rate (other than infections) of the compartment i. The net transfer

rate is given by V i ¼ V
−

i −V
þ
i ; where V−

i is the rate of transfer of individuals out of the compart-

ment i and V
þ
i is the rate of transfer of individuals into the compartment i by all other means.

Therefore, the disease transmission model consists of nonnegative initial conditions, xið0Þ,

together with the following system of equations:

x′j ¼ f jðxÞ≡ℱjðxÞ−V j;   j≥1: (10)

From the model (2), we have

F ¼

∂ℱ1

∂iðtÞ

∂ℱ1

∂rðtÞ

∂ℱ2

∂iðtÞ

∂ℱ2

∂rðtÞ

0

B

B

@

1

C

C

A

¼
βs 0

0 0

� �

,

V ¼

∂V1

∂iðtÞ

∂V1

∂rðtÞ

∂V2

∂iðtÞ

∂V2

∂rðtÞ

0

B

B

@

1

C

C

A

¼
θþmþ μ 0

−θ μþ δ

� �

:

(11)

Since we have only two distinct stages namely IðtÞ and RðtÞ; it follows that both F and V are 2· ×2

square matrices. Furthermore, it can be noticed that F is nonnegative and V is nonsingular. The

1The number of individuals infected by a single infected individual placed in a totally susceptible population.
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basic reproductive number R0 is the dominant eigenvalue of the matrix FV−1, which is obtained

by solving the characteristic equation ðFV−1ÞI−ΛI ¼ 0 where Λ is the eigenvalue and IðtÞ is the

identity matrix. At the disease-free equilibrium, E0 ¼ ð1; 0; 0; 0Þ, we have

R0 ¼
β

θþmþ μ
: (12)

The following theorem states that R0 is a threshold parameter for the stability of the model (2).

Theorem 1 The disease-free equilibrium is locally asymptotically stable and the infection will die out if

R0 < 1 and is unstable if R0 > 1. Conversely, the endemic equilibrium Eþ is stable when R0 > 1 and

ai > 0;  i ¼ 1; 2; 3; 4;    a1a2−a3 > 0     and     a1a2a3−a
2
1a4−a

2
3 > 0; (13)

where

a1 ¼ ðD1 þD3 þD5Þ;
a2 ¼ ðD1D3−D4δþD1D5 þD3D5 þ β2i�s� þ σβ2c�i�Þ;
a3 ¼ ðD1D3D5−D1D4δþD3β

2i�s� þD5β
2i�s� þ β2c�ηi�−D2σβδi

�þ
σβ2D1c

�i� þ σD3β
2c�i�Þ;

a4 ¼ D3D5β
2i�s�−D2βδηi

� þD3β
2c�ηi�−D4β

2δi�s�−σβδD1D2i
� þ σD1D3β

2c�i�;

(14)

and

D1 ¼ βiþ μ;
D2 ¼ ð1−σÞβc� þ θ;
D3 ¼ ðμþ δÞ;
D4 ¼ ð1−σÞβi�;
D5 ¼ βi� þ ðηþ μÞ;
D5 ¼ βi� þ μ:

(15)

Proof The disease-free equilibrium is locally asymptotically stable if all the eigenvalues, λi

i ¼ 1; 2; 3; 4: of the Jacobian matrix, JðE0Þ satisfy the following condition

jargðλiÞj >
απ

2
: (16)

where

JðE0Þ ¼

−μ −β 0 η
0 β−ðθþmþ μÞ 0 0
0 0 −ðμþ δÞ 0
0 0 δ −ðηþ μÞ

0

B

B

@

1

C

C

A

: (17)

The eigenvalues of the Jacobian matrix JðE0Þ are

λ1 ¼ −μ;   λ2 ¼ β−ðθþmþ μÞ;   λ3 ¼ −ðμþ δÞ;  λ4 ¼ −ðηþ μÞ: (18)

Hence E0 is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.
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Now, we extend the analysis to endemic equilibrium Eþ. The Jacobian matrix JðEþÞ evaluated

at the endemic equilibrium is

JðEþÞ ¼

−βi�−μ −βs� 0 η
βi� βs� þ σβc�−ðθþmþ μÞ 0 σβi�

0 ð1−σÞβc� þ θ −ðμþ δÞ ð1−σÞβi�

0 −βc� δ −βi�−ðηþ μÞ

0

B

B

@

1

C

C

A

; (19)

with characteristic equation

λ4 þ a1λ
3 þ a2λ

2 þ a3λþ a4 ¼ 0: (20)

Using Routh-Hurwitz stability criteria [31], the endemic equilibrium Eþ is locally asymptoti-

cally stable provided that

ai > 0;i ¼ 1; 2; 3; 4;    a1a2−a3 > 0    and     a1a2a3−a
2
1a4−a

2
3 > 0: (21)

This completes the proof.

3. Numerical method and simulations

Since most of the FODEs do not have exact analytic solutions, so approximation and numerical

techniques must be used. In addition, most of resulting biological systems are stiff,2 therefore,

efficient use of a reliable numerical method for dealing with such problems is necessary. In this

section, we provide an implicit scheme to approximate the solutions of the fractional-order

epidemic model. We also verify that the approximate solution is stable and convergent.

Consider a biological system, with fractional-order, of the form

  DαyðtÞ ¼ f ðt;yðtÞÞ; t∈ ½0;T�;

yðkÞð0Þ ¼ yðkÞð0Þ; k ¼ 0; 1; 2;…;m−1:
0 < α ≤ 1 (22)

Here, yðtÞ ¼ ½y1ðtÞ;y2ðtÞ;…;ynðtÞ�
T and f ðt;yðtÞÞ satisfy the Lipschitz condition

∥f ðt;yðtÞÞ−f ðt;xðtÞÞ∥ ≤K∥yðtÞ−xðtÞ∥;   K > 0; (23)

where xðtÞ is the solution of the perturbed system.

Theorem 2 The FODE (22) has a unique solution if Lipschitz condition (23) is satisfied and

2One definition of the stiffness is that the global accuracy of the numerical solution is determined by stability rather than

local error and implicit methods are more appropriate for it.
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M ¼
KTα

Γðαþ 1Þ
< 1: (24)

Proof One can apply the fractional integral operator (given in the Appendix) to the differential

Eq. (22) and incorporate the initial conditions. Thus, Eq. (22) can be expressed as

yðtÞ ¼
Xm−1

k¼0

y
ðkÞ
0

tk

k!
þ

1

ΓðαÞ

ðt
0

ðt−sÞα−1f ðs;yðsÞÞds: (25)

which is a Volterra equation of the second kind. Define the operator ℒ, such that

ℒyðtÞ ¼
Xm−1

k¼0

y
ðkÞ
0

tk

k!
þ

1

ΓðαÞ

ðt
0

ðt−sÞα−1f ðs;yðsÞÞds:: (26)

Then, we have

∥ℒyðtÞ−ℒxðtÞ∥ ≤
1

ΓðαÞ

ðt
0

ðt−sÞα−1∥f ðs;yðsÞÞ−f ðs;xðsÞÞ∥ds

≤
K

ΓðαÞ

ðt
0

ðt−sÞα−1 sup
s∈ ½0;T�

jyðsÞ−xðsÞjds

≤
K

ΓðαÞ
∥y−x∥

ðt
0

sα−1ds

≤
KTα

Γðαþ 1Þ
∥y−x∥Tα

:

(27)

Then, we have

∥ℒyðtÞ−ℒxðtÞ∥ ≤M∥y−x∥: (28)

Using the Banach contraction principle, we can prove that that ℒ has a unique fixed point

which means that the problem has a unique solution. □

Many efficient numerical methods have been proposed to solve the FODEs [14, 32]. Among

them, the so-called predictor-corrector algorithm is a powerful technique for solving the

FODEs, and considered as a generalization of the Adams-Bashforth-Moulton method. The

modification of the Adams-Bashfourth-Moulton algorithm is proposed by Diethelm [14, 33–

34] to approximate the fractional-order derivative. However, the converted Volterra integral

equation (25) is with a weakly singular kernel, such that regularization is not necessary

anymore. In our case, the kernel may not be continuous, and therefore the classical numerical

algorithms for the integral part of Eq. (25) are unable to handle the solution of Eq. (22).

Therefore, we implement the implicit Euler's scheme to approximate the fractional-order

derivative.

Given fractional-order model (Eq. (22)) and mesh points T ¼ {t0;t1;…;tN}, such that t0 ¼ 0 and

tN ¼ T. Then a discrete approximation to the fractional derivative can be obtained by a simple
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quadrature formula, using the Caputo fractional derivative (42) of order α, 0 < α ≤ 1, and using

implicit Euler's approximation as follows (see [15]):

Dα
�xiðtnÞ ¼

1

Γð1−αÞ

ðt

0

dxiðsÞ

ds
ðtn−sÞ−αds

≈
1

Γð1−αÞ

X

n

j¼1

ðjh

ðj−1Þh

x
j
i−x

j−1
i

h
þOðhÞ

" #

ðnh−sÞ−αds

¼
1

ð1−αÞΓð1−αÞ

X

n

j¼1

x
j
i−x

j−1
i

h
þOðhÞ

" #

½ðn−jþ 1Þ1−α−ðn−jÞ1−α�gh1−α

¼
1

ð1−αÞΓð1−αÞ

1

hα
X

n

j¼1

½x
j
i−x

j−1
i �½ðn−jþ 1Þ1−α−ðn−jÞ1−α�þ

   
1

ð1−αÞΓð1−αÞ

X

n

j¼1

½x
j
i−x

j−1
i �½ðn−jþ 1Þ1−α−ðn−jÞ1−α�Oðh2−αÞ:

(29)

Setting

Gðα;hÞ ¼
1

ð1−αÞΓð1−αÞ

1

hα
;and   ωα

j ¼ j1−α−ðj−1Þ1−α;  ðwhere   ωα
1 ¼ 1Þ; (30)

then the first-order approximation method for the computation of Caputo's fractional deriva-

tive is then given by the expression

Dα
�xiðtnÞ ¼ Gðα;hÞ

X

n

j¼1

ωα
j ðx

n−jþ1
i −x

n−j
i Þ þOðhÞ: (31)

From the above analysis and numerical approximation, one arrives at the following Remark.

Remark 1 The presence of a fractional differential order in a differential equation can lead to a notable

increase in the complexity of the observed behavior, and the solution continuously depends on all the

previous states.

3.1. Stability and convergence

Here, we prove that the suggested numerical scheme of implicit difference approximation

(Eq. (31)) is unconditionally stable. It follows then that the numerical solution converges to

the exact solution as h ! 0.

In order to study the stability of the numerical method, let us consider a test problem of linear

scaler fractional differential equation

  Dα
�uðtÞ ¼ ρ0uðtÞ þ ρ1;   uð0Þ ¼ u0: (32)

such that 0 < α ≤ 1, and ρ0 < 0, ρ1 > 0 are constants.
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Theorem 3 The fully implicit numerical approximation (31), to test problem (32) for all t≥0, is

consistent and unconditionally stable.

Proof We assume that the approximate solution of Eq. (32) is of the form uðtnÞ≈U
n
≡ζn, then

Eq. (32) can be reduced to

  1−
ρ0

Gα;h

� �

ζn ¼ ζn−1 þ
X

n

j¼2

ω
ðαÞ
j ðζn−j−ζn−jþ1Þ þ ρ1=Gα;h   ;    n ≥ 2: (33)

Or

  ζn ¼

ζn−1 þ
X

n

j¼2

ω
ðαÞ
j ðζn−j−ζn−jþ1Þ þ ρ1=Gα;h

ð1−
ρ0
Gα;h

Þ
;    n ≥ 2: (34)

Since 1− ρ0
Gα;h

� �

≥1 for all Gα;h, then

ζ1 ≤ ζ0; (35)

ζn ≤ ζn−1 þ
X

n

j¼2

ω
ðαÞ
j ðζn−j−ζn−jþ1Þ;     n ≥ 2: (36)

Thus, for n ¼ 2, the above inequality implies

ζ2 ≤ ζ1 þ ω
ðαÞ
2 ðζ0−ζ1Þ: (37)

Using the inequality (35) and the positivity of the coefficients ω2, one gets

ζ2 ≤ ζ1: (38)

Repeating the process, we have from Eq. (36)

ζn ≤ ζn−1 þ
X

n

j¼2

ω
ðαÞ
j ðζn−j−ζn−jþ1Þ ≤ ζn−1: (39)

Since each term in the summation is negative. Thus ζn ≤ ζn−1 ≤ ζn−2 ≤… ≤ ζ0. With the assump-

tion that ζn ¼ jUnj ≤ ζ0 ¼ jU0j; which entails ∥Un
∥ ≤ ∥U0∥ and we have stability.

The above numerical technique can then be used both for both linear and nonlinear problems,

and it may be extended to multiterm FODEs.

3.2. Numerical simulations

The approximate solutions of epidemic model (2) are displayed in Figures 2–4, and sensitivity

of R0 to transmission coefficients is displayed in Figure 5. The numerical simulations are
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performed by Euler's implicit scheme discussed in Section 3. We choose different fractional-

order values (0:5 < α < 1), and parameter values given in Table 1. The displayed solutions in

Figure 4 confirm that the fractional order of the derivative plays the role of time-delay (or

memory) in the system.

Figure 2. Numerical simulation of the fractional-order epidemic model (2), when α ¼ 0:8, and R0 > 1 (Each infected

individual infects more than one other member of the population and a self-sustaining group of infectious individuals

will propagate), with parameter values of Table 1.

Figure 3. Phase plane portrait for the fractional-order endemic model (2), in absence of CðtÞ and RðtÞ components, when

α ¼ 0:7 (left) and α ¼ 0:9 (right) with R0 ¼ 0:5 < 1. We note that solution paths approach the disease-free equilibrium

E0 ¼ ð1; 0; 0Þ.
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Figure 4. Phase plane portrait for the classic fractional-order endemic model (2) when α ¼ 1 (left) and α ¼ 0:9 (right) with

R0 ¼ 1:2 > 1. We note that solution paths approach the endemic equilibrium Eþ given by Eq. (5).

Figure 5. Sensitivity of R0 with respect to the transmission coefficients β and θ.

Parameter Description Value Reference

μ Replacement and exit rate (day−1) 0.011 [35]

β Transmission rate of susceptible to be infected (animal−1 day−1) 0.15 [35]

θ Recovery rate of infected animals day−1 0.16 Assumed

m Disease-induced mortality rate (day−1) 0.041 Assumed

η Cross-immune period 0.5 [36]

σ The average reinfection probability of CðtÞ 0.06 Assumed

δ The average time of appearance of new dominant clusters 1 Assumed

N The total number of population 345 Assumed

Table 1. List of parameters.
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4. Discussion and conclusion

In this chapter, we provided a fractional-order SIRC epidemic model with Salmonella infection.

The model provides a comprehensive framework for understanding the disease transmission

behaviors, as well as for evaluating the effectiveness of different intervention strategies. We

derived the sufficient conditions to preserve the asymptotical stability of disease-free and

endemic steady states. The threshold parameter (reproduction number) R0 has been evaluated

in terms of contact rate, recovery rate, and other parameters in the model. The threshold

parameter R0 is very sensitive to transmission coefficients β and θ that reflects that these

parameters play an important role to assess the strength of the medical and behavioral inter-

ventions necessary for control. We provided an unconditionally stable method, using Euler's

implicit method for the fractional-order differential system. The solution of a fractional-order

model at any time t� continuously depends on all the previous states at t ≤ t�.

It has been found that fractional-order dynamical models are more suitable to model biological

systems with memory than their integer-orders. The presence of a fractional differential order

into a corresponding differential equation leads to a notable increase in the complexity of the

observed behavior. However, fractional-order differential models are as stable as their integer-

order counterpart.
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Appendix

Let L1 ¼ L1½a;b� be the class of Lebesgue integrable functions on ½a;b�, a < b < ∞.

Definition 1 The fractional integral of order β∈ℝ
þ of the function f ðtÞ, t > 0 (f : ℝ

þ ! ℝ) is defined

by

Iνa f ðtÞ ¼

ðt
a

ðt−sÞν−1

ΓðνÞ
f ðsÞds;   t > 0: (40)

The fractional derivative of order α∈ ðn−1;nÞ of f ðtÞ is defined by two ways:

• Riemann-Liouville fractional derivative: Take fractional integral of order ðn−αÞ and then take nth

derivative,

• Caputo fractional derivative: Take nth derivative and then take a fractional integral of order ðn−αÞ

Dα
a f ðtÞ ¼ Dn

a I
n−α
a f ðtÞ;   Dn

� ¼
dn

dtn
;   n ¼ 1; 2;… (41)

Dα
a f ðtÞ ¼ In−αa Dn

a f ðtÞ;   n ¼ 1; 2;…: (42)
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We notice that the definition of time-fractional derivative of a function f ðtÞ at t ¼ tn involves an

integration and calculating time-fractional derivative that requires all the past history, i:e:, all

the values of f ðtÞ from t ¼ 0 to t ¼ tn. Caputo's definition, which is a modification of the

Riemann-Liouville definition, has the advantage of dealing properly with initial value prob-

lems. The following Remark addresses some of the main properties of the fractional deriva-

tives and integrals (see [12, 36–39]).

Remark 2 Let ν;γ∈ℝ
þ and α∈ ð0; 1Þ. Then

i. If Iνa : L1 ! L1 and f ðtÞ∈ L1, then IνaI
γ
a f ðtÞ ¼ Iνþγ

a f ðtÞ;

ii. limν!nI
ν
a f ðxÞ ¼ Ina f ðtÞ uniformly on ½a;b�, n ¼ 1; 2; 3;…, where I1a f ðtÞ ¼

ðt
0

f ðsÞds;

iii. limν!0I
ν
a f ðtÞ ¼ f ðtÞ weakly;

iv. If f ðtÞ is absolutely continuous on ½a;b�, then limα!1D
α
� f ðtÞ ¼

df ðtÞ
dt ;

v. Thus Dα
� f ðtÞ ¼

d
dt I

1−α
� f ðtÞ (Riemann-Liouville sense) and Dα

� f ðtÞ ¼ I1−α�
d
dt f ðtÞ (Caputo sense).

The generalized mean value theorem and another property are defined in the following

Remark [40].

Remark 3

i. Suppose f ðtÞ∈C½a;b� and Dα
� f ðtÞ∈Cða;b� for 0 < α ≤ 1, then we have

f ðtÞ ¼ f ðaÞ þ
1

ΓðαÞ
Dα

� f ðξÞðt−aÞ
α
;   with  a < ξ < t   ∀  t∈ ða;b�: (43)

ii. If (i) holds, and Dα
� f ðtÞ≥0 ∀  t∈ ½a;b�, then f ðtÞ is nondecreasing for each t∈ ½a;b�. If Dα

� f ðtÞ ≤ 0

∀  t∈ ½a;b�, then f ðtÞ is nonincreasing for each t∈ ½a;b�.
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