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Abstract

The use of antibiotics to fight bacterial and fungal honeybee diseases is documented 
since 1940s. Although at present in some countries certain antibiotics are authorized in 
apiculture, only few law systems provide maximum residue limits in honey. In addi-
tion, residues of worldwide banned antibiotics such as chloramphenicol, nitrofurans and 
nitroimidazoles have been frequently found. Therefore, the availability of reliable analyt-
ical methods able to detect concentrations at few parts per billions is fundamental. After a 
general overview of the available sample treatment strategies and analytical techniques, 
the most significantly published methods are discussed. Aminoglycosides and, to a lesser 
extent, tetracyclines are the more difficult classes to analyse. The current trends are the 
development of multiclass procedures and of micro-extraction techniques to improve the 
cost-effectiveness of residues control in the globalization era.

Keywords: honey, antibiotics, honeybee diseases, sample preparation, liquid 
chromatography-mass spectrometry

1. Introduction

Antimicrobials are used in food-producing animals to prevent and/or treat animal diseases. 
Although epidemiological data on the real magnitude of their adverse effects are very scarce, 
they indicate that the presence of antibiotic residues in food could be an important vehicle 
for the development of antibiotic-resistant bacterial strains. Because of these concerns, many 
countries have restricted the use of antibiotics in farm. The major honeybee diseases for which 
antibiotics are applied are American foulbrood, European foulbrood infections and nosemo-
sis. Foulbrood infections are caused by bacteria, whereas Nosema disease is caused by a fun-
gus. Currently, in the European Union the maximum residue limits (MRLs) for antibiotics in 
food are listed in Regulation (EU) No 37/2010 [1]. This regulation stipulates that each  antibiotic 
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must have a MRL before it can be used on a food-producing animal. European Union does 
not allow the use of antibiotics for treatment of honeybees, and therefore, there are not MRLs 
in honey for these substances. The lack of harmonized rules with regard to acceptable con-
trol methods, limits of detection or sampling methods, results in different interpretations 
by European Member States. Some Member States and Switzerland have established action 
limits or tolerance levels [2, 3]. In the CRL Guidance Paper (2007) [4], the European Union 
References Laboratories (EURLs, ex CRLs) proposed recommended concentrations for analy-
sis of macrolides, streptomycin, sulphonamides and tetracyclines in honey within the national 
residue control plans carried out in accordance with Council Directive 96/23/EC [5] (Table 1). 
These recommended concentrations, however, have no real legal basis. They are used as ref-
erence during method development since detection capability (CCβ) for screening methods 
or decision limit (CCα) for the confirmatory ones [6] should be lower than recommended 
concentrations. All the veterinary drugs just mentioned belong to the Group B of Annex I 
of Council Directive 96/23/EC [5], that is, they are permitted substances with fixed MRLs in 
several food commodities. On the other hand, in the case of banned substances (Group A, 
Annex I of Council Directive 96/23/EC) such as chloramphenicol (CAP) and  nitrofurans (NFs), 
the European Union has set minimum required performance limits (MRPLs) of 0.3 and 1.0 
μg/kg, respectively. MRPLs are foreseen in Article 4 of Commission Decision 2002/657/EC 

Country Approved substance MRLsa (µg/kg) RCsb (µg/kg) Source

EU Streptomycin – 40 European Regulation 37/2010 [1]
CRL Guidance Paper [4]

Tetracyclines – 20

Sulphonamides – 50

Erythromycin Tylosin – 20

USA Lincomycin – – CFR—Code of Federal 
Regulations—Title 21 [8]

Oxytetracycline – –

Tylosin – –

Canada Fumagillin 25 – List of Maximum Residue Limits 
(MRLs) for Veterinary Drugs in 
Foods [9]Oxytetracycline 300 –

Erythromycin – 30c

Tylosin 200d –

Australia/New Zealand Oxytetracycline 300 – Food Standards Code (standard 
1.4.2—Schedule 20) [10]

Japan Oxytetracycline 300 – Positive List System for 
Agricultural Chemical Residues 
in Foods [11]Amoxicillin 8 –

Ampicillin 9 –

aMaximum residue limits (MRLs) or tolerances (legal limits).
bRecommended concentrations (RCs) which only represent a reference point for analytical method performances.
cWorking residue level (WRL) below which there is considered to be undue risk to human health.
dSum of tylosin A and B.

Table 1. Worldwide limits for antibiotics in honey.
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[6] and they are reference point for action. They are intended to harmonize the analytical 
performance of methods ensuring the same level of consumer protection in the European 
Union. Among banned substances, also the use of nitroimidazoles has been documented in 
beekeeping practice. However, no MRPLs have been fixed for nitroimidazoles, the European 
Union has not fixed the relevant MRPLs, and during the development of analytical methods, 
the recommended concentration of 3 μg/kg (CRL Guidance Paper [4]) is taken into account.

The worldwide standard, the Codex Alimentarius, has not fixed any MRL for antibiotics in 
honey [7]. The Codex Alimentarius or “Food Code” was established by FAO and the World 
Health Organization in 1963 to develop harmonized international food standards, which pro-
tect consumer health and promote fair practices in food trade. Similarly, in United States, 
no tolerances for antibiotics in honey have been established, although oxytetracycline is 
approved for longtime in beekeeping practice to control American foulbrood. At present, lin-
comycin and tylosin are authorized, too. The MRLs (or tolerances) for residues of antibiotics 
in food are set by the US Food and Drug Administration (USFDA) and listed in the Code of 
Federal Regulations, Title 21 [8]. Conversely, Canada, Australia, New Zealand and Japan have 
established MRLs for oxytetracycline (300 μg/kg) [9–11]. In addition, also MRLs for fumagillin, 
oxytetracycline and tylosin are provided by Canadian authorities (Table 1). For erythromycin, 
a working residue level is provided, below which no risk to human health is considered.

Sulphathiazole and oxytetracycline are probably the first antibiotics used to fight honeybee 
diseases. Starting from 1980s, analytical methods have been developed for these two drugs in 
honey at trace levels mainly based on liquid chromatography coupled to UV-Vis (LC-UV-Vis) 
and fluorescence detectors (LC-FLD). In the early 2000s, the availability of liquid chroma-
tography systems coupled to mass spectrometric analysers (LC-MS) at bench level involved 
the progressive development of procedures using this technique which allows a more selec-
tive and universal detection than the traditional detectors based on UV absorption (quite 
universal, but not selective) or fluorescence (selective, but not universal). Therefore, exist-
ing methods have been progressively converted using LC-MS improving performances and 
sample throughput, and new challenging analytical problems have been solved thanks to this 
technique equipments (e.g. the detection of nitrofurans metabolites in food).

From a toxicological point of view, in the European Union law system the distinction is 
between permitted drugs (aminoglycosides, lincomycin, macrolides, quinolones, sulphon-
amides and tetracyclines) and banned drugs (chloramphenicol, nitrofurans and nitroimid-
azoles) belonging to substances of group B and A, respectively (Annex I of Directive 96/23 
[5]). As discussed before, there are not MRLs for antibiotics in honey (Table 1). Hence, in this 
context, “permitted drugs” are drugs with an MRL in food commodities other than honey 
(meat, milk, liver, etc), whereas the banned ones (chloramphenicol, nitrofurans and nitroimid-
azoles) cannot be used in any food-producing species generally not only in European Union, 
but also in several other countries. This distinction is also fundamental to choose the analyti-
cal technique to develop confirmatory methods, which are procedures fulfilling Commission 
Decision 2002/657/EC criteria [6]. For the banned substances, the use of mass spectrometric 
detectors is mandatory, whereas, for the permitted ones, traditional detectors, UV-Vis or FLD, 
are suitable, too. In addition, for banned drugs, the required method limits are in the range 
from 0.1 to 1 μg/kg; for permitted drugs, limits of about one order of magnitude greater can 
be acceptable (Table 1).
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The use of liquid chromatography coupled to mass spectrometry equipments and the world-
wide improvement of law systems probably explains the decrease in the incidence of veteri-
nary drug residues in honey and honeybee products (royal jelly and propolis). The number of 
cases per year in 2003 was 40, whereas in 2015 only six notifications have been recorded by the 
European Rapid Alert System for Food and Feed (RASSF) as shown in Table 2 [12]. In place 
since 1979, RASSF enables information to be shared efficiently between its members [national 
food safety authorities of EU Member States, the EU Commission, the European Food Safety 
Authority (EFSA), Norway, Liechtenstein, Iceland and Switzerland]. It provides an efficient 
service to ensure that urgent notifications are sent, received and responded to in the shortest 
time possible. Thanks to RASSF, many food safety risks had been averted before any harm to 
European consumers was caused.

Year No of notifications No of found substancesa Number (substance)

2002 45 57 34 (CAP), 13 (STR/DSTR), 7 (SAs), 3 (TCs)

2003 40 53 20 (SAs), 17 (CAP), 11 (STR), 3 (TCs), 2 (NFs)

2004 25 27 10 (SAs), 7 (CAP), 5 (NFs), 5 (STR)

2005 41 49 25 (CAP), 8 (STR), 6 (SAs), 5 (TCs), 4 (NFs), 1 (MAC)

2006 16 17 7 (CAP), 6 (SAs), 2 (STR), 1 (NFs), 1 (TCs)

2007 20 41 24 (SAs), 6 (QNs), 6 (TCs), 2 (MACs), 1 (CAP), 1 (STR), 
1 (NFs)

2008 27 29 9 (MACs), 7 (TCs), 5 (SAs), 3 (CAP), 2 (QNs), 2 (STR), 
1 (NFs)

2009 10 10 4 (TCs), 3 (NFs), 2 (STR), 1 (SA)

2010 8 9 3 (lincomycin), 2 (STR), 1 (TC), 1 (NMZ), 1 (MAC), 
1 (QN),

2011 6 6 3 (SAs), 2 (NMZs), 1 (lincomycin)

2012 6 7 5 (SAs), 2 (NFs),

2013 4 4 2 (SAs), 1 (NFs), 1 (TCs),

2014 1 1 1 (SA—sulphamethoxazole)

2015 6 10 3 (CAP), 3 (STR/DSTR), 2 (TCs), 1 (NMZ), 1 (SA)

aIn the same sample more than one residue could be present.

Table 2. RASFF notifications in the period 2002–1015 (hazard category “residues of veterinary medicinal products”; 
product category “honey and royal jelly”).
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In Section 4, an extensive overview of the main published analytical methods for the deter-

mination of residues of the antibiotics (legally or illegally) used in apiculture is carried out. 
The analytical steps of each selected method (sample treatment, analytical technique and 
detection limits) are summarized in Tables 3–11.

Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

CAP 100 mM NaAc 
buffer (pH 5.0)/
Oasis HLB-
SPE, phosphate 
buffer (pH 6.5), 
ACN:DCM (80:20, 
v/v)

Symmetry Shield 
RP18 (150 × 2.1 
mm, 3.5 μm)

Gradient: water/
ACN

LC-MS/MS 
(ESI−)

0.021 [17]

CAP 50 mM NaAc 
buffer (pH 5.2)b/
DCM (Extrelutc)

Acquity UHPLC 
BEH C18 (50 × 2.1 
mm, 5.0 μm)

Gradient: 25% 
NH3 in 10% 
CAN/25% NH3 in 

ACN

LC-MS/MS 
(ESI−)

0.013 [18]

CAP Water/ACN, 
CHCl3

Purospher Star 
RP-18 (55 × 4.0 
mm, 3.0 μm)

Gradient: 0.15% 
FA/MeOH

LC-MS/MS 
(ESI−)

0.01 [19]

CAP Water/MIP-SPE Ascentis C18 (100 
× 2.1 mm, 3.0 μm)

Isocratic: 30% 
ACN in 10 mM 
NH

4
Ac (pH 6.7)

LC-MS/MS 
(ESI−)

0.03 [20]

CAP Water/
MWCN-SPE

Halo fused-core 
C18 (50 × 2.1 mm, 
2.7 μm)

Gradient: 0.1% 
FA/ACN

LC-MS/MS 
(ESI−)

0.008 [21]

CAP Water/EtAc Luna C18 100 Å 
(50 × 2.0 mm, 5.0 
μm)

Gradient: 2 mM 
NH

4
Ac/MeOH

LC-MS/MS 
(ESI−)

0.10 [22]

CAP and FF, 
FFA, TAP

1% NH3/Oasis 
HLB-SPE

Ascentis express 
phenyl-hexyl (100 
× 2.1 mm, 2.7 μm)

Gradient: 5 mM 
NH

4
Ac buffer 

(pH 5.0)/MeOH

UHPLC-MS/
MS (ESI−)

0.03 [23]

CAP Water/EtAC Luna C18 (150 × 
4.6 mm, 5.0 μm)

Gradient: Water/
ACN

LC-MS/MS 
(ESI−)

0.09 [24]

CAP and FF, TAP QuEChERS (1% 
AcOH in ACN)

LMA-MAA-
EDMA 
monolithicd (150 
mm × 250 μm)

Gradient: Water/
ACN-MeOH 
(90:10, v/v)

LC-MS/MS 
(ESI−)

0.045 [25]

aFF, florfenicol; FFA, florfenicol amine; TAP, thiamphenicol.
b An enzymatic hydrolysis was carried out to deconjugate CAF in the muscle sample included in the method scope.
cExtrelut (diatomaceous earth) was used to help the liquid-liquid extraction process.
dLMA-MAA-EDMA: poly(lauryl methacrylate-co-methacrylic acid-co-ethylene glycol dimethacrylate).

Table 3. Confirmatory methods for chloramphenicol (CAP).
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Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

AHD, AMOZ, 
AOZ, SEM

b/EtAc, 
Lichrolut 
EN-SPE

Symmetry 
Shield C18 (150 
× 2.1 mm, 3.5 
μm)

Gradient: 
0.025% AcOH/
ACN

LC-MS/MS 
(ESI+)

0.12–0.56 [39]

AHD, AMOZ, 
AOZ, SEM, Ft, 
Fz, Nt, Nz

100 mM HCl/
Oasis HLB-
SPEc, AF buffer 
to pH 6–7, 
Oasis HLB-SPE

Inertsil ODS3 
(150 × 2.0 mm, 
3.0 μm)

Gradient: 20 
mM AF buffer 
(pH 3.8)/ACN

LC-MS/MS 
(ESI+)

0.15–2.1 [40]

Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

LIN, TYL Na2CO3–

NaHCO3 

buffer (pH 9.0)/
C18-SPE

Zorbax C8 (150 
× 2.1 mm, 5.0 
μm)

Gradient: 0.1% 
TFA/0.1% TFA 
in ACN/MeOH

LC-MS (APCI+) 7–10 [31]

ERY, OLE, SPI, 
TILM, TYL

100 mM 
NaH2PO

4
 

buffer at pH 
8.0/Oasis 
HLB-SPE

YMC ODS-AQ 
S-3 120 Å 50 × 
2.0 mm

Gradient: 1% 
FA/water/ACN

(a) LC-MS 
(ESI+)
(b) LC-MS/MS 
(ESI+)

(a) <1
(b) 0.01–0.07

[32]

ERY, LIN, JOS, SPI, 
TILM, TYL

TRISb buffer 
(pH 10.5)/Oasis 
HLB-SPE

Synergi 
Hydro-RP (150 
× 2.0 mm, 4.0 
μm)

Gradient: 10 
mM NH

4
Ac 

(pH 3.5)/ACN

LC-MS/MS 
(ESI+)

0.24–2.10 [33]

TYL, TYLB, TYLC, 
TYLD

100 mM 
Na2CO3–

NaHCO3 

buffer (pH 9.0)/
Strata-X-SPE

Luna C18(2) 
100 Å (150 × 4.6 
mm, 5.0 μm)

Gradient: 1% 
FA/ACN/
MeOH

(a) LC-MS 
(ESI+)
(b) LC-DAD

(a) 2–3
(b) 49–57

[34]

ERY, NEO, OLE, 
SPI, TILM, TYL, 
TYLB

100 mM 
NaH2PO

4
 

buffer (pH 8.0)/
Oasis HLB-SPE

(a): YMC 
ODS-AQ S-3 120 
Å (50 × 2.0 mm)
(b): Acquity 
BEH C18 (100 × 
2.1 mm, 1.7 μm)

(a) Gradient:10 
mM NH

4
Ac/

ACN
(b) Gradient: 
Water/1% FA/
ACN

(a) LC-MS/MS 
(ESI+)
(b) UHPLC-
HRMS/MS 
(Q-TOF) (ESI+)

(a) 0.01–0.5
(b) 0.2–1.0

[35]

ERY, TYL 100 mM 
Na3PO

4
 (pH 

8.0)/C18-SPE

Gemini C18 110 
Å (50 × 2.0 mm, 
5.0 μm)

Isocratic: 
water/ACN 
(30:70, v/v)

LC-MS/MS 
(ESI+)

5.0–5.2 [36]

AIVT, AZI, CLA, 
ERY, JOS, SPI, 
TILM, TYL

Water/Oasis 
HLB-SPE

C18HCE (100 × 
2.1 mm, 5.0 μm) 
(home-made)

Gradient: 0.2% 
FA/0.2% FA in 
ACN

LC-MS/MS 
(ESI+)

0.01–0.5 [37]

aAIVT, acetylisovaleryltylosin (tylvalosin); AZI, azithromycin; CLA, clarithromycin; ERY, erythromycin; JOS, josamycin; 
LIN, lincomycin; NEO, neospiramycin; OLE, oleandomycin; SPI, spiramycin I; TILM, tilmicosin; TYL, tylosin A; TYLB, 
tylosin B; TYLC, tylosin C; TYLD, tylosin D.
bTRIS, tris(hydroxymethyl)aminomethane.

Table 4. Confirmatory methods for lincomycin and macrolides (MACs).
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Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

AHD, AMOZ, 
AOZ, SEM

10% NaCl/Oasis 
HLB-SPEc, 
(NaCl), hexane, 
EtAc

Inertsil ODS3 
(150 × 2.1 mm, 
3.5 μm)

Gradient: 10 
mM NH

4
Ac/

MeOH

LC-MS/MS 
(ESI+)

0.2 [41]

AHD, AMOZ, 
AOZ, SEM

b/hexane, EtAc Acquity 
UHPLC BEH 
C18 (100 × 2.1 
mm, 1.7 μm)

Gradient: 0.5 
mM NH

4
Ac/

MeOH

UHPLC-MS/MS 
(ESI+)

0.09–0.14 (CCα) [42]

AHD, AMG, 
AMOZ, AOZ, 
DNSH, NPIR, 
PSH, SEM and 
CAP

b/EtAc, Oasis 
HLB-SPE

Acquity 
UHPLC BEH 
C18 (50 × 2.1 
mm, 1.7 μm)

Gradient: 0.37% 
NH3 in 10 mM 
NH

4
Ac:MeOH 

(80:20, v/v)/
MeOH

UHPLC-HRMS/
MS (Q Exactive 
Plus) (ESI±)

0.05–2.3 [43]

AHD, AMOZ, 
AOZ, SC

b/EtAc, hexane Synergy 
Hydro-RP (150 
× 2.0 mm, 4.0 
μm)

Gradient: 
water:MeOH 
(80:20, v/v)/0.1% 
AcOH in MeOH

LC-MS/MS 
(ESI+)

0.22–0.57 [44]

AHD, AMOZ, 
AOZ, SEM and 
DMZ, RNZ

b/QuEChERS 
(ACN) without 
d-SPE

Zorbax Eclipse 
XDB-C18 (150 × 
4.6 mm, 5.0 μm)

Gradient: 5 mM 
AF buffer in 
water:MeOH 
(90:10, v/v) (pH 
3.0)/MeOH

LC-MS/MS 
(ESI+)

0.21–0.53 [45]

aAHD, nitrofurantoin metabolite; AMG, nitrovin metabolite; AMOZ, furaltadone metabolite; AOZ, furazolidone 
metabolite; DMZ, dimetridazole; DNSH, nifursol metabolite; Ft, furaltadone; Fz, furazolidone; Nt, nitrofurantoin; Nz, 
nitrofurazone; NPIR, nifurpirinol; PSH, nifuroxazid metabolite; RNZ, ronidazole; SEM, nitrofurazone metabolite.
bDerivatization with 2-NBA in HCl solution with subsequent neutralization.
cDerivatization with 2-NBA and HCl after the indicated purification step.

Table 5. Confirmatory methods for nitrofurans (NFs).

Compoundsa Extraction/

clean-up

Separation Equipment CCβ or  
LOD (μg/kg)

References

Column Mobile phase

DMZ, HMNNI, 
IPZ, IPZ-OH, 
MNZ, MNZ-OH, 
RNZ, TNZ, TRZb 

and CAP

Water/ACN 
(NaCl), hexane

Zorbax Eclipse 
Plus C18 (100 × 2.0 
mm, 1.8 μm)

Gradient: 0.1% 
AcOH/0.1% 
AcOH in ACN

LC-MS/MS 
(ESI ±)

0.13–2.0 [47]

DMZ, MNZ, 
RNZ

Water (NaHCO3)/
EtAc, Silica-SPE

Sunniest C18 (150 
× 2.0 mm, 3.0 μm)

Gradient: 
water/MeOH

LC-MS/MS 
(ESI+)

0.05–0.2 [48]

DMZ, HMNNI, 
IPZ, IPZ-OH, 
MNZ, MNZ-OH, 
RNZ

Water/QuEChERS 
(without d-SPE), 
Alumina-N-SPE

Pentafluorophenyl-
propyl-bonded 
silica (150 × 2.0 
mm, 3.0 μm)

Gradient: 
0.01% AcOH/
ACN

LC-MS/MS 
(ESI+)

0.03–0.15 [49]

DMZ, HMNNI, 
MNZ, MNZ-OH, 
RNZ

0.1% FA, 10 mM 
NH3 to pH 7.0/
Strata-SDBc-SPE

Kinetex XB C18 
(100 × 3.0 mm, 2.6 
μm)

Isocratic: 0.1% 
FA/MeOH 
(88:12, v/v)

LC-MS/MS 
(ESI+)

0.05–0.1 [50]
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Compoundsa Extraction/

clean-up

Separation Equipment CCβ or  
LOD (μg/kg)

References

Column Mobile phase

DMZ, HMMNI, 
IPZ, IPZ-OH, 
MNZ, MNZ-OH, 
RNZ, SCZ, TRZb

10 mM NH
4
Ac 

(pH 6.0)/MIP
Kinetex XB C18 
(150 × 2.1 mm, 2.6 
μm)

Gradient: 0.1% 
FA/0.1% FA in 
ACN

LC-MS/MS 
(ESI+)

0.18–0.51 [51]

aDMZ, dimetridazole; HMMNI, 2-hydroxymethyl-1-methyl-5-nitroimidazole; IPZ, ipronidazole; IPZ-OH, ipronidazole 
metabolite; MNZ, metronidazole; MNZ-OH, metronidazole metabolite; RNZ, ronidazole; TRZ, ternidazole; CAP, 
chloramphenicol.
bOther less common NMZs are included in the method scope.
cStyrene-divynilbenzene copolymer (RP-SPE).

Table 6. Confirmatory methods for nitroimidazoles (NMZs).

Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

(a) CIPRO, 
DANO, ENRO, 
MARBO, NOR, 
SARAb

(b) FLUME, 
NALI, OXO

(a) 2% AcOH in 
ACN, SCX-SPE
(b) ACN, 50 
mM Na2HPO

4
 

pH 11.0, 
SAX-SPEc

(a) Zorbax RX 
C8 (250 × 4.6 
mm, 5.0 μm)
(b) Kromasil 
C8 (250 × 3.2 
mm, 5.0 μm)

(a) Isocratic: 10 
mM Phosphate 
buffer (pH 3.0)/
ACN
(b) Isocratic: 
10 mM OA/
ACN/MeOH 
(60:30:10, 
v/v/v)

LC-FLD 5–50 [52]

CIPRO, DANO, 
DIFLO, ENRO, 
FLUME, MARBO, 
NALI, NOR, 
OXO, SARA

NaH2PO
4
/

Na2HPO
4
 

buffer (pH 6.3)/
hexane, Oasis 
HLB-SPE

XBridge MS 
C18 (100 × 2.1 
mm, 3.5 μm)

Gradient: 1% 
FA/ACN

LC-MS/MS 
(ESI+)

0.07–0.66 [53]

CIP, DAN, 
DIFLO, ENRO, 
NOR, SARAb

MacIlvaine 
buffer (pH 4.0) 
(Na2EDTA)/
Oasis 
HLB-SPE, 
MCAC-SPE

Inertsil ODS-4 
(150 × 4.6 mm, 
3.0 μm)

Isocratic: 1 mM 
SDS, 20 mM 
citrate buffer 
(pH 3.1)/ACN 
(70:30, v/v)

LC-FLD 0.33–4.4 [54]

CIPRO, DANO, 
DIFLO, ENRO, 
MARBO, SARAb

ACN/hexane WondaSil C18 
(150 × 4.6 mm, 
5.0 μm)

Isocratic: 1% 
FA/MeOH 
(71:29, v/v)

LC-DAD 0.4–19 [55]

CIPRO, DANO, 
DIFLO, ENRO, 
FLUME, MARBO, 
OXO

30 mM 
NaH2PO

4
 

buffer (pH 7.0)/
QuEChERS 
(5% FA in 
ACN)

Zorbax Eclipse 
Plus HHRD (50 
× 2.1 mm, 1.8 
μm)

Gradient: 
0.02% FA/ACN

UHPLC-MS/
MS (ESI+)

0.2–1.7 [56]

CIP, ENR, NOR Water, H2SO
4
 

to pH 1.0/
PS-MSLMd

Zorbax Eclipse 
XDB-C18 (150 
× 4.6 mm, 5.0 
μm)

Isocratic: 
MeOH/
ACN/0.34% 
PA, 0.6% TEAe 

(15:5:80, v/v)

LC-FLD 0.067–0.35 [57]
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Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

ENRO, FLUME, 
MARBO, OXO

50 mM SDS 
(pH 3.0)

Kromasil C18 
(150 × 4.6 mm, 
5.0 μm)

Isocratic: 50 
mM SDS, 10 
mM NaH2PO

4
, 

HCl to pH 
3.0/TEAe/1-
propanol 
(87:12.5:0.5, 
v/v/v)

LC-FLD 10–100 [58]

aCIPRO, ciprofloxacin; DANO, danofloxacin; DIFLO, difloxacin; ENRO, enrofloxacin; FLUME, flumequine; MARBO, 
marbofloxacin; NALI, nalidixic acid; NOR, norfloxacin; OXO, oxolinic acid; SARA, sarafloxacin.
bOther less common QNs are included in the method scope.
cSCX: strong cation exchange and SAX: strong anion exchange.
dPS-MSLM: phase separation-based magnetic-stirring salt-induced liquid-liquid microextraction method (LLE).
eTriethylamine.

Table 7. Confirmatory methods for quinolones (QNs).

Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

STR 10 mM HClO
4
 

(pH 2.0)/SCX-
SPE, C18-SPE

Hypersil BDS 
(100 × 4.0 mm, 
3.0 μm)

Isocratic: 10 
mM AHSb, 0.4 
mM, NQS in 
20% ACN (pH 
3.3)/ACN (97:3, 
v/v)

LC-FLD 
(post-column 
derivatization)

5 [59]

STR Water/
WCX-SPE

Zorbax C18 
(150 × 2.1 mm, 
5.0 μm)

Isocratic: 20 
mM HFBAc/
ACN (70:30, 
v/v)

LC-MS/MS (ESI+) 2 [60]

STR 0.1% PA/SCX-
SPE, C18-SPE

Hypersil ODS2 
(150 × 4.6 mm, 
5.0 μm)

Isocratic: 10 
mM AHSb, 
0.4 mM NQS 
(pH 3.3)/ACN 
(28:72, v/v)

LC-FLD 
(post-column 
derivatization)

5 [61]

STR, DSTR 50 mM AHSb, 
[25] mM 
Na3PO

4
 buffer 

to pH 2.0/
C18-SPE

Alltima C18 
(150 × 2.1 mm, 
5.0 μm)

Isocratic: 1.9 
mM PFPAd, 
[3].2 mM AF/
ACN (85:15, 
v/v)

LC-MS/MS (ESI+) <1–2 [62]

APR, AMI, 
DSTR, GEN, 
KAN, NEO, 
PAR, SPC, STP

Water/
WCX-SPE

ZIC®-HILIC, 
150 × 2.1 
mm, 3.5 μm, 
SeQuant AB

Gradient: 175 
mM NH

4
Ac 

(pH 4.5)/0.2% 
FA in ACN

LC-MS/MS (ESI+) 17–99 [63]

STR, DSTR KH2PO
4
-

Na2EDTA-
TCA buffer 
(pH 4.0), 
NaOH to 
pH 7.5/Oasis 
HLB-SPE

HILIC Atlantis 
(150 × 2.1 mm, 
3.0 μm)

Gradient: 
0.05% 
FA/0.05% FA in 
ACN

LC-MS/MS (ESI+) 19–20 [64]
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Compoundsa Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

DSTR, GEN 
SPC, STR

20 mM 
K2HPO

4
 buffer 

(pH 7.4)/
MIP-SPE

XAmide HILIC 
(150 × 4.6 mm, 
5.0 μm)

Isocratic: 20 
mM AF (pH 
3.0)/ACN 
(40:60, v/v)

LC-MS/MS (ESI+) 1.8–6.0 [65]

AMI, APR, 
DSTR, GEN, 
HYG, KAN, 
NEO, PAR, SIS, 
SPC, STR, TOB

Water/10 
mM NH

4
Ac, 

0.4 mM 
Na2EDTA, 
0.5% NaCl, 
5% TCA, 1–10 
M NaOH, 
WCX-SPE

Obelisc R 100 
Å, (100 × 2.1 
mm, 5.0 μm)

Gradient: 1% 
FA/1% FA in 
ACN

LC-MS/MS (ESI+) 1–12 [66]

DSTR, GEN, 
SPC, STR

5 mM K2HPO
4
 

buffer (pH 
11.0)/PVA-
Sil-SPEf 

(home-made 
sorbent)

TEg-Cys HILIC 
(150 × 3.0 mm, 
3.0 μm)

30 mM AF/
FA (99/1, v/v)/
ACN/water/FA 
(80:19:1, v/v/v)

LC-MS/MS (ESI+) 2.3–6.1 [67]

APR, DSTR, 
GEN, NEO, 
PAR, SPC, STR

50 Mm 
KH2PO

4
 buffer 

(pH 7.0)/
MIP-SPE

Bare fused-
silica capillary 
(90 cm × 50 μm 
× 375 μm)

200 mM FA/7 
mM NH3

CZE-IT-MSe 6–103 [68]

aAMI, amikacin; APR, apamycin; GEN, four isomers of gentamicin; HYG, hygromycin; KAN, kanamycin; NEO, 
neomycin; PAR, paromomycin; SIS, sisomycin; SPC, spectinomycin; TOB, tobramycin.
bAHS, sodium 1-heptanesulphonic acid (ion-pairing reagent).
cHFBA, heptafluorobutyric acid (ion-pairing reagent).
dPFPA, pentafluoropropionic acid (ion-pairing reagent).
eCZE-IT-MS: capillary zone electrophoresis coupled to ion trap mass spectrometry.
fPVA-Sil: polyvinyl alcohol-Silica.
gTE: thiol-ene.

Table 8. Confirmatory methods for streptomycin/dihydrostreptomycin (STR/DSTR).

Compoundsa
Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

STZ Acetone/1 M 
HCl, diethyl 
ether

μBondapack 
phenyl (300 × 
3.9 mm)

Isocratic: 
KH2PO4 buffer 
(pH 3.0) in 10% 
ACN

LC-UV 60 [69]

SCP, SDT, SDX, 
SDZ, SMP, SMR 
SMX, SMZ, SPD, 
STZ

10% TCA, 1 M 
Na2HPO

4
 to 

pH 6.5/ACN, 
DCM

Nucleosil C18 
HD (50 × 2.0 
mm, 3.0 μm)

Gradient: 
0.3% FA in 
water:ACN 
(95:5, v/v)/0.3% 
FA in ACN

LC-MS/MS 
(ESI+)

<10 [70]

SCP, SDT, SMP, 
SMR, SMX, SPDb

0.1% PA (pH 
2.0)/SCX-SPE, 
AHSc, PA to 
pH 6.0, Oasis 
HLB-SPE

Symmetry 
Shield C18 (150 
× 3.9 mm)

Isocratic: 10 mM 
KH2PO

4
 (pH 

3.5–4.0)/ACN 
(73:27, v/v)

LC-FLD (with 
derivatization)

2–5 [71]
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Compoundsa
Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

SCP, SDA, SDX, 
SGN SMP, SMR, 
SMT, SMZ SNL, 
SPD, STZb

2 M HCl. 5 M 
NaOH and 
1.2 M NaAc to 
pH 5.0/ACN, 
1% AcOH, 
SCX-SPE

Purospher Star 
RP-18 EC (150 
× 4.6 mm, 5.0 
μm)

Gradient: NaAc 
buffer:ACN 
(98:2, v/v)/NaAc 
buffer:ACN 
(68:32, v/v)

LC-FLD (with 
derivatization)

1–2 [72]

SCP, SDA, SDT, 
SDX, SMR, SMZ, 
SMP, SMM, 
SMX, SPD, STZb

0.1% PA (pH 
2.0)/SCX-SPE, 
AHSc, PA to 
pH 6.0, Oasis 
HLB-SPE

Atlantis dC18 
(150 × 2.1 mm, 
3.0 μm)

Gradient: 0.2% 
FA/0.2% FA in 
ACN

LC-MS/MS 
(ESI+)

0.5–6.0 [73]

SDM, SMX, STZb 

and 4 TCs, 4 
pesticides

2 M HCl/200 
mM Citric acid, 
20% NH3 to 

pH 4.0, Oasis 
HLB-SPE

InertSil ODS2 Gradient: 0.2% 
FA/0.2% FA in 
ACN

LC-MS/MS 
(ESI+)

0.2–6.2 [74]

SCP, SDA, SDX, 
SMM, SMP, 
SMR, SMT, 
SMX, SMZ, SNL, 
SPD, SQX, STZb 

and CAP

2 M HCl, 5% 
NaOH to 
pH 8.5/Oasis 
HLB-SPE

Xterra C18 (150 
× 2.1 mm, 3.5 
μm)

Gradient: 0.15% 
AcOH/0.15% 
AcOH in MeOH

LC-MS/MS 
(ESI+)

0.5–5 [75]

SDT, SDX, SMR, 
SMX, SMZ, SPD, 
STZ and DAP, 
TRM

2 M HCl, 300 
mM Citric acid, 
25% NH3 to 

pH 4.0/Oasis 
HLB-SPE

Xterra MS C18 
(150 × 2.1 mm, 
3.5 μm)

Gradient: 0.1% 
FA/0.1% FA in 
ACN

LC-MS/MS 
(ESI+)

0.3–0.9 [76]

SDT, SDX, SDZ, 
SGN, SMM, 
SMP, SMR, 
SMX, SMZ, SNL, 
SQX, STZb

300 mM Citric 
acid (pH 1.8)/
SCX-SPE

Symmetry C18 
(100 × 2.1 mm, 
3.5 μm)

Gradient: 0.2% 
FA/ACN

LC-MS/MS 
(ESI+)

2.2–17.4 [77]

SCP, SDX, SDZ, 
SGN, SMM, 
SMP, SMR, 
SMX, SMZ, SQX, 
SSZ STZb and 
DAP, TRM

100 mM AcOH 
(pH 5.0)/
acetone:DCM 
(50/50, v/v)

Zorbax XDB-
C18 (75 × 4.6 
mm, 3.5 μm)

Gradient: 5 
mM AF (pH 
3.5)/5 mM AF in 
MeOH

LC-MS/MS 
(ESI+)

1.5–5.3 [78]

aDAP, dapsone; SCP, sulphachloropyridazine; SDA, sulphadiazine; SDT, sulphadimethoxine; SDX, sulphadoxine; 
SGN, sulphaguanidine; SMM, sulphamonomethoxine; SMR, sulphamerazine; SMP, sulphamethoxypyridazine; SMX, 
sulphamethoxazole; SMZ, sulphamethazine; SNL, sulphanilamide; SPD, sulphapyridine; SQX, sulphaquinoxaline; STZ, 
sulphathiazole; TRM, trimethoprim.
bAnd less common SAs are included in the method scope.
cAHS, sodium 1-heptanesulphonic acid (ion-pairing reagent).

Table 9. Confirmatory methods for sulphonamides (SAs).
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Compoundsa Extraction/

clean-up
Separation Equipment CCβ or LOD 

(µg/kg)

References

Column Mobile phase

CTC, DC, 
MINO, MTC, 
OTC, TC

MacIlvaine 
buffer 
(Na2EDTA) 
(pH 4.0)/
phenyl-SPE

Discovery 
RP-Amide C16 
(5.0 μm)

Gradient: 
0.09% OA 
(pH 3.0)/ACN

LC-DAD 15–30 [80]

CTC, DC, OTC, 
TC

50 mM oxalate 
buffer (pH 4.0)/
Oasis HLB-SPE

Atlantis dC18 
(150 × 2.1 mm, 
3 μm)

Gradient: 
1% FA/
ACN:MeOH 
(50:50, v/v)

LC-MS/MS 
(ESI+)

3.3 [81]

CTC, OTC, TC MacIlvaine 
buffer 
(Na2EDTA) (pH 
4.0)/hexane, 
PLS-2-SPEb, 
MCAC-SPE

Hydrospher 
C18 HS-301–3 
(100 × 4.6 mm, 
3.0 μm)

Isocratic: 1 
M Imidazole 
buffer/MeOH 
(82:18, v/v)

LC-FLD 5–9 [82]

CTC, OTC, TC Citrate buffer, 
(Na2EDTA)/
PLS-2-SPEb

Tsk-gel ODS-
80Ts (150 × 4.6 
mm)

Isocratic: 1 
M Imidazole 
buffer/MeOH 
(75:25, v/v)

LC-DAD 10–20 [83]

CTC, DC, OTC, 
TC

5% HCl/
MIP-SPE

Restek C18 
(150 × 2.1 mm, 
5.0 μm)

Isocratic: 100 
mM OA/
ACN/MeOH 
(70:20:10, 
v/v/v)

LC-MS/MS 
(ESI+)

0.1–0.3 [84]

CTC, OTC, TC ACN/SPE 
(home-made 
sorbent)

ShodexRSpak 
DE-613 (150 
× 6.0 mm)

Isocratic: 0.05% 
TFA/ACN 
(60:40, v/v)

LC-MS/MS 
(ESI+)

3–20 [85]

CTC, OTC, TC 50 mM NH
4
Ac 

buffer (pH 5.5)/
MCAC-SPE, 
Oasis HLB-SPE

Waters Phenyl 
(100 × 2.1 mm, 
3.5 μm)

Gradient: 0.1% 
FA/0.1% FA in 
ACN:MeOH 
(50:50, v/v)

LC-MS/MS 
(ESI+)

7.2–7.7 [86]

CTC, DC, OTC, 
TC

MacIlvaine 
buffer 
(Na2EDTA) 
(pH 4.0)/
Strata-X-SPE

Symmetry C18 
(150 × 2.1 mm, 
3.5 μm)

Gradient: 
0.05% 
AcOH/0.05% 
AcOH in ACN

LC-MS/MS 
(ESI+)

5.5–9.2 [87]

CTC, DC, MTC, 
OTC, TC

Water/chitosan-
modified 
graphitized 
MWCN

SB-C18 (50 × 
4.6 mm, 5 μm)

Gradient: 0.1% 
FA/MeOH

LC-HRMS 
(Q-TOF) (ESI+)

0.61–10 [88]

aCTC, chlortetracycline; DC, doxycycline; DMC, demeclocycline; OTC, oxytetracycline; MINO, minocycline; MTC, 
methacycline; TC, tetracycline.
bPLS-2, polystyrene-divinylbenzene polymer (RP-SPE).

Table 10. Confirmatory methods for tetracyclines (TCs).
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Compounds Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

1 QN, 16 SAs, 3 
TCs (20)

2 M HCl, 300 
mM Citric acid/
Oasis HLB-SPE

Nucleosil 
100–5, C18 HD 
(50 × 2.0 mm, 
5 μm)

Gradient: 
0.3% FA in 
Water:ACN 
(95:5, v/v)/0.3% 
FA in can

LC-MS/MS 
(ESI+)

0.4–11 [89]

2 amphenicols, 
3 AGs, 8 β-lactams, 
7 MACs, 17 SAs, 
5 TCs (42)

(1) ACN; (2) 
10% TCA/
ACN, 12.5% 
NH3; (3) NFPA/
ACN, 12.5% 
NH3; (4) Water, 
1 M Na2HPO

4
 

(pH 12.0)/
ACNa

Zorbax SB-C18 
(50 × 2.1 mm, 
1.8 μm)

Gradient: 1 
mM NFPAb 

in 0.5% FA/
ACN:MeOH 
(50:50, v/v)

LC-MS/MS 
(ESI+)

29–81 [90]

CAP, lincomycin, 
MACs, 5 QNs 1 
SA, 4 TCs and 
others (17)

Water/
Strata-X-SPE

Polar-RP 
Synergi (50 × 
2.0 mm, 4 μm)

Gradient: 
0.1%FA/0.1% 
FA in ACN

LC-MS/MS 
(ESI±)

0.13–6.7 [29]

4 MACs, 5 QNs, 4 
SAs, 4 TCs (17)

100 mM 
Na2EDTA (pH 
4.0), Oasis 
HLB-SPE

Acquity 
UHPLC BEH 
C18 (100 × 2.1 
mm, 1.7 μm)

Gradient: 
0.05% FA/
MeOH

UHPLC-MS/
MS (ESI+)

0.1–1.0 [91]

12 β-lactams, 23 
MACs, 8 NMZs, 16 
QNs, 24 SAs, 6 TCs 
and others (112)

50 mM 
Succinate 
buffer (pH 5.0)/
ACN, 12.5% 
NH3 to pH 6.5, 
water, Evolute 
ABN-SPE

Kinetex C18 
(150 × 2.1 mm, 
2.6 μm)

Gradient: 
0.3% FA in 
Water:ACN 
(95:5, 
v/v)/0.3% FA 
in water:ACN 
(5:95, v/v)

LC-HRMS 
(Exactive) 
(ESI+)

Not providedc [92]

3 lincosamides, 10 
MACs, 13 QNs, 7 
TCs, TRMd (36)

MacIlvaine 
buffer 
(Na2EDTA) 
(pH 4.0)/Oasis 
HLB-SPE

Aqua (150 × 2.0 
mm, 3.0 μm)

Gradient: 
0.2%FA/0.2% 
FA in ACN

LC-MS/MS 
(ESI+)

9.4–20 [93]

2 amphenicols, 6 
MACs, 4 NMZs, 
5 QNs, 12 SAs, 
1 TC and others 
(391)

Water/1% FA in 
ACN

Hypersil 
GOLD aQ C18 
(100 × 2.1 mm, 
1.7 μm)

Gradient: 4 
mM AF in 0.1% 
FA/4 mM AF, 
0.1% FA in 
MeOH

UHPLC-HRMS 
(Exactive) 
(ESI±)

10–50 [94]

2 amphenicols, 6 
MACs, 3 QNs, 13 
SAs and others (31)

Water 
(Na2EDTA)/
QuEChERS (1% 
AcOH in ACN) 
without d-SPE

Acquity 
UHPLC BEH 
C18 (100 × 2.1 
mm, 1.7 μm)

Gradient: 0.1% 
FA, 10 mM AF/
ACN

UHPLC-
HRMS/MS 
(Q-TOF) (ESI+)

1–20 [95]

9 NMZs, 8 QNs, 10 
SAs (27)

2 M HCl, 
water/hexane, 
SCX-SPE

Poroshell 120 
EC-C18 (100 × 
3.0 mm, 2.7 μm)

Gradient: 0.1% 
FA/0.1% FA in 
ACN

LC-MS/MS 
(ESI+)

0.19–2.5 [96]

CAP, 3 MACs, 
7 SAs, other 
drugs (2) and 79 
pesticides (92)

MacIlvaine 
buffer (pH 4.0)/
ACN, Florisil 
(d-SPE)

Acquity 
UHPLC BEH 
C18 (100 × 2.1 
mm, 1.7 μm)

Gradient: 5 
mM AF in 0.1% 
FA/5 mM AF, 
0.1% FA in 
MeOH

LC-MS/MS 
(ESI±)

0.12–2.8 [97]
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2. Honeybee diseases

Honeybees are affected by fungal, bacterial, viral (Thai Sac brood) and acarine (Varroa) 
 diseases. Antibiotics are generally used to fight bacterial and fungal diseases such as American 
foulbrood, European foulbrood and nosemosis [3].

American foulbrood is by far the most virulent brood disease known in honeybees. The  disease 
is caused by the spore-forming bacterium, Paenibacillus larvae. Larvae up to 3 days old become 
infected by ingesting spores that are present in their food. Spores germinate in the gut of the 
larva and the vegetative form of the bacteria begins to grow, taking its nourishment from 
the larva. Infected larvae normally die after their cell is sealed. The vegetative form of the 
bacterium, before to die, produces many millions of spores which are extremely resistant 
to desiccation and can remain viable for more than 40 years in honey and beekeeping equip-
ment. Because of this persistence, in most countries official apiary inspectors are required to 
burn all infected colonies. Other countries (e.g. USA, Canada, and Argentina) allow the use 
of antibiotics, such as oxytetracycline and tylosin, to keep the disease in control. However, 
 antibiotics are not a cure or a treatment of the infection since they affect only the vegetative 
stage of American foulbrood, inhibiting its development in the gut of the larvae. This may 
prevent the rapid diffusion within a colony.

European foulbrood is closely related to American foulbrood in symptomatology, and until 
1906, these two diseases were not differentiated. The causative organism of European foul-
brood is the bacterium Melissococcus plutonius, which does not produce spores, and therefore, 
this disease is considered less severe than American foulbrood. European foulbrood occurs 
primarily in spring when numbers of M. plutonius reach their peak. The bacterium is ingested 
by honey bee larvae and it replicates in mid-gut. If the bacteria out-compete the larva, the 
larva will die before the cell is capped. Alternatively, the bee may survive until adulthood if 
the larvae has sufficient food resources. Some antimicrobials, for example, oxytetracycline, 
have been demonstrated to be an effective treatment.

Compounds Extraction/

clean-up

Separation Equipment CCβ or LOD 
(µg/kg)

References

Column Mobile phase

3 AGs, LINe, 5 
MACs, 6 SAs, 8 
TCs (22)

Water, 2 M, 
HCl in MeOH, 
Na

4
EDTA to 

pH 2.0/PSA 
(d-SPE)

Zorbax SB-C18 
(100 × 2.1 mm, 
3.5 μm)

Gradient: 100 
mM HFBAf/
water/ACN

LC-MS/MS 
(ESI+)

7–33 [98]

aFour subsequent LLE steps were carried out.
bNFPA, nonafluoropentanoic acid (ion-pairing reagent).
cCCβs for permitted antibiotics (lincomycin, MACs, QNs, SAs, TCs) were provided considering a hypothetical MRL of 
100 or 200 μg/kg. For banned substances (NMZs), CCβs were in the range 1.2–2.6 μg/kg.
dTRM, trimethoprim.
eLIN, lincomycin.
fHFBA, heptafluorobutyric acid (ion-pairing reagent).

Table 11. Multiclass confirmatory methods.
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Nosemosis, caused by the fungus Nosema apis or Nosema ceranae, is historically considered 
the most serious disease of adult bees. Infection is acquired when spores are swallowed by 
bees and infect the epithelial cells of the hind gut, giving rise rapidly to large numbers of 
spores and impairing the digestion of pollen which shortens the life of honeybees. N. cera-

nae was originally a parasite of the Asian honeybee (Apis cerana), but now is widespread in 
some European regions, too. In recent years, the disappearance of adult honeybees, known 
as colony collapse disorder, has been devastating a great number of beehives worldwide. 
This problem has caused serious damage to apiculture and also to agricultural activities that 
use honeybees as pollinators. Among the possible causes of the disappearance of honeybees, 
nosemosis has been reported as a primary candidate.

3. Methods for the determination of drug residues in honey: 

sample treatment

3.1. Matrix-analyte

Sample treatment is fundamental in the residue analysis of food, since the achievement of low 
detection limits (some parts per billions) and suitable selectivity involves extensive purification 
of generally complex food matrices. The sample preparation process consists of the extraction 
followed by one or more purification steps. Rarely, the purification step is omitted. To decide 
the sample treatment strategy, main aspects have to be considered: the characteristics of both 
sample matrix and he physico-chemical properties of analyte(s) have to be taken into account, 
together with, in addition, the already developed procedures (literature searching).

Because of the hydrophilic nature of honey, frequently, the extraction coincides with the 
sample dissolution in pure water or in acidified aqueous solutions or in buffers. After that, 
besides the traditional liquid-liquid extraction (LLE) and solid-phase extraction (SPE) puri-
fications, more recent clean-up methodologies have been applied such as quick, easy, cheap, 
effective, rugged and safe (QuEChERS), molecularly imprinted polymers (MIPs) and multi-
walled carbon nanotubes (MWCNs). These two latter are particular kinds of SPE, whereas 
QuEChERS methodology is a variation of LLE, followed by a dispersive solid-phase extrac-
tion (d-SPE) step. It is important to keep in mind that, despite the proliferation of dozens of 
new purification approaches with various acronyms, essentially all these fall into LLE or SPE 
techniques. Some additional examples are microextraction by packed sorbent (MEPS), stir 
bar sorption extraction (SBSE), dispersive liquid-liquid microextraction (DLLME) and phase 
separation-based magnetic-stirring salt-induced liquid-liquid microextraction (PS-MSLM). 
These recent methodologies give also evidence of the current trend towards “micro”, that is, 
towards a lower consumption of reagents and materials during the sample treatment. Less 
common and expensive purification systems such as turbo-flow chromatography are not 
here considered.

Dissociation constants (pK
a
s) and lipophilicity are key parameters to understand the behav-

iour of drugs, and therefore, to perform appropriate extraction and purification strategies, 
physico-chemical properties of a drug molecule are described by its pK

a
(s) and its polarity 

pK
a
 (dissociation constant) is a measure of the strength of an acid or a base. It determines the 
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charge on a molecule at any given pH. The lipophilicity polarity is measured by the parti-
tion coefficient, P, or better, by the distribution coefficient, D, which are the key parameters 
to understand the behaviour of molecules, and therefore, to design appropriate purification 
strategies during the method development, P is the ratio of the concentration of a compound 
in octanol to its concentration in water P (Eq. (1)):

  P =   
 [ drug ]  

octanol  
 _________ 

 [ drug ]  water  
    (1)

P is generally expressed as logarithm of the log P. Log P is a constant for the molecules under 
its neutral form, and its value is a measure of lipophilicity or hydrophobicity. On the other 
hand, the distribution coefficient (D, or better, its logarithm, log D) takes into account all 
neutral and charged forms of the molecule. Therefore, for ionizable solutes, such as drugs, the 
pH-dependant lipophilicity descriptor, that is, the distribution coefficient (D), is more appro-

priate. D is the ratio of the sum of the concentrations of all forms of the compound (ionized 
plus un-ionized) in each of the two phases, octanol and water, (Eq. (2)):

  D =   
 [ drug  molecule ]  

octanol  
  ___________________________   

 [ drug  molecule ]  water   +  [ drug  ion ]  water  
      (2)

Roughly, when log D < 0, the molecule is polar (hydrophilic) and vice versa. Because the 
charged forms hardly enter the octanol phase, this distribution varies with pH. In the pH region 
where the molecule is mostly unionized, log D = log P. Acids are neutral when protonated and 
negatively charged (ionized) when deprotonated. Bases are neutral when deprotonated and 
positively charged (ionized) when protonated. Therefore, the log D of a compound is strongly 
influenced by its acid-base dissociation constant(s), pK

a
. However, log D values cannot furnish 

precise information about the ionization status of the compound mainly because frequently 
more than one acidic or basic centre can be present in its structure. Only the knowledge of the 
pK

a
s allows the understanding of the predominant forms at the various pH values. In Figures 

1–3, the plots of log D versus pH of one representative compound per class are shown. These 
plots were obtained applying the MoKa® package (Molecular Discovery Ltd.) [13]. This soft-

ware package is able to predict also the pK
a
s. Ranges of pHs increasing log D (lipophilicity) 

can favour RP-SPE and LLE purification strategies, which are based on the analyte transfer 
from a more polar medium (honey solution) to a less polar one. On the other hand, selective 
purifications such as ion-exchange SPE are enabled when the analytes are in their ionized form 
and, therefore, in pH intervals where log D values are lower (higher hydrophilicity).

3.2. Purification

Liquid-liquid extraction (LLE) is one of the first sample preparation approaches and contin-

ues to be widely used. LLE is based on the transfer of an analyte from the aqueous sample 
to a water-immiscible solvent based on its distribution coefficient, D. The water-immiscible 
solvents can be ethyl acetate, dichloromethane and chloroform. Nevertheless, some short-
comings, such as emulsion formation, the use of relatively large sample volumes and toxic 
organic solvents, make the traditional LLE (relatively) expensive and environmentally 
harmful. To avoid emulsion formation, supported liquid extraction (SLE) can be applied. 
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Figure 1. Log D versus pH for chloramphenicol (CAP), fumagillin, lincomycin and tylosin A (MAC).

Figure 2. Log D versus pH for AOZ, derivatized AOZ (NBAOZ), metronidazole (NMZ) and enrofloxacin (QN).
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Its principle is simple: a chemically inert, high surface area support, highly purified, graded 
diatomaceous earth (Extrelut®, Hydromatrix®, Celite®, etc.) serves as a stationary vehicle for 
the aqueous phase of the liquid-liquid extraction experiment. The aqueous-based sample 
(e.g. diluted honey) is added to the dry sorbent and allowed to wet the diatomaceous earth. 
A small volume of immiscible organic extraction solvent is then added and allowed to 
percolate by gravity through the supported aqueous phase. Because the aqueous sample 
has been widely dispersed throughout the solid support, the organic solvent has intimate 
contact with the thin film of aqueous phase and rapid extraction (equilibration) occurs.

Even today, probably, solid-phase extraction (SPE) is the most used sample purification tool 
in trace analysis. This technique was developed in the mid-1970s as an alternative to LLE. The 
degree of selectivity of SPE technique can be very different, depending on the attractive forces 
between the analytes and the functional groups on the sorbent surface. SPE sorbents are most 
commonly categorized by the nature of their primary interaction or retention mechanism with 
the analyte(s) of interest. The sorbent can interact with analytes by hydrophobic (non-polar/
non-polar), hydrophilic (polar-polar, hydrogen bonding, dipole-dipole, π-π interactions) and 
cationic-anionic interactions. The most common SPE sorbents packing can be classified into 
non-polar phases (reversed phases—RP), polar phases (normal phases—NP), ion-exchange 
and immunoaffinity adsorbents.

Figure 3. Log D versus pH for flumequine (QN), sulfathiazole (SA), streptomycin (STR) and tetracycline (TC).
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Non-polar sorbents are used under RP chromatography conditions and are suitable for the 
extraction of hydrophobic or polar organic analytes from aqueous matrices. Accordingly, 
reversed phase is the most used SPE sorbent type to purify honey, which is a water-solu-
ble matrix. These sorbents comprise alkyl silica and polymer-based materials. Alkyl silica 
sorbents are manufactured by bonding alkyl or aryl functional groups, such as octyl (C8), 
octadecyl (C18) and phenyl (Ph) to the silica surface. It should be noted that in SPE, the inter-
actions described above are not found in pure form, but in combination. For example, C18 
silica-based sorbents are non-polar sorbent, but it still possess free silanol groups, which can 
produce hydrophilic secondary interactions. The retention of analytes under RP conditions is 
due primarily to the van der Waals attractive forces between the carbon-hydrogen bonds in the 
analytes and the functional groups on the silica surface. The elution of adsorbed compounds 
is generally made by using a non-polar solvent (compared to water) to disrupt the forces that 
bind the compound to the sorbent. However, silica-based bond phases contain non-uncapped 
silanols, which can cause the strongly binding of some group of compounds (i.e. tetracy-
clines), and in addition, they can be used only in a limited pH range (2–8). Currently, silica 
materials have been more and more replaced by polymeric sorbents. The macroporous wetta-
ble hydrophilic-lipophilic balance (HLB) polymeric sorbent (divinylbenzene-N-vinylpyrrol-
idone) was at first introduced by Waters Company (Oasis HLB). Later, other manufacturers 
commercialized similar reversed-phase proprietary polymeric sorbents such as Strata-X 
(surface-modified styrene-divinylbenzene; Phenomenex), LiChrolut EN (highly cross-linked 
polystyrene-divinylbenzene; Merck, Darmstadt, Germany) and Evolute ABN (cross-linked 
polystyrene-divinylbenzene functionalized with oligomeric hydroxyl groups; Biotage). These 
cartridges have been widely applied in honey purification of almost all antibiotic classes.

The intrinsic honey characteristics undoubtedly favour the wide application of RP-SPE puri-
fication approaches since NP-SPE is more suitable to isolate a polar analyte in a mid- to non-
polar matrix (acetone, chlorinated solvents, hexane, etc). The most common polar stationary 
phases are silica, alumina and florisil. Retention of an analyte under NP conditions is primar-
ily due to interactions between polar functional groups of the analyte and polar groups on the 
sorbent surface (hydrogen bonding and π-π interactions, among others). The passing of a sol-
vent that disrupts the binding mechanism, usually a solvent that is more polar than the sample 
matrix, allows the elution of the adsorbed compounds. To the best of our knowledge, examples 
of NP-SPE purification applied to determination of veterinary drug residues in honey are lim-

ited to nitroimidazole family (Table 6). This is probably why nitroimidazoles are very polar 
compounds. The application of this kind of sorbents generally involves a  preliminary liquid-
liquid extraction step to transfer the analytes from the aqueous phase (solubilized honey) to 
an organic phase (non-polar matrix) which is then loaded onto the cartridge.

Due to their selectivity, ion-exchange SPE sorbents can be generally used only in single-res-
idue or single-class procedures. These sorbents are very efficient for extraction of charged 
analytes, such as acidic and basic compounds, from aqueous or non-polar organic samples. 
Ion-exchange phases are comprised of positively (aliphatic quaternary amine, aminopropyl) 
or negatively (aliphatic sulphonic acid, aliphatic carboxylic acid) charged groups. Porous 
polymer, ion-exchange resins have a higher exchange capacity and a wider pH operating 
range than silica-based materials. Ion-exchange sorbents are usually classified as weak or 
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strong, depending on the identity of the ionic group and whether its charge is independent 
of the sample pH (strong ion exchanger) or can be manipulated by changing pH (weak ion 
exchanger). Antibiotic substances have frequently basic functional groups, and therefore, the 
application of both strong cation exchange and weak cation exchange has been reported also 
in honey, mainly for the determination of streptomycin/dihydrostreptomycin (Table 8) and 
sulphonamides (Table 9). Finally, the immunoaffinity chromatography is a SPE technique, 
based on very selective antigen-antibody interactions (immunosorbents); examples of its 
application to purify honey have been reported, too.

In some cases, both liquid-liquid extraction and solid-phase extraction can be used in an 
“opposite manner”, that is, solubilizing or retaining the interfering substances rather than the 
analytes. An important example in antibiotic analysis is the so-called defatting to purify food 
extracts in water-miscible solvents: the added water-immiscible solvent (generally hexane) 
does not solubilize the analytes of interest, but the highly lipophilic interfering substances 
(fats), and therefore, it is discarded. Analogously, in the “non-retentive” SPE the sorbent has 
no affinity for the analytes, but for the sample contaminants. The solid phase is simply used to 
“filter” the sample: analyte passes through the column without being retained, while (part of) 
the contaminants are retained. This kind of extraction is generally applied when the analyte 
is highly soluble in the sample matrix (or in the dilution solvent), and therefore, it cannot be 
partitioned out onto a solid sorbent (retentive SPE) or an immiscible solvent (LLE).

Among the relatively modern purification approaches, it may be worthwhile to describe the 
QuEChERS, molecularly imprinted polymers (MIPs) and multi-walled carbon nanotubes 
(MWCNs) methods. The QuEChERS approach has become particularly popular for the mul-
tiresidue analysis of pesticides in various food matrices, and it generally consists of two steps: 
first, the homogenized sample is extracted and partitioned using an acetonitrile and salt solu-
tion (MgSO

4
 and NaCl), and then, an aliquot of the supernatant is cleaned using a dispersive 

solid-phase extraction (d-SPE) technique. Dispersive SPE is a “non-retentive” SPE, because 
the matrix co-extractives are adsorbed onto the sorbent, while leaving analytes of interest 
in the solvent. In some applications of QuEChERS, the second step (d-SPE purification) can 
be omitted. MIP sorbents are highly cross-linked polymers with a predetermined selectivity 
towards a single analyte or group of structurally related analytes. This selectivity is obtained 
during the synthesis of the polymer by using a template molecule to form cavities with spe-
cific shape. The process usually involves initiating the polymerization of monomers in the 
presence of the template molecule that is extracted afterwards, thus leaving complementary 
cavities behind. Due to the high selectivity of these sorbents, they generally allow for lower 
detection limits. In recent years, multi-walled carbon nanotubes, a new kind of carbon mate-
rial, have attracted much interest that is directed towards the development of solid-phase 
extraction adsorbents. The MWCNs were promising sorbents because of the larger specific 
area and the dramatic hydrophobic characteristic of the surface. The adsorption mechanisms 
involve weak interactions (mainly π-π stacking, van der Waals and electrostatic forces), facili-
tating the adsorption of analytes in a selective and reproducible manner.

To conclude, the current trends in food sample preparation involve the following issues: the 
miniaturization of the equipment for sample preparation (micro techniques); the decrease 
in the amount of sample to be analysed; the reduction in the use of organic solvents; the 
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development of multiclass procedures; and the development of automated methods for the 
preconcentration. All these strategies aim at the reduction in the employed reagents/materials 
and at the increase in the analysis throughput.

4. Methods for the determination of drug residues in honey: analytical 

techniques

Until early 2000s, LC-UV-Vis and LC-FLD were the most used equipments to detect resi-
dues in food. UV-Vis detectors measure solute analytes by their absorbance in the ultraviolet 
or visible region. A UV detector employs a deuterium discharge lamp (D2 lamp) as a light 
source, with the wavelength of its light ranging from 190 to 380 nm. If substances are to be 
detected at longer wavelengths, that is, in the visible region (380–700 nm), a UV-VIS detector 
is used with an additional tungsten lamp (W lamp). Nowadays, photodiode arrays and DAD 
(semiconductor devices) have replaced UV-Vis detectors, and its use is mandatory to defini-
tively confirm the presence of residues of permitted veterinary drugs in food [6]. A DAD 
detects the absorption in UV to VIS region. While a UV-VIS detector has only one sample-side 
light-receiving section, a DAD allows the acquisition of full wavelength spectrum at one time 
thanks to multiple photodiode arrays. Spectra are measured at regular intervals (one second 
or less) during the LC separation with continuous eluate delivery. Therefore, to identify a 
compound, in addition to the retention time, DAD enables the comparison between the spec-
trum of the authentic standard and of the analyte. It is important to underline that according 
to Commission Decision 2002/657/EC, only the coupling between LC and DAD (not between 
LC and UV-Vis) allows the definitive confirmation of residues of permitted  substances in food.

Fluorescence detectors have greater sensitivity and selectivity over the UV-Vis ones. This is an 
advantage for the measurement of specific fluorescent species in samples; however, only about 
15% of all compounds have a natural fluorescence. Compounds having specific functional 
groups are excited by shorter wavelength energy and emit higher wavelength radiation. This 
phenomenon is called fluorescence. Generally, the presence of aromatic conjugated pi-electrons 
produces the most intense fluorescent signal. Most unsubstituted aromatic hydrocarbons fluo-
resce with quantum yield increasing with the number of rings, their degree of condensation and 
their structural rigidity. In addition, aliphatic and alicyclic compounds with carbonyl groups and 
substances with highly conjugated double bonds fluoresce, but usually to a lesser extent. Among 
veterinary drugs, quinolones possess native fluorescence; some other antibiotic classes can be 
efficiently derivatized to give fluorescent compounds (e.g. sulphonamides and aminoglycosides).

For the analysis of residues in food, nowadays, LC-MS is the standard internationally 
accepted technology already available in most laboratories that is capable of providing 
structural information about the analytes. Different mass spectrometer platforms have been 
successfully employed for the analysis of veterinary drugs in honey [14]. Since early 2000s, 
triple quadrupole mass spectrometer (LC-MS/MS) platform has been introduced in routine 
worldwide laboratories, and at present, this MS technology is the gold standard for routine 
analysis of complex sample extracts. The LC-MS/MS, also known as LC-QqQ, is a tandem MS 
technique in which the first and third quadrupoles act as mass filters and the second, a radio-
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frequency-only quadrupole, fragments the analyte through interaction with a collision gas. 
The most used acquisition mode is multiple reaction monitoring (MRM). Increased selectiv-
ity, improved signal-to-noise ratio (S/N), lower limits of quantitation, wider linear range and 
improved accuracy are some of the benefits of this technique. LC-MS/MS instrumentation 
tends to give better quantitative precision and improved sensitivity than alternative configu-
rations, making it a superior choice for routine analysis of specific targeted contaminants.

An alternative to LC-MS/MS system is the coupling of liquid chromatography with high-reso-
lution mass spectrometry (LC-HRMS). At the beginning, these analysers were mainly used for 
research purposes, but after 2007 they started to be applied in routine analysis, too. With HRMS 
analysers, full-scan spectra are continuously obtained throughout the analytical run allowing for 
exhaustive qualitative post-acquisition analysis. There are two technologies of high-resolution 
mass spectrometry: time-of-flight (TOF) and orbitrap. However, single-stage high-resolution 
mass spectrometry demonstrated to not be suitable for the confirmation of residues at very low 
concentrations in highly complex matrices such as honey. More recently, hybrid platforms have 
been available at the bench level such as Q-TOF and Q-Orbitrap  combining a quadrupole with 
an accurate mass analyser. These configurations provide exceptional selectivity and sensitivity 
over single-stage equipment, and they are increasingly applied in residues analysis of food.

With regard to the chromatographic separation, although the coupling between gas chromatog-
raphy and mass spectrometry (GC-MS) has been realized before LC-MS, gas chromatography is 
rarely used for the determination of antibiotics, due to their polar nature, low volatility and ther-
mal instability. Therefore, high-performance liquid chromatography (HPLC) is the technique 
of choice for antibiotic analysis. Since its introduction in 1970s, HPLC progressively improved 
mainly thanks to the evolution of packing materials used to carry out the separation. Columns 
packed with 10 and 5 μm fully porous particles dominated the field for nearly thirty years (1975–
2000). In 2004, a great advance in instrumentation and column technology was made achieving 
very significant increases in resolution, speed and sensitivity. Columns with smaller particles 
(sub 2-μm) and instrumentation able to deliver mobile phase at 15,000 psi (1000 bar) allowed the 
achievement of a new level of performance. This new step of HPLC is known as UHPLC tech-
nology. In 2007, LC columns with core-shell (superficially porous) particles were introduced. 
This new generation of microspheres provides the same high efficiency of sub 2-μm UHPLC 
totally porous particles, but with lower backpressures. The first commercially available core-
shell sorbent was the Halo® from Advanced Material Technologies. Currently, the most applied 
core-shell columns are Kinetex® (Phenomenex), Poroshell® (Agilent), Accucore® (Thermo Fisher 
Scientific), Ascentis Express® (Supelco), Cortecs® (Waters) and Nucleoshell® (Macherey Nagel). 
Many of these have been used to determine residues in honey (see Tables 3–11).

5. Overview of methods for the determination of drug residues in honey

In the following paragraphs for each compound or class of compounds, an overview of the 
published confirmatory methods for the determination of residues in honey is given in Tables 

3–11. Although widely applied in routine laboratories as screening methods, procedures based 
on bioanalytical techniques such as immunoenzymatic or receptor tests are not considered.
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In Tables 3–11, for each reviewed procedure, the method limits (CCβs or LODs) are reported. 
Method limits are generally estimated by the LOD parameter, but, unfortunately, Commission 
Decision 2002/657/EC [6] introduced a different terminology, that is, decision limit (CCα) and detec-
tion capability (CCβ). Although the estimation of method limits is one of the most problematic topics 
of analytical chemistry [15], from a theoretical point of view, LOD and CCβ (for banned substances) 
are essentially the same parameter taking into account of both alpha-error (false-positive rate) and 
beta-error (false-negative rate) [16]. In the relevant column of the tables, CCβs are reported, if avail-
able, or, alternately, LODs. They are always given with a maximum of two significant figures.

The most used technique is LC-MS, in particular LC-QqQ platform (Tables 3–1). The need 
of reaching low concentrations involves a progressive decline of LC-DAD- and LC-FLD-
based procedures. Methods based on LC-MS (single quadrupole) platform are sporadically 
described. Finally, in the last few years, high-resolution mass analysers are more and more 
applied. The ionisation source is almost always electrospray in positive mode (ESI+), except 
for chloramphenicol for which negative ionization is largely favoured (ESI−). The chromato-
graphic separation is generally achieved in reversed-phase mode, except for aminoglycosides 
(streptomycin and dihydrostreptomycin) where HILIC columns are frequently applied.

5.1. Chloramphenicol (CAP)

Chloramphenicol is a potent, broad-spectrum antibiotic and a potential carcinogen and has 
been banned in the European Union since 1994 for use in food-producing animals. The United 
States and Canada, as well as many other countries, have completely banned its usage in the 
production of food, too. In January 2002, concerns regarding serious deficiencies of the Chinese 
residue control system and problems related to the use of banned substances in food-produc-
ing animals led the European Union to issue a suspension of imports of all products of animal 
origin from this country. Meanwhile, a growing number of rapid alert notifications related to 
the presence of CAP in imported honey have been issued. In beekeeping practice, this antibi-
otic is mainly used to fight the American foulbrood disease. In 2002, 31 cases out of 34 positive 
CAP honey detected by the RASFF system (Table 2) were from China. These findings were 
confirmed by Verzegnassi et al. [17] who in the same period analysed 176 raw honeys of vari-
ous geographical origins, showing very extensive contamination in those of Chinese origin (29 
positive samples out of 32). One year later (2003), the percentage of positive chloramphenicol 
honey from China fell down with only one notification. The import ban was lifted in July 2004.

In Figure 4, the sample preparation protocols proposed by the authors of the nine selected 
analytical methods listed in Table 3 are summarized [17–25]. Using the CAF as “case study”, 
the figure generalizes the sample purification concept, which is a modular process composed 
of one or more LLE and SPE steps. Generally, honey is dissolved in water or in acidic solu-
tions due to better solubility of CAF in organic solvents at these pHs (Figure 1), thus enabling 
subsequent RP-SPE or LLE purification. Only Alechaga et al. [23] solubilize honey in an aque-
ous basic solution (1% NH3), to favour the adsorption on the stationary phase (Oasis HLB) of 
florfenicol amine which was included in the same procedure. As explained by its name, flor-
fenicol amine (the main metabolite of florfenicol) is a basic drug non-ionized at pHs exceeding 
9. The solubilized honey is then purified with one or two clean-up steps: (a) SPE [20, 21, 23]; 

Residue Determination in Honey
http://dx.doi.org/10.5772/67135

347



(b) LLE [18, 19, 22, 24]; (c) SPE and LLE [17]; (d) LLE and SPE [25]. The same scheme could be 
realized for all the other antibiotic methods summarized in Tables 4–11. A complete overview 
of the sample preparation issues is available in “Analysis of Antibiotic Residues in Food” [26].

5.2. Fumagillin

Fumagillin is a potent amoebicidal agent with properties known since 1950s. This com-

pound is used by apiarists to protect bees from Nosema apis. A few articles have reported 
methods for its determination. The first procedure using LC-MS technique (single quad-
rupole) has been developed by Nozal et al. in 2008 [27]. In 2011 and in 2015, respectively, 
Kanda et al. [28] and van den Heever et al. [29] published methods based on LC-MS/MS 
(triple quadrupole). Nozal et al. [27] and van den Heever et al. [29] applied a quite similar 
purification approach, solubilizing honey in water and purifying it with polymeric RP-SPE 
cartridge. They also reached similar LODs ranging from 1 to 4 μg/kg, depending on the 
honey type (botanical origin). Surprisingly, Kanda et al. [28] reported LODs of two orders 
of magnitude lower (0.02–0.03 μg/kg), applying QuEChERS extraction with 0.1% FA in 
acetonitrile followed by non-retentive WAX-SPE. These authors estimate LOD by means of 
the standard deviation (SD) observed in replicate experiments carried out at a low spiking 
level, that is, 1 μg/kg (LOD = 3 × SD). However, following the analytical chemistry detec-
tion theory, to obtain a reliable estimation of LOD, the spiking level should be close to the 
found LOD. Clearly, the spiking level reported by Kanda et al. [16] is not suitable, being 
two orders of magnitude higher than the estimated LOD. This example demonstrates the 
well-known issues in the estimation of method limits, which can prevent correct compari-

Figure 4. Sample treatment strategies for the determination of chloramphenicol residues in honey (Table 3): (a) [20, 21, 
23]; (b) [18, 19, 22, 24]; (c) [17]; (d) [25].
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son among method performances. On the other hand, most of the authors do not report 
how the LODs are obtained, simply declaring that they are calculated according to signal-
to-noise (S/N) ratio approach (LOD = 3 × S/N). Finally, it is worthy of note that among the 
multiclass procedures, only Lopez et al. [30] have included fumagillin within the deter-
mined analytes (Table 11).

5.3. Macrolides (MACs) and lincomycin

As a result of the development of resistance to oxytetracycline, in the last 15 years two mac-
rolide antibiotics, erythromycin and tylosin, have been widely used for the prevention and 
treatment of apiculture diseases. Since 1970s, some studies report that tylosin was superior 
to sulphathiazole in the control of American foulbrood in field colonies of honeybees. In 2005 
and in 2013, the US Food and Drug Administration (FDA) and Canada authorities, respec-
tively, approved the use of tylosin in honeybees. In addition, Canada authorities fixed an 
MRL in honey equal to 200 μg/kg as sum of tylosin A and B (Table 1). The most significantly 
published procedures are summarized in Table 4 [31–37]. Lincomycin belongs to the group of 
lincosamides, and its activity against Paenibacillus larvae strains has been reported. In 2012, lin-
comycin was approved by FDA to control tetracycline-resistant American foulbrood disease. 
Its structure is similar to that of macrolides, and some analytical methods determine simul-
taneously these substances [31, 33]. Because macrolides are unstable in acidic solution, that 
is, pH <4, sample extraction is generally carried out in water or in basic buffers (pH 8.0–10.5). 
Due to their basic nature, at these pHs the reversed-phase solid-phase extraction approach is 
favoured (Figure 1), and all procedures listed in Table 4 purify the honey extract using silica 
C18 or polymeric cartridge (Oasis HLB and Strata-X).

5.4. Nitrofurans (NFs)

Nitrofurans have been used for long time in veterinary practice as antibacterial agents for 
treating infections caused by bacteria and protozoa. At present in Europe and other several 
countries, these substances are explicitly prohibited or not authorized for all food-producing 
animals because of their potentially carcinogenic and mutagenic effects on human health. 
Several studies have showed that animals rapidly metabolize nitrofurans and the in vivo 
stability of parent drugs is no longer than a few hours. Consequently, the detection of parent 
drugs in animal tissues is impractical [38]. The covalent binding of NFs with protein tissues 
has been proven applying the 14C technique to furazolidone drug. After this observation, ana-
lytical methods able to liberate the covalently bound drugs were developed. An acidic hydro-
lysis followed by a derivatization step with 2-nitro-benzaldehyde (NBA) and subsequent 
neutralization demonstrated to be the more suitable procedure for NF residue determina-
tion. The acid hydrolysis does not release the intact drug, but a structural unit of the parent 
molecule. 3-Amino-2-oxazolidinone (AOZ), 5-methyl-morpholino-3-amino-2-oxazolidinone 
(AMOZ), semicarbazide (SEM) and 1-aminohydantoin (AHD) are the released metabolites of 
furazolidone, furaltadone, nitrofurazone and nitrofurantoin, respectively. It must be under-
lined that the derivatization with NBA of the cleaved drug metabolites is essential, since 
AOZ, AMOZ, SEM and AHD are very polar compounds scarcely retained on RP columns 
and with poor ionization properties in the electrospray interface of MS analysers. It was 
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thanks to the application of the hydrolysis and derivatization procedure together with the 
use of LC-MS/MS technique that, in the early 2000s, a large number of contaminated food 
samples were discovered (Table 2). Currently, all the methods are based on this treatment. 
The analysis of commercialized honey samples demonstrated that furazolidone (AOZ) is the 
main nitrofuran antibiotic used in apiculture [12]. Inevitably, all methods in Table 5 apply 
the LC-MS techniques [39–45]. The first procedure for the determination of metabolites in 
honey was published by Khong et al. in 2004, using isotopic dilution [39]. Most of the proce-
dures perform the honey solubilization directly in the derivatization mixture (usually an HCl 
aqueous solution with NBA) [39, 42–44], then purifying the less polar derivatized metabolites 
(NBAOZ, NBAMOZ, NBSEM and NBAHD). Since after derivatization the solution is neu-
tralized (pH about 7), the LLE and RP-SPE approaches work well (log D about 1 for NBAOZ: 
Figure 2). On the other hand, a limited number of methods perform the derivatization after 
the first purification step [40, 41]. Tribalat et al. [40] solubilize honey in a 100 mM HCl solu-
tion and then carry out a non-retentive RP-SPE (Oasis HLB) since the non-derivatized metab-
olites are very polar with scarce affinity for non-polar sorbents. As shown in Figure 2, at pH 
< 2 the log D of AOZ is lower than −2. After derivatization, a second (retentive) RP-SPE to 
isolate NBAOZ, NBAMOZ, NBSEM and NBAHD is carried out. Analogously, Lopez et al. 
[41] solubilize honey in a 10% NaCl solution, and after a non-retentive RP-SPE (Oasis HLB), 
they derivatize the metabolites and carry out a LLE using ethyl acetate. For the first time, in 
2015, Kaufmann et al. [43] applied an LC-HRMS/MS platform (LC-Q-Exactive) to identify 
and quantify NFs and CAP, demonstrating acceptable performances for all the four metabo-
lites, except for SEM with CCα and CCβ higher than the fixed MRPL (1 μg/kg).

5.5. Nitroimidazoles (NMZs)

Metronidazole (MNZ), dimetridazole (DMZ), ronidazole (RNZ) and ipronidazole (IPZ) are 
all nitroimidazole drugs with antibiotic and antiprotozoal activity. NMZs have been tra-
ditionally used for treatment and prevention of histomoniasis and coccidiosis in poultry, 
trichomoniasis in cattle and dysentery in swine. Due to their mutagenicity, genotoxicity and 
carcinogenicity, in 1990s NMZs have been classified in Europe as prohibited substances for 
all food-producing species (Group A6 of Annex I of Directive 96/23 [5]). NMZs can prevent 
and control Nosema apis, and in China, these drugs have been used as a cheap alternative 
to fumagillin. The presence of NMZ residues in honey has been reported only in the last 
few years [46]. CRL Guidance Paper (2007) [4] requires methods to reach 3 μg/kg. The main 
published methods based on LC-MS/MS technique are listed in Table 6 [47–51]. The 5-nitro-
imidazoles are known to be rapidly metabolized in animals forming the relevant hydroxy 
metabolites which are generally determined together with the parent drugs because they 
may have similar mutagenic potential. The first confirmatory procedure in honey has been 
published by Cronly et al. [47] in 2010, following the detection of metronidazole residues in 
imported honey from China and from other non-EU countries [12]. Since at pH lower than 
2.5 the NMZs are ionized, the solubilization of honey in water or in buffered solution at pH 
6–7 favours RP-SPE or LLE purifications (Figure 2). On the other hand, some authors have 
taken advantage of NMZ ionization in strong acidic solutions performing effective cationic-
exchange purifications (SCX).
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5.6. Quinolones (QNs)

QNs are widely used in veterinary practice because of their rapid effect and broad-spec-
trum antibacterial activity. Despite the lack of scientific data demonstrating efficacy, the 
application of these antibiotics in apiculture, especially in Asia, as a prophylaxis for bee 
diseases increased during the last few years. The first RASFF notifications for the presence 
of QNs in honey were reported in 2007 in Chinese products. Their use was confirmed by 
the frequent detection of QN residues in honey also by other control authorities, such 
as the US Department of Agriculture (USDA) and the Canadian Food Inspection Agency 
(CCFIA) [14]. To date, the only compounds found in bee products are enrofloxacin, cip-
rofloxacin and norfloxacin. The native fluorescence of quinolone ring has been exten-
sively exploited to determine these antibiotics in biological fluids and food. Thanks to 
the high sensitivity of fluorescence detection and the lower cost of equipment compared 
to LC-MS, this technique is still used to detect and confirm quinolone residues in food. 
In Table 7, the most significant methods are listed [52–58]. Generally, the solubilized 
honey is purified by reversed-phase SPE [53, 54] or by LLE [55–57]. SPE sorbents, other 
than reversed-phase types, are reported in the papers published in 1998 by Rose et al. 
[52] and in 2011 by Yatsukawa et al. [54]. Rose et al. describe two parallel sample treat-
ment protocols using ion-exchange solid-phase extraction: one for nine amphoteric QNs 
(ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, lomefloxacin, marbofloxacin, nor-
floxacin, ofloxacin and sarafloxacin) and another for three acidic ones (flumequine, nali-
dixic acid and oxolinic acid). Amphoteric QNs bear both an acidic group (carboxylic acid) 
and a basic group (piperazinyl group), and therefore, they are positively ionized at acidic 
pH, enabling isolation with strong cation-exchange mechanism (SCX-SPE). On the other 
hand, acidic quinolones can only be neutral, or at basic pHs, they are negatively charged 
enabling anion-exchange purification. Yatsukawa et al. apply the classical RP-SPE (Oasis 
HLB) followed by metal chelate affinity chromatography (MCAC). This particular type of 
SPE acts via the specific chelation of quinolones with ferric ions previously bound to the 
stationary phase (sepharose fast flow resin). The elution is performed with a buffer (pH 4) 
containing Na2EDTA. This is probably the only published application of MCAC to quino-
lone purification, exploiting their chelating properties. The achievable selectivity allows 
an efficient removal of interferences also in dark-coloured honey samples such as manuka 
and buckwheat [54]. On the other hand, MCAC is a well-known stationary phase to purify 
tetracycline antibiotics using copper (Cu2+) as metal ion (see Section 5.9). Finally, in 2014, 
Tayeb-Cherif et al. [58] proposed a cheap and simple procedure without any sample purifi-
cation (Table 7): the solubilized honey was just injected in the LC-FLD system. As a result, 
high detection capabilities (CCβ) are observed (10–100 μg/kg)

5.7. Streptomycin and dihydrostreptomycin (STR/DSTR)

Streptomycin and its derivative, dihydrostreptomycin, are aminoglycoside (AGs) antibiot-
ics used in apiculture to protect bees against a variety of brood diseases. They are polybasic 
cations consisting of two or more sugars, attached to an aminocyclitol ring with glycoside 
linkage. Despite the fact that streptomycin is not authorized in most countries in beekeeping 
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practice, its use is often suggested in bee forums and in beekeeping handbooks. Residues of 
streptomycin and dihydrostreptomycin have been frequently detected in honey and honey-
bee products by the EU RASSF system (Table 2). Due to the lack of chromophore or fluoro-
phore groups, the traditional absorbance or fluorescence detectors cannot be directly applied 
to AG determination, as shown in Table 8 [59–68]. Fortunately, the primary amine groups 
in the aminoglycoside structure react with a number of derivatizing agents. Therefore, espe-
cially in the past when mass spectrometry detectors were not commonly available, methods 
for this antibiotic family were mainly based on liquid chromatography coupled to FLD after 
post-column derivatization with o-phthalaldehyde (OPA) or β-naphthoquinone-sulphonate 
(NQS). Since aminoglycosides are in polyionic form in aqueous solutions, both their extrac-
tion and preconcentration are difficult, and like the sugars of the honey, silica-based C18 
sorbents are unable to retain them. The coating of silica C18 sorbents with an ion-pairing 
reagent such as 1-heptanesulphonic acid (AHS) was experienced to produce a temporary cat-
ion exchanger [59, 61, 62], favouring the analyte retention. In contrast, Bohm et al. [64] purify 
honey extracts with RP-SPE without any addition of ion-pairing reagents, probably thanks to 
the use of a polymeric sorbent (Oasis HLB), instead of the silica-based C18 stationary phases. 
Three procedures [60, 63, 66] applied weak cation-exchange extraction (WCX) to clean-up 
honey. In 2013, Ji et al. [65] synthesized a molecular imprinted polymer (MIP) by polymeriza-
tion of methacrylic acid and ethylene glycol dimethacrylate in the presence of streptomycin as 
template molecule. The observed recoveries for four model compounds in honey (streptomy-
cin, gentamicin, spectinomycin and dihydrostreptomycin) ranged from 90 to 110%. Currently, 
this developed MIP sorbent is commercially available and Moreno-Gonzales et al. applied it 
to determine aminoglycosides in honey using capillary zone electrophoresis coupled to an ion 
trap mass analyser [68]. Finally Wang et al. developed a home-made hydrophilic stationary 
phase (polyvinyl alcohol onto silica gel, PVA-Sil), which demonstrated satisfactory perfor-
mances to pre-concentrate aminoglycosides in honey extracts [67].

With regard to chromatographic issues, because of their high polarity, the underivatized 
aminoglycosides are not sufficiently retained on standard reversed-phase HPLC columns. 
Therefore, there are two possible choices: (i) the addition of ion-pairing reagents such as alkyl 
sulphonates (e.g. sodium 1-heptansulphonic acid, AHS) or fluoropropionic acids (e.g. hepta-
fluorobutyric acid, HFBA; pentafluoropropionic acid, PFPA) in the mobile phase and (ii) the 
application of HILIC (hydrophilic interaction chromatography) analytical columns, which are 
more compatible with MS detection since ion-pairing reagents cause strong ion suppression. 
HILIC is a variant of normal-phase chromatography that uses water as a strong eluent and 
water-miscible organic solvents like acetonitrile as organic components of the mobile phase. 
In Table 8, examples applying derivatization [59, 61], ion-pairing reagents [60, 62] and HILIC 
chromatography [63–67] are reported.

5.8. Sulphonamides (SAs)

As early as 1940s, sodium sulphathiazole was registered for the control of American foulbrood 
in United States, but its use was later banned because residues of the drug continued to be 
found many months after its administration. Residues of sulphadiazine, sulphadimethoxine, 
sulphamerazine, sulphamethazine and sulphamethoxazole have been also detected in honey 
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[12, 14]. Sulphonamides have good UV absorption with maxima in the range of 260–275 nm, 
and since the 1980s, confirmatory methods have been developed using HPLC coupled to UV 
detection. Moreover, after derivatization with fluorescamine, sulphonamides give fluorescence 
and some procedures apply LC-FLD (with pre- or post-column derivatization), reaching limits 
of detections (LOD/CCβ) comparable to those of LC-MS methods. In Table 9, some example of 
these applications are listed [69–78]. Since considerable amounts of SAs are bound to honey sug-

ars, in 2000 Schwaiger and Schuch [79] demonstrated the need of an acidic hydrolysis prior to 
the residue analysis. This step avoids the underestimation of the actual sample contamination.

The solubility of sulphonamides in acids and alkali is conditioned by their amphoteric proper-

ties, due to the presence of an anilino amino group (pK
a1

: 2–2.5) and of an amidic group, which 
contains a labile hydrogen atom with acidic properties (pKa2: 6–9). Thus, sulphonamides are 
positively charged in acidic medium at pH <2, neutral at pH 3–6 and negatively charged at 
pH >6. Therefore, at one hand, exploiting their basic moiety, some procedures use strong cat-
ion exchange (SCX-SPE) to isolate sulphonamides from the acidic honey extracts [71–73, 77]. 

On the other hand, to successfully apply RP-SPE or LLE clean-up, some researchers buffered 
honey extract in the pH range about 4–6 in which the neutral form of sulphonamides prevails 
[70, 74–76, 78]. In this interval, the distribution coefficients (D) reach their maximum and the 
compound lipophilicity is enhanced, as shown in Figure 3 for sulphathiazole.

5.9. Tetracyclines (TCs)

The efficacy of the oxytetracycline for control of European foulbrood has been widely dem-

onstrated as early as 1950s. In honey, beyond oxytetracycline (brand name: Terramycin®), 
tetracycline and chlortetracycline residues have been detected, too [12, 14]. Because of their 
polar nature, tetracyclines have the ability to strongly bind to proteins as well as to chelate 
with divalent metal ions. Therefore, most extractions incorporate acidic solvents with the 
addition of metal chelating agents. Frequently, the extraction approaches use Na2EDTA-
McIlvaine buffer (pH = 4). Known as the “universal tetracycline extractant”, McIlvaine 
buffer consists of citric acid and disodium hydrogen phosphate. Other common buffers 
used for tetracyclines extraction are oxalic acid, succinic acid and citric acid. Another chal-
lenge in tetracycline determination is their epimerization. In mildly acidic conditions (pH 
2–6), epimerization occurs at position C-4. Accordingly, European Union MRLs in food are 
established as sum of tetracycline and its epimer, that is, tetracycline and epi-tetracycline, 
oxytetracycline and epi-oxytetracycline, chlortetracycline and epi-chlortetracycline [1].

As shown in Table 10 [80–88], besides the classical reversed-phase solid-phase extraction 
 cartridges (phenyl, Oasis HLB, Strata-X and C18), tetracyclines can be selectively purified 
applying a particular type of solid-phase extraction, that is, metal chelate affinity chromatogra-

phy (MCAC) [82, 86]. As mentioned before for quinolones (Section 5.6), MCAC exploits tetra-

cycline metal complexing properties to allow for additional clean-up. The sorbent  (sepharose 
resin) is treated with aqueous copper (II) sulphate. The sample extract is then loaded onto the 
column and TCs are retained. The copper ions give visualization of the clean-up process: the 
analytes are found where the blue copper ions appear. Initially, the tetracyclines are bound to 
the blue copper ions on the column until disruption by an EDTA containing buffer and elution 
of the copper ions, EDTA and tetracyclines.
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5.10. Multiclass methods

In efforts to increase the cost-effectiveness of antimicrobial residue enforcement programmes, 
the development of analytical methods able to detect as many contaminant compounds as 
possible is highly preferred. However, it is well known that one of the difficulties in the 
development of these procedures is the incompatibility of selective sample treatments with 
acceptable accuracies for a wide range of analytes. Therefore, only a generic purification pro-

tocol such as liquid-liquid extraction or reversed-phase solid-phase extraction is achievable 
(Table 11). Since generally reversed-phase sorbents provide the least selective retention mech-

anism when compared to normal phase or ion exchange ones, they allow the most universal 
solid-phase extraction approach retaining most molecules with any hydrophobic character.

There are some considerations to do before to take on multiclass methods for antibiotics: (i) 
the extraction of nitrofuran metabolites requires acid hydrolysis and derivatization steps that 
would be destructive to other analytes of interest. Therefore, this class should be extracted 
apart from a multiclass method to obtain satisfactory recovery and avoid degradation of acid-
labile compounds; (ii) as mentioned before, highly polar compounds, such as aminoglycosides, 
do not perform well in multiclass methods as they are relatively insoluble in organic solvents 
and exhibit little or no affinity for non-polar stationary phases used in RP-LC.LC. For this 
reason, in Table 11 only two papers include aminoglycosides among the determined classes 
adding an ion-pairing reagent in the mobile phases; (iii) in addition, in honey, the determina-

tion of sulphonamides in honey requires a preliminary hydrolysis step to measure residues 
bound to sugars, and therefore, also in this case, acid-sensitive antibiotics can be destroyed.

In this context, “multiclass” are procedures involving the determination of more than two 
drug classes. Probably, the first multiclass method in honey has been published in 2004 
by Kaufmann et al. [89], reporting the determination of three antibiotic families, includ-

ing sixteen sulphonamides together with three tetracyclines and flumequine, a quinolone 
antibiotic for which until now there is no evidence of use in apiculture. In 2008, Hammel 
et al. [90] developed an LC-MS/MS protocol for 42 substances including five tetracyclines, 
seven macrolides, three aminoglycosides, eight beta-lactams, two amphenicols and seven-

teen  sulphonamides. Four subsequent liquid-liquid extraction steps were necessary to ade-

quately extract all the analytes. After this paper, many confirmatory multiclass methods 
have been published mainly applying triple quadrupole platforms [29, 91–98]. This is in 

accordance with the general trend in analysis of residues in food started in the late 2000s. 
Although triple quadrupoles have been introduced in the mid-to late-1990s, only in recent 
years these equipments have improved their electronics enabling the possibility of acquiring 
dozens of compounds in the same chromatographic run.

6. Conclusions

The performances of an analytical method are mainly determined by the applied sample 
preparation and instrumental technique. The coupling honey-antibiotic (matrix-analyte) 
can be a “case study” to discuss the general strategies of developing methods for trace 
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analysis in food. It must be kept in mind that the sample preparation protocol has to start 
from the knowledge of the matrix composition and analyte properties (MW, pK

a
, log D, 

etc). Moreover, the choice of the more suitable clean-up also involves the knowledge of the 
available methodologies, but in most of the cases the selection is limited to the SPE station-
ary phases. In the last years, new sorbent materials are more and more produced, enabling 
new possibilities for more efficient, rapid and cheap protocols. Undoubtedly, amino-
glycosides and, to a lesser extent, tetracyclines are the more difficult classes to analyse. 
Obviously, when multiresidue or multiclass procedures are optimized, the challenge is the 
achievement of the best compromise among the different properties of each  single-class 
challenging. The current trends in honey sample preparation and, more generally in food, 
involve the following issues: the miniaturization of the equipment for sample preparation 
(micro techniques); the decrease in the amount of sample to be analysed; the reduction in 
the use of organic solvents; and the development of multiclass procedures. All these strat-
egies aim at the reduction in the employed reagents/materials and at the increase in the 
analysis throughput. The choice of the analytical equipment is less free. Today, LC-QqQ 
systems (triple quadrupoles) are able to solve almost each analytical problem. With regard 
to the analyte separation, except for aminoglycosides, reversed-phase stationary phases 
are generally used. Various column types (traditional, sub 2-μm and core-shell) and manu-
facturers have been reported in literature to determine the same analyte or class of analytes 
(Tables 3–11), but frequently the applied selection criteria are not explained or compared.

Nomenclatures

Abbreviations

2-NBA 2-Nitrobenzaldehyde

ACN Acetonitrile

AcOH Acetic acid

AF Ammonium formate

AGs Aminoglycosides

CAP Chloramphenicol

DCM Dichloromethane

ELISA Enzyme-linked immunosorbent assay

EtAc Ethylacetate

FA Formic acid

HRMS High-resolution mass spectrometry

LC-DAD Liquid chromatography with diode array detector

LC-FLD Liquid chromatography with fluorescence detection
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MACs Macrolides

MCAC Metal chelate affinity chromatography

MeOH Methanol

MIP Molecular imprinted polymer

MWCN Multi-walled carbon nanotubes

NaAc Sodium acetate

NH
4
Ac Ammonium acetate

NFs Nitrofurans

NMZs Nitroimidazoles

NQS  Sodium 1,2-naphthoquinone-4-sulphonic acid

OA Oxalic acid

PA Orthophosphoric acid

QNs Quinolones

QuEChERS  Quick, easy, cheap, effective, rugged and safe

SAs Sulphonamides

SCX Strong cation exchange

SDS Sodium dodecyl sulphate

STR/DSTR  Streptomycin/dihydrostreptomycin

TCs Tetracyclines

TFA Trifluoroacetic acid

TOF Time-of-flight

UHPLC  Ultra-high-pressure liquid chromatography
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