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Abstract

This paper is devoted to the existence of a true random periodic solution near the
numerical approximate one for a kind of stochastic differential equations. A general
finite-time random periodic shadowing theorem is proposed for the random dynamical
systems generated by some stochastic differential equations under appropriate condi-
tions and an estimate of shadowing distance via computable quantities is given. Appli-
cation is demonstrated in the numerical simulations of random periodic orbits of the
stochastic Lorenz system for certain given parameters.

Keywords: random chaotic system, stochastic differential equations, random periodic
shadowing, stochastic Lorenz system

1. Introduction

The investigation for the dynamical properties of the random periodic orbits in some specific

stochastic differential equations (SDEs) is a difficult problem [1]. In general, numerical compu-

tation is still one of the most feasible methods of studying random periodic orbits of SDEs

describing many natural phenomena in meteorology, biology and so on [2–4]. As the chaotic

systems is sensitive to the initial value and random noise is constantly affected the systems

constantly, to estimate a particular solution of a random chaotic system by numerical solutions

for a given length of time is even more difficult. Therefore, it is always difficult to infer the

existence of a random periodic orbit rigorously from numerical computations. Shadowing

property plays important roles in the theory and applications of random dynamical systems

(RDS), especially in the numerical simulations of random chaotic systems generated by some

SDEs. As we know, numerical experiments can lead to many nice discoveries, a new numerical

method is presented to establish the existence of a true random periodic orbit of SDEs which
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lies near a numerical random periodic orbit. Furthermore, the reliability and feasibility of

numerical computations is considered as well.

There are two main motivations for this work. On the one hand, it follows from the classical

shadowing lemma that many studies about the periodic dynamics of deterministic chaotic sys-

tems have been performed in Ref. [3] and references therein. Many nice works on the numerical

analysis of RDS had been completed in Refs. [5] and [6]. On the other hand, our results in this

article have been inspired by our earlier work in Refs. [7] and [8], on shadowing orbits of SDEs

where we established in a rather general setting. To the best of our knowledge, shadowing is still

an interesting method for studying their random periodic dynamic behavior of SDE, and there is

no investigations of the random periodic shadowing theorem of SDE exist in the literatures.

In this work, two computational issues should be considered first. One is the definition of

(ω, δ)-pseudo random periodic orbit, in which a true random periodic orbit is sufficiently

closed. Another issue is that in which conditions the random chaotic systems generated by

some SDE possess the so-called pseudo hyperbolicity for certain given parameters. With some

additional numerical computations, we can show the existence of a true random periodic orbit

near the (ω, δ)-pseudo random periodic orbit under appropriate conditions. Therefore, the

main difference between the existing work and the current one is that the random periodic

case is concerned, and there is no hyperbolicity assumption on the original systems.

Utilizing the existence of the modified Newton equation’s solution, a random periodic

shadowing theorem for some kind of SDEs is proposed. The result shows that under some

appropriate conditions, there exists a true periodic orbit near the numerical approximative one

and the upper bound for the shadowing distance is given.

This paper is organized as follows. In Section 2, background materials on random shadowing

for random dynamical system generated by SDEs, including the definitions of (ω, δ)-pseudo

random periodic orbit and the pseudo hyperbolic in mean square, are given. The main result

on random periodic shadowing is then stated in Section 3. Illustrative numerical experiments

for the main theorem are included in Section 4. The numerical implementations in details are

presented in the following section. And, the proof for the main result is presented in Section 6.

The final section is devoted to summarize the main results in the current work.

2. Preliminaries

Let ðΩ, F , PÞ be a canonicalWiener space, {F t}t∈R be its natural normal filtration, andWðtÞðt∈RÞ

is a standard one-dimensional Brownian motion defined on the space ðΩ,F ,PÞ. And, we assume

that Ω :¼ {ω∈CðR,RÞ : ωð0Þ ¼ 0}, which means that the elements of Ω can be identified with

paths of a Wiener process ωðtÞ ¼ W tðωÞ. We consider a class of Stratonovich SDEs in the form of

dxt ¼ f ðxtÞdtþ μxt ∘ dW t, xð0Þ ¼ x0ðωÞ∈R
d
; (1)

where the random variable x0ðωÞ is independent of F 0 and satisfies the inequality Ejx0ðωÞj
2

< ∞, and μ is a nonzero real number.
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2.1. Basic assumptions and notations

We define the metric dynamical systems ðΩ,F ,P,θtÞ by the mapping θ : R · Ω ! Ω, such

that for ω∈Ω,

θtωðsÞ ¼ ωðtþ sÞ −ωðtÞ,

where s, t∈R:

Let OtðωÞ be a one-dimension random stable Ornstein-Uhlenbeck process which satisfies the

following linear SDE

dOt ¼ −Otdtþ dW t:

And let

zðt,ωÞ :¼ exp ð−μOtðωÞÞxtðωÞ ∈ R
d,

then SDE (1) can be changed to a random differential equation (RDE) in the form of

dz

dt
¼ exp ð−μOtðωÞÞf ð exp ðμOtðωÞÞzÞ þ μOtz ¼ f 1ðθ

tω, zÞ: (2)

It follows from Doss-Sussmann Theorem in Ref. [9] that the solution of RDE (2) is the solution

of SDE (1).

In this paper, we make the following assumptions:

• We suppose that f 1 : Ω·R
d ! R

d be a measurable function which is locally bounded,

locally Lipschitz continuous with respect to the first variable, and be a C1 vector field on R
d.

By Theorem 2.2.2 in Ref. [2], RDE(2) generates a unique RDS ϕ on the metric dynamical

systems ðΩ,F ,P,θtÞ as follows

ϕðs, t,ωÞz ¼ zþ

ðt

s

f 1ðθ
τω,ϕðs, τ,ωÞzÞdτ∈Rd, (3)

and which is C1-class with respect to z in Ref. [8].

And there exists a diffeomorphism ϕ : R ·R ·Ω·R
d ! R

d, ϕðs, t,ω, zÞ :¼ ϕðs, t,ωÞz∈Rd.

We also make use of the following notations which is similar to the Ref. [8].

• The norm of a random variable x ¼ ðx1, x2,…; xdÞ∈L
2ðΩ,PÞ is defined in the form of

∥x∥2 ¼

�
ð

Ω

½jx1ðωÞj
2 þ jx2ðωÞj

2 þ ,…; þ jxdðωÞj
2�dPðωÞ

�1
2

< ∞,

where L2ðΩ,PÞ is the space of all square-integrable random variables x : Ω ! R
d.
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• The norm of a stochastic process xðt,ωÞ with xtðωÞ∈L
2ðΩ,PÞ and t∈R is defined as

∥xðt,ωÞ∥2 ¼ sup
t∈R

∥xtðωÞ∥2 < ∞:

• For a given random matrix A, and the operator norm | � |, the norm of A is defined as

follows

∥A∥L2ðΩ,PÞ ¼ ½EðjAj2Þ�
1
2:

• Normally, the norm ∥ � ∥2 and ∥ � ∥L2ðΩ,PÞ are denoted as ∥ � ∥ for simplicity reason, unless

otherwise stated.

2.2. Some extended definitions

Definition 2.1. For a given positive number δ, if there is a sequence of positive times

{tk}
Nþ1
k¼0 ; 0 ≤ t0 ≤ t1 ≤ ,…; ≤ τ ≤ tNþ1, τ, and a sequence of random variables

{ðykðθ
tkωÞ,F tkÞ}

N
k¼0,

ykðθ
tkωÞ is F tk -adapted, such that

f 1ðykðθ
tkωÞÞykðθ

tkωÞ ≠ 0;     P-almost surely for   k ¼ 0; 1; 2,…; N,

and the following inequalities P-almost surely hold

∥ykþ1ðθ
tkþ1ωÞ−ϕðtk, tkþ1,θ

tkωÞykðθ
tkωÞ�∥ ≤ δ, k ¼ 0; 1,…; N−1,

and

∥yNðθ
tNωÞ−y0ðθ

t0ωÞ∥ ≤ δ, (4)

then the random variables {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 are said to be a (ω, δ)-pseudo random periodic

orbit of RDS (3) generated by SDE (1) in mean-square sense.

Definition 2.2. For a given positive number ε and a (ω, δ)-pseudo random periodic orbit

{ðykðθ
tkωÞ,F tk Þ}

N
k¼0 of RDS (3) generated by SDE (1) with associated times {tk}

Nþ1
k¼0 , if there is a

sequence of times {hk}
Nþ1
k¼0 , h0≤h1≤,…; ≤τ≤hNþ1, such that the following inequalities hold

∥ykðθ
tkωÞ−xkðθ

hkωÞ∥ ≤ ε; 0 ≤ tk−hk ≤ ε, k ¼ 0; 1,…; N,

and the random variables {ðxkðθ
hkωÞ,F hkÞ}

N
k¼0 are on the true orbits of RDS (3) generated by

SDE (1), that is

xkþ1ðθ
hkþ1ωÞ ¼ ϕðhk, hkþ1,θ

hkωÞxkðθ
hkωÞ, k ¼ 0; 1; 2,…; N−1;

and
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x0ðθ
h0ωÞ ¼ ϕðhN , hNþ1,θ

hNωÞxNðθ
hNωÞ, (5)

then the (ω, δ)-pseudo random periodic orbit {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 is said to be (ω, δ)-periodic

shadowed by a true orbit of RDS (3) generated by SDE (1) in mean-square sense.

Remark 2.3. As the σ-algebra F tðt≥0Þ is nondecreasing, in order to guarantee the random

variables xkðθ
hkωÞðk ¼ 0; 1; 2,…; NÞ are F tk -measurable, we need the shadowing condition

0≤tk−hk≤ε instead of jtk−hkj≤ε. We refer to the Ref. [2] for the deterministic counterpart. Here,

we choose a sequence of times {hk}
Nþ1
k¼0 ¼ {tk}

Nþ1
k¼0 in sequels.

Definition 2.4. The RDS ϕ : R ·R ·Ω·R
d ! R

d is said to be pseudo hyperbolic in mean

square if the temple variables κ1ðωÞ, κ2ðωÞ≥1, ν1ðωÞ, ν2ðωÞ≥0 exist, such that the following

inequations hold with R
d ¼ EsðωÞ⊕EuðωÞ,

E∥ϕðs, t1,ωÞx∥
2
≤ κ1ðωÞe

−ν1ðωÞðt1−t2ÞE∥ϕðs, t2,ωÞx∥
2, ∀t1 ≥ t2 ≥ s, x ∈ EsðωÞ,

E∥ϕðs, t2,ωÞx∥
2
≤ κ2ðωÞe

−ν2ðωÞðt1−t2ÞE∥ϕðs, t1,ωÞx∥
2, ∀t1 ≥ t2≥s, x ∈ EuðωÞ:

This means that there is a splitting into exponentially stable ðEsðωÞÞ and unstable ðEuðωÞÞ

components. The multiplicative ergodic theorem (MET) of Oseledets in [10] provides the

stochastic analogue of the deterministic spectral theory of matrices, and a method to check

the pseudo hyperbolicity.

3. Random periodic shadowing for RDS generated by SDEs

3.1. Theoretical foundations

Let {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 be a (ω, δ)-pseudo random periodic orbit of RDS (3) generated by SDE

(1) and ykðθ
hkωÞ∈L2ðΩ,PÞðk ¼ 0; 1,…; NÞ. Assume that we have a sequence of d + d random

matrices {ðYkðθ
tkωÞ,F tkÞ}

N
k¼0 such that

∥Ykþ1ðθ
tkþ1ωÞ−Dϕðtk, tkþ1,θ

tkωÞykðθ
tkωÞ∥ ≤ δ, f or k ¼ 0; 1,…; N−1,

and

∥Y0ðθ
t0ωÞ−DϕðtN, tNþ1,θ

tNωÞyNðθ
tNωÞ∥ ≤ δ: (6)

A sequence of d + (d − 1) randommatrices ðSkðθ
tkωÞ,F tkÞ are chosen such that its columns form

an approximate orthogonal basis for the subspace orthogonal to TðxkÞ and k = 0, 1,…,N, where

TðxkÞ ¼ f 1ðθ
tkω, xkÞ, the approximate orthogonal means that the following inequality holds

∥Skðθ
tkωÞS�kðθ

tkωÞ−I∥ ≤ δ1,

for some positive number δ1∈ð0;δÞ, where * denotes the transpose of matrix.

Now a sequence of (d − 1) + (d − 1) random matrices Akðθ
tkωÞ is chosen which satisfy
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∥Akðθ
tkωÞ−S�kþ1ðθ

tkþ1ωÞYkðθ
tkωÞSkðθ

tkωÞ∥ ≤δ, f or k ¼ 0; 1,…N−1,

and

∥ANðθ
tNωÞ−S�0ðθ

t0ωÞYNðθ
tNωÞSNðθ

tNωÞ∥ ≤δ:

Next, a linear operator L is defined as follows. If random variables ξ ¼ {ξkðθ
tkωÞ}Nk¼0 are in the

space ðRd−1ÞNþ1, then we let Lξ ¼ {½Lξ�k}
N
k¼0 to be

½Lξ�k ¼ ξkþ1ðθ
tkþ1ωÞ−Akðθ

tkωÞξkðθ
tkωÞ, f or k ¼ 0; 1,…; N−1:

and

½Lξ�N ¼ ξ0ðθ
t0ωÞ−ANðθ

tNωÞξNðθ
tkωÞ:

It follows from Section 4.2 that the operator L has right inverses and we choose one such right

inverse L−1.

At last, we define some constants. Let U be a convex subset of Rd containing the value of the

(ω, δ)-pseudo orbit {ðykðθ
tkωÞ,F tkÞ}

N
k¼0. Therefore, we define

Δt ¼ inf
0 ≤ k ≤ N

Δtkþ1 ¼ inf
0 ≤ k ≤ N

ðtkþ1−tkÞ:

Next, we choose a positive number 0 < ε0≤Δt such that ∥x−ykðθ
tkωÞ∥≤ε0, then the solution

ϕðs, t,ωÞxðs≤tÞ is defined and remains in U for 0 < t≤tk þ ε0 P-almost surely.

Finally, we define

M0 ¼ sup
x∈U

∥f 1ðθ
tω, xðtÞÞ∥,

M1 ¼ sup
x∈U

∥Df 1ðθ
tω, xðtÞÞ∥,

M2 ¼ sup
x∈U

∥D2f 1ðθ
tω, xðtÞÞ∥

and

Θ ¼ sup
0 ≤ k ≤ N−1

∥Ykðθ
tkωÞ∥,

where

Df 1 ¼
∂f 1ðθ

tω, xðtÞÞ

∂xi

� �

,

We first introduce the following lemma which has been proved in the Ref. [8] and will be

applied to the main theorem [11].

Lemma 3.1 Let X and Y be finite-dimensional random vector spaces of the same dimension,

and B be an open subset of X . Let v0 be a given element of B. Suppose that G : B ! Y be a C2

function and satisfy:
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i. the derivative DG(v0) of function G at v0∈B is right inverse with K;

ii. B contains a closed ball whose center is v0 and radius is ε, where ε ¼ 2∥K∥∥Gðv0Þ∥;

iii. the inequality 2M∥K∥2∥Gðv0Þ∥ ≤1 holds, where

M ¼ supf∥D2GðvÞ∥ : v∈B, ∥v−v0∥ ≤ εg;

Then, there is a solution v of the equation GðvÞ ¼ 0 satisfying ∥v−v0∥ ≤ ε.

3.2. Main results

Now, we state the main theorem and postponed its proof in the latter section.

Theorem 3.2. For a given bounded (ω, δ)-pseudo random periodic orbit of RDS (3) generated

by SDE (1) {ðykðθ
tkωÞ,F tkÞ}

N
k¼0, assume that

C :¼ max{M−1
0 ð1þΘ∥L−1∥Þ, ∥L−1∥}: (7)

If the quantities shown in Section 3.1 together with δ and ε0 satisfy:

i. C1 ¼ Cδ < 1
2;

ii. C2 ¼ 4Cδ < ε0;

iii. C3 ¼ 8C2δðM0M1 þ 2M1 exp ðM1ΔtÞ þM2Δt � exp ð2M1ΔtÞÞ≤1;

Then there exists a sequence of times {hk}
Nþ1
k¼0 ðh0≤h1≤,…; ≤hNþ1≤tNþ1Þ such that the (ω, δ)-

pseudo random periodic orbit {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 is (ω, δ)-periodic shadowed by a true random

periodic orbit of SDE (1) containing points {ðxkðθ
hkωÞ,F hk Þ}

N
k¼0 in mean-square. Moreover,

shadowing distance satisfies ε≤4Cδ:

4. Numerical experiments

Here, we apply the random periodic shadowing theorem to rigorously establish the existence

of random periodic orbits of the stochastic Lorenz equation. And, this section will provide

numerical experiments to compute the shadowing distance.

4.1. Experimental preparation

Consider the following Stratonovich stochastic Lorenz equation (SSLE) in R
3,

dXt ¼ f ðXtÞdtþ μXt∘dW tðωÞ, Xð0Þ ¼ x0∈R
3 (8)

where Xt ¼ ðx, y, zÞT∈R3, x, y and z are the state variables, σ, ρ and β are positive constant

parameters, and
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f ðXtÞ ¼
−σxþ σy
ρx−y−xz
−βzþ xy

0

@

1

A,μXt ¼
μx
μy
μz

0

@

1

A:

Make the transformation as follows:

xðt,ωÞ ¼ exp ð−μOtðωÞÞx
yðt,ωÞ ¼ exp ð−μOtðωÞÞy
zðt,ωÞ ¼ exp ð−μOtðωÞÞz,

8

<

:

It follows from the transformation that the above SSLE (8) can be transformed to the random

differential equation (RDE) in the following form

dx

dt
¼ σð−xþ yÞ þ μOtðωÞx

dy

dt
¼ −x zþ ρx−yþ μOtðωÞy

dz

dt
¼ x y−βzþ μOtðωÞz:

8

>

>

>

>

>

<

>

>

>

>

>

:

(9)

The existence and uniqueness of solution of RDE (9) can be proved by the same approaches as

proposed in the Refs. [2] and [12] though a normally required linear growth condition does not

be satisfied. Hence, a RDS ϕ can be generated by the solution operator of RDE (9).

In this experiment, it appears numerically that the stochastic Lorenz equations have asymptot-

ically stable random periodic orbit for the parameter values σ ¼ 10;ρ ¼ 100:5;β ¼ 8
3.

Firstly, we generate Brownian trajectories in the following way

W0 ¼ 0;W ðiþ1ÞΔt ¼ W iΔt þ ψiþ1

where

ψi ¼ Nð0;
ffiffiffiffiffi

Δt
p

Þ, i ¼ 1; 2,…; N

Secondly, it follows from the reference [13] that a global attractor, i.e., a forward invariant

random compact set U of RDS ϕ generated by RDE (9) is the closed ball B1 with center zero

and radius RðωÞ, that is, B1 ¼ {Xt∈R
3 : ∥Xt∥ ≤RðωÞ}, where

RðωÞ ¼ c2

ð0

−tN

exp ðc1s−2σW sðωÞÞds

and

c1 ¼ minð1;β, σÞ, c2 > 0; 2〈BXt,Xt〉 < −c1jXtj2 þ c2,

B ¼
−σ σ 0
ρ −1 0
0 0 −β

0

@

1

A:
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It has been proved in Ref. [13] that the RDS ϕ generated by Eq. (8) lies in the forward invariant

random compact set U for P-almost surely ω∈Ω on the finite interval.

4.2. Numerical results

We first present the results of our computations of the (ω, δ)-pseudo random periodic orbits for

the stochastic Lorenz equation. To generate a good (ω, δ)-pseudo random periodic orbit, we

numerically computed the orbit for some time with a rough guess of initial value. In this

experiment, we take the initial value (x0, y0, z0) = (1.76, −4.48, 80.99), time step size Δt = 0.00007

and iterative step N = 100000. The (ω, δ)-pseudo random periodic orbits of Eq. (9) in Figure 1

are generated by the Euler-Maruyama scheme in Ref. [14] and the refined initial data. This also

shows that there exists a forward invariant random compact set.

Secondly, we briefly describe the details of the computation of the key quantities listed in

Table 2. It follows from the methods shown in Section 3, and we can determine the parameters

Figure 1. (ω, δ)-pseudo random periodic orbits of SLS.
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of Theorem 3.2. Tables 1 and 2 present the important quantities and the necessary inequalities

pertaining to this (ω, δ)-pseudo random periodic orbit.

In conclusion, there is explicit dependent relationship between the shadowing distance and the

pseudo orbit error, and there exists the true periodic orbit in the appropriate neighborhood of the

(ω, δ)-pseudo random periodic orbit of SLS (Figure 2). Figures 3a and 3b demonstrate the relation

Parameters Value Parameters Value

Δt 0.00007 ε0 2.01

X0 (1.76, −4.48, 80.99) M0 ≤ 9.8037

N 105 M1 ≤ 0.0185

Approx. period τ = 0.1837 M2 0.0014

X2623 (−0.6911, −7.7293, 81.6553) Θ ≤ 1.0013

∥ X2623 − X0∥ 4.1241 δ ≤ 4.1265

∥ L
−1 ∥ ≤ 4.8218e − 03

Table 1. Value of the parameters.

Inequalities Value

C ≤ 0.1025

C1 ≤ 0.4229

C2 ≤ 1.6918

C3 ≤ 0.0757

Shadowing distance ε 1.2688

Shadowing time t 70

Table 2. Comparison of the inequalities.

Figure 2. The distance ∥Xn − X0∥.
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between (ω, δ)-pseudo random periodic orbits and true periodic orbits of Eq. (8). The blue lines

denote (ω, δ)-pseudo random periodic orbit for the random dynamical system, and the domain

between two blue lines has at least a true orbit for the corresponding random dynamical system.

5. Choice of the operator L−1

We are going to verify that the linear operator L along the obtained (ω, δ)-pseudo random

periodic orbit {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 is invertible for P-almost surely ω∈Ω.

Let g ¼ {gkðθ
tkωÞ}Nk¼0 be in Y. To find ξ ¼ L−1g, we have to solve the random difference equation

ξkþ1ðθ
tkþ1ωÞ ¼ Akðθ

tkωÞξkðθ
tkωÞ þ gkðθ

tkωÞ, f or k ¼ 0,…N−1;

ξ0ðθ
t0ωÞ ¼ ANðθ

tNωÞξNðθ
tNωÞ þ gNðθ

tNωÞ:

With the same choice of the parameters as Section 3, it can be shown that random matrix

Akðθ
tkωÞ is upper triangular with positive diagonal entries. Therefore, there is an integer l such

that for most k, the first l diagonal entries of Akðθ
tkωÞ exceed 1 and the rest are less than 1 in mean

square for P-almost surely ω∈Ω [15]. We can partition the random matrix Akðθ
tkωÞ in the form

Akðθ
tkωÞ ¼

Pkðθ
tkωÞ Qkðθ

tkωÞ
0 Rkðθ

tkωÞ

� �

, k ¼ 0; 1,…; N,

where Pkðθ
tkωÞ is l + l random matrix,Qkðθ

tkωÞ is l + (d − l −1) random matrix, and Rkðθ
tkωÞ

is (d − l −1) + (d − l −1) random matrix.

It follows from multiplicative ergodic theorem that the Lyapunov exponents of Akðθ
tkωÞ are

nonzero. Then it suggests that the RDS ϕ generated by SDE (1) along the obtained (ω, δ)-

Figure 3. (a) The symbolic drawing of the relation between true orbit and pseudo orbit plane. (b) The approximative

structure of pseudo random periodic solution projected on the z plane.
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pseudo orbit {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 is pseudo hyperbolicity in mean square for P-almost surely

ω∈Ω. It can be written as

ξ
ð1Þ
kþ1ðθ

tkþ1ωÞ ¼ Pkðθ
tkωÞξ

ð1Þ
k ðθtkωÞ þQkðθ

tkωÞξ
ð2Þ
k ðθtkωÞ þ g

ð1Þ
k ðθtkωÞ

ξ
ð2Þ
kþ1ðθ

tkþ1ωÞ ¼ Rkðθ
tkωÞξ

ð2Þ
k ðθtkωÞ þ g

ð2Þ
k ðθtkωÞ

8

<

:

for k = 0, 1,…, N − 1, and

ξ
ð1Þ
0 ðθt0ωÞ ¼ PNðθ

tNωÞξ
ð1Þ
N þQNðθ

tNωÞξ
ð2Þ
N ðθtNωÞ þ g

ð1Þ
N ðθtNωÞ

ξ
ð2Þ
0 ðθt0ωÞ ¼ RNðθ

tNωÞξ
ð2Þ
N ðθtNωÞ þ g

ð2Þ
N ðθtNωÞ

(

Let ξ
ð2Þ
0 ðθt0ωÞ ¼ 0 solve forwards the second equation of the first equations above. The substi-

tute it into the first equation with ξ
ð2Þ
k ðθtkωÞ, and let ξ

ð2Þ
N ðθtNωÞ ¼ 0, then solve it backwards.

Finally, the solutions ξ
ð1Þ
k ðθtkωÞ are obtained. Therefore, the right inverse L−1 is obtained as

½L−1g�k ¼ ½ξ
ð1Þ
k ðθtkωÞ, ξ

ð2Þ
k ðθtkωÞ�T , k ¼ 0; 1,…; N:

Hence, invertibility of the operator L is proved, which is an important for the application of the

random shadowing lemma.

6. Proof of the main theorem

Proof. For a given (ω, δ)-pseudo random periodic orbit {ðykðθ
tkωÞ,F tk Þ}

N
k¼0 of RDS ϕ (3) gener-

ated by SDE (1), and an associated sequence of d + d random matrices {Ykðθ
tkωÞ}Nk¼0 satisfying

Eq. (6). Our aim is to show that {ðykðθ
tkωÞ,F tkÞ}

N
k¼0 is (ω, δ)-periodic shadowed by a true

random periodic orbit containing {ðxkðθ
hkωÞ,F hkÞ}

N
k¼0, where xkðθ

hkωÞ lies in the random hyper-

plane Hkðθ
tkωÞ through ykðθ

tkωÞ.

Suppose that the random hyperplane Hkðθ
tkωÞ is approximately normal to TðykÞ ¼ f 1ðθ

tkω, ykÞ

at the point ykðθ
tkωÞ. Therefore, we only need to find a sequence of times {hk}

Nþ1
k¼0 ¼ {tk}

Nþ1
k¼0 ,

h0≤h1≤,…; ≤hNþ1≤tNþ1 and a sequence of points {ðxkðθ
hkωÞ,F tN Þ}

N
k¼0 with xkðθ

hkωÞ∈Hkðθ
tkωÞ

being contained in the ε-neighborhood of ykðθ
tkωÞ such that

xkþ1ðθ
hkþ1ωÞ ¼ ϕðhk, hkþ1,θhkωÞxkðθ

hkωÞ, f or k ¼ 0; 1,…; N−1;

and

x0ðθ
h0ωÞ ¼ ϕðhN, hNþ1,θhNωÞxNðθ

hNωÞ:

By the assumption, we obtain that Skðθ
tkωÞ is a d + (d − 1) randommatrix whose columns form

an approximative orthogonal basis for Hkðθ
tkωÞ. We first define the random hyperplane
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Hkðθ
tkωÞ as the image of Rd−1 through the map z↦ykðθ

tkωÞ þ Skðθ
tkωÞz, which can be viewed

as a subspace of the tangent space at ykðθ
tkωÞ.

Therefore, the problem of finding appropriate sequences of hk and xk becomes that of finding a

sequence of times {hk}
Nþ1
k¼0 :¼ {tk}

Nþ1
k¼0 and a sequence of points {ðzkðθ

hkωÞ,F tN Þ}
N
k¼0 in R

d−1 such

that

ykþ1ðθ
tkþ1ωÞ þ Skþ1ðθ

tkþ1ωÞzkþ1ðθ
hkþ1ωÞ

¼ ϕðhk, hkþ1,θ
hkωÞðykðθ

tkωÞ þ Skðθ
tkωÞzkðθ

hkωÞÞ, k ¼ 0; 1,…; N−1;

and

y0ðθ
t0ωÞ þ S0ðθ

t0ωÞz0ðθ
h0ωÞ ¼ ϕðhN, hNþ1,θ

hNωÞðyNðθ
tNωÞ þ SNðθ

tNωÞzNðθ
hNωÞÞ:

We next introduce the space X ¼ R
Nþ2

· ðRd−1ÞNþ1 with norm

∥ð{sk}
Nþ1
k¼0 , {ζk}

N
k¼0Þ∥ ¼ max

(

sup
0 ≤k ≤ Nþ1

jskj, sup
0 ≤ k ≤ N

∥ζk∥

)

,

and the space Y ¼ ðRdÞNþ1 with norm

∥{gk}
N
k¼0∥ ¼ max

0 ≤ k ≤ N
∥gk∥,

where sk ∈ R, ζk ∈ R
d−1 and gk ∈R

d.

Now, we let B be a properly chosen ε-open neighborhood of v0 ¼ ð{tk}
Nþ1
k¼0 ; 0Þ in X which

contain the point v ¼ ð{sk}
Nþ1
k ¼ 0, {ζk}

N
k ¼ 0Þ. And, we introduce the function G : B ! Y given by

½GðvÞ�k ¼ ykþ1ðθ
tkþ1ωÞ þ Skþ1ðθ

tkþ1ωÞζkþ1ðθ
skþ1ωÞ

−ϕðsk, skþ1,θ
skωÞðykðθ

tkωÞ þ Skðθ
tkωÞζkðθ

skωÞÞ, f or k ¼ 0; 1,…; N−1;

and

½GðvÞ�N ¼ y0ðθ
t0ωÞ þ S0ðθ

t0ωÞζ0ðθ
s0ωÞ

−ϕðsN, sNþ1,θ
sNωÞðykðθ

tNωÞ þ SNðθ
tNωÞζNðθ

sNωÞÞ:
(10)

It is the fact that Theorem 3.2 will be proved if we can find a solution v ¼ ð{hk}
Nþ1
k¼0 ,

{zkðθ
hkωÞ}Nk¼0Þ of the equation

GðvÞ ¼ 0; a:s:

in the closed ball of radius ε about v0 ¼ ð{tk}
Nþ1
k¼0 ; 0Þ.

In order to apply Lemma 3.1, those hypotheses (i) – (iii) for themapG as Eq. (10) should be verified.
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Step I:

First and foremost, it follows from the construction of pseudo orbits that ∥Gðv0Þ∥ ≤δ: Secondly,

the Gateaux derivative of the map G at v0 with u ¼
�

fτkg
Nþ1
k¼0 , fξkðθ

tkωÞg
N

k¼0

�

∈X is given by

½DGðv0Þu�k ¼ limε!0
½Gðv0 þ εuÞ−Gðv0Þ�k

ε

¼ −τkTðykþ1Þ þ Skþ1ðθ
tkþ1ωÞ � ξkþ1ðθ

tkþ1ωÞ

−Dϕðtk, tkþ1,θ
tkωÞykðθ

tkωÞ � Skðθ
tkωÞ � ξkðθ

tkωÞ,

for k = 0, 1,…, N − 1, and

½DGðv0Þu�N ¼ −τNTðyNÞ þ S0ðθ
t0ωÞ � ξ0ðθ

t0ωÞ

−DϕðtN, tNþ1,θ
tNωÞyNðθ

tNωÞ � SNðθ
tNωÞ � ξNðθ

tNωÞ:
(11)

We will approximate DG(v0) by another operator. Now, we define the operator T : X ! Y for

u∈X . Let T ku be the approximation of ½DGðv0Þu�k in Ref. [16], we have

T ku ¼ −τkTðykþ1Þ þ Skþ1ðθ
tkþ1ωÞ � ξkþ1ðθ

tkþ1ωÞ

−Ykðθ
tkωÞ � Skðθ

tkωÞ � ξkðθ
tkωÞ, k ¼ 0; 1,…; N−1,

and

T Nu ¼ −τNTðyNÞ þ S0ðθ
t0ωÞ � ξ0ðθ

t0ωÞ

−YNðθ
tNωÞ � SNðθ

tNωÞ � ξNðθ
tNωÞ:

(12)

Now, we need to prove that T is invertible. Therefore, we must show that for all g ¼ {gk}
N
k¼0∈Y,

there is a solution of the following equation

T ku ¼ gk,

that is, for k = 0, 1,…, N −1,

−τkTðykþ1Þ þ Skþ1ðθ
tkþ1ωÞξkþ1ðθ

tkþ1ωÞ−Ykðθ
tkωÞSkðθ

tkωÞξkðθ
tkωÞ ¼ gkðθ

tkωÞ,

and

−τNTðyNÞ þ S0ðθ
t0ωÞ � ξ0ðθ

t0ωÞ−YNðθ
tNωÞ � SNðθ

tNωÞ � ξNðθ
tNωÞ

¼ gNðθ
tNωÞ:

(13)

As we know, the matrix

TðykÞ

∥TðykÞ∥

�

�

�

�

Skðθ
tkωÞ

� �

is orthogonal for each k. Then this set of equations is equivalent to the following two sets of

equations, one set obtained by premultiplying the kth member in Eq. (13) by T�ðykþ1Þ and
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T�ðy0Þ, respectively, the other set obtained by premultiplying the kth member in Eq. (13) by

S�kþ1ðθ
tkþ1ωÞ and S�0ðθ

t0ωÞ, respectively. Therefore, we obtain for k = 0, 1, …, N −1,

−τk∥Tðykþ1Þ∥
2
−Tðykþ1Þ

�Ykðθ
tkωÞSkðθ

tkωÞξkðθ
tkωÞ ¼ Tðykþ1Þ

�gkðθ
tkωÞ,

and

−τN∥Tðy0Þ∥
2
−Tðy0Þ

�YNðθ
tNωÞSNðθ

tNωÞξNðθ
tNωÞ ¼ Tðy0Þ

�gNðθ
tNωÞ, (14)

ξkþ1ðθ
tkþ1ωÞ−Akðθ

tkωÞξkðθ
tkωÞ ¼ S�kðθ

tkþ1ωÞgkðθ
tkωÞ, k ¼ 0; 1,…; N−1,

and

ξ0ðθ
t0ωÞ−ANðθ

tNωÞξNðθ
tNωÞ ¼ S�Nðθ

t0ωÞgNðθ
tNωÞ: (15)

If we write g ¼ {S�kðθ
tkωÞgkðθ

tkωÞ}Nk¼0, it follows from the condition (7) that the solution of

Eq. (15) is

ξk ¼ ðL−1gÞk: (16)

If Eq. (16) is substituted into Eq. (14), we obtain for k = 0, 1, …, N −1,

τk ¼ −
Tðykþ1Þ

�

∥Tðykþ1Þ∥
2
� ½Ykðθ

tkωÞSkðθ
tkωÞL−1Skþ1ðθ

tkþ1ωÞ þ 1�gkðθ
tkωÞ,

and

τN ¼ −
Tðy0Þ

�

∥Tðy0Þ∥
2
� ½YNðθ

tNωÞSNðθ
tNωÞL−1S0ðθ

t0ωÞ þ 1�gNðθ
tNωÞ: (17)

Taking into account Eqs. (16) and (17), we define the right inverse of T k in the form of

T
−1
k g ¼ ½{τk}

Nþ1
k¼0 , {ξkðθ

tkωÞ}Nk¼0�:

It follows from Eq. (17) that T is invertible and the following inequality holds

∥T
−1
∥ ≤C: (18)

Therefore, we can construct the invertibility of DG(v0). By the operator theory, we obtain

K ¼ ½I þ T
−1ðDGðv0Þ−T Þ�−1T −1

: (19)

By Eqs. (11) and (12) and the assumption (i) of Theorem 3.2, we obtain that

∥T
−1ðDGðv0Þ−T Þ∥≤∥T −1

∥∥DGðv0Þ−T ∥

≤ ∥T
−1jj � ½sup jj ðDϕðtk, tkþ1,θ

twωÞykðθ
tkωÞ−Ykðθ

tkωÞSkðθ
tkωÞξkðθ

tkωÞjj�

≤  Cδ <
1

2
:
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Then the inverse ½I þ T
−1ðDGðv0Þ−T Þ�−1 exits and K is a right inverse of DGðv0Þ. Furthermore,

∥½I þ T
−1ðDGðv0Þ−T Þ�−1∥ ≤ 2:

Therefore, we have verified hypothesis (i) of Lemma 3.1.

Step II:

It follows from Eqs. (18)–(20) that we have

∥K∥≤2C:

and

∥Gðv0Þ∥ ¼ sup
k

∥ykþ1ðθ
tkþ1ωÞ−ϕðtk, tkþ1,θtkωÞykðθ

tkωÞ∥ ≤δ:

By the assumption (ii) of Theorem 3.2, we obtain that

ε ¼ 2∥K∥∥Gðv0Þ∥ ≤ 4Cδ < ε0:

That is, the closed ball of radius ε around v0 is contained in the open set B. Therefore, we have

verified hypothesis (ii) of Lemma 3.1.

Step III:

We only need to estimate ∥D2GðvÞ∥. Then we choose u ¼ ð{rk}
Nþ1
k¼0 , {ηk}

N
k¼0Þ and calculate the

second order Gateaux differential of G(v) for k = 0, 1, …, N as follows

½DGðvÞuu�k :¼ lim
t!0

½DGðvþ tuÞu−DGðvÞu�k
jtj

¼ −τkrkDT½ykðθ
tkωÞ þ Skðθ

tkωÞζkðθ
tkωÞ� � T½ykðθ

tkωÞ þ Skðθ
tkωÞζkðθ

tkωÞ�

−τkDT½ykðθ
tkωÞ þ Skðθ

tkωÞζkðθ
tkωÞ��

  Dϕðtk, tkþ1,θtkωÞðykðθ
tkωÞ þ Skðθ

tkωÞζkðθ
tkωÞÞ � Skðθ

tkωÞηkðθ
tkωÞ

−rkDT½ykðθ
tkωÞ þ Skðθ

tkωÞζkðθ
tkωÞ��

  Dϕðtk, tkþ1,θtkωÞðykðθ
tkωÞ þ Skðθ

tkωÞζkðθ
tkωÞÞ � Skðθ

tkωÞξkðθ
tkωÞ

−D2ϕðtk, tkþ1,θtkωÞðykðθ
tkωÞ

þSkðθ
tkωÞζkðθ

tkωÞÞ � ½Skðθ
tkωÞξkðθ

tkωÞ� � ½Skðθ
tkωÞηkðθ

tkωÞ�:

By the norm property, i.e., subadditivity, we obtain

M ¼ sup
k

∥D2GðvÞ∥ ≤ M0M1 þ 2M1 exp ðM1ΔtÞ þM2Δt exp ð2M1ΔtÞ:

It follows from the assumption (iii) of Theorem 3.2 and
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∥Gðv0Þ∥ ≤ δ, ∥K∥2≤4C2
,

that

2M∥K∥2∥Gðv0Þ∥ ≤1:

Then we have verified hypothesis (iii) of Lemma 3.1. Therefore, the conclusion follows from

Lemma 3.1. This finishes the proof.

Remark 6.1 The proof is similar to the paper [8], and we extend it to the random periodic case.

7. Conclusion

The main result presented here is the random periodic shadowing theorem of the RDS gener-

ated by some SDEs. To conduct the study, we have extended the random shadowing theorem

to the random periodic scenario by taking advantage of mean square and stochastic calculus.

We show that the existence of the random periodic shadowing orbits of the SSLE so that the

numerical experiments are performed and match the results of theoretical analysis. Although

some progresses are made, more accurate numerical methods of estimating the shadowing

distance are needed in practice, which will be presented in our further work.
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