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Abstract

In this chapter, we present a recollection of fixed point theorems and their applications
in fractional set-valued dynamical systems. In particular, the fractional systems are used
in describing many natural phenomena and also vastly used in engineering. We con-
sider mainly two conditions in approaching the problem. The first condition is about the
cyclicity of the involved operator and this one takes place in ordinary metric spaces. In
the latter case, we develop a new fundamental theorem in modular metric spaces and
apply to show solvability of fractional set-valued dynamical systems.

Keywords: fractional set-valued dynamical system, fixed point theory, contraction,
modular metric space

1. Introduction

Dynamical system is a wide area that deals with a system that changes over time. The two

main characteristics of the time domain here are identified with the discrete and continuous

manners. In discrete time domain, major considerations turn to the difference equations and

generating functions. While in the latter one, which we shall be considering mainly for this

chapter, the system is usually represented by differential equations. It might be more influen-

tial to talk about the inclusion problems if a set-valued system is to be analyzed.

The very first and fundamental dynamical system is known nowadays under the term Cauchy

problem. It is represented with the following C
1 initial-valued problem:

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



u′ðtÞ ¼ f ðt, uðtÞÞ,
uð0Þ ¼ u0

�

In this case, we assume that f : ½0,T� ·R ! R is continuous and u∈C1ð½0,T�Þ. From simple

calculus, we may see that this system is equivalent to the following integral equation:

uðtÞ ¼ u0 þ

ð

½0, t�
f ðs,uðsÞÞds (1)

This is where Banach got the idea to solve the problem. He proposed his famous fixed point

theorem known today as the contraction principle in 1922 [1], mainly to solve this Cauchy

problem effectively. Recall that the contraction principle states that if X is a complete metric

space and T : X ! X is Lipschitz continuous with constant 0 < L < 1, then T has a unique

fixed point.

Let us consider a map Λ : C1ð½0,T�Þ ! C1ð½0,T�Þ given by

ΛðuÞðtÞ :¼ u0 þ

ð

½0, t�
f ðs, uðsÞÞds,   ∀u∈C1ð½0,T�Þ,   ∀t∈ ½0,T�

One can notice that u∈C1ð½0,T�Þ solves Eq. (1) if and only if it is a fixed point of Λ. With this

approach, by considering C1ð½0,T�Þ with the supremum norm ∥ � ∥
∞
, we end up with the local

solvability of the Cauchy problem. To obtain the global solution, we have to apply some

techniques to extend the boundary of the local solution.

It is not very obvious that renorming by the L-weighted norm ∥f ∥L :¼ supt∈ ½0,T�e
−Ltf ðtÞ, with

L > 0, will resolve such difficulty. We shall give the short solvability result of the Cauchy

problem with the contraction principle here, to illustrate the concept of how we apply fixed

point theorem to continuous dynamical systems. Under the assumption that f must be

Lipschitz in the second variable with constant L > 0, we have for any x, y∈C1ð½0,T�Þ the

following:

e−LtjΛðxÞðtÞ−ΛðyÞðtÞj ¼ e−Ltj

ð

½0, t�
f ðs, xðsÞÞ−f ðs, yðsÞÞdsj

≤ e−Lt
ð

½0, t�
jf ðs, xðsÞÞ−f ðs, yðsÞÞjds

≤ e−Lt
ð

½0, t�
LeLse−LsjxðsÞ−yðsÞjds

≤ e−Lt∥x−y∥L

ð

½0, t�
LeLse−Lsds

≤ e−LtðeLt−1Þ∥x−y∥L
≤ ð1−e−LTÞ∥x−y∥L:

Taking supremum over t∈ ½0,T� yields the result and the solvability thus follows.

Dynamical Systems - Analytical and Computational Techniques144



This is the alternative technique to guarantee the solvability of the Cauchy problem, without

obtaining the local solution first. It is important to remark that there are many mathemati-

cians that can later adapt different technique and different direction to obtain the solvability

of various classes of dynamical systems, under one unifying fact—by applying fixed point

theorems.

It is natural to raise the situation of set-valued integral, which proved itself for its importance

in practical applications especially in engineering. In 1965, Aumann [2] introduced the concept

of definite set-valued integral on real line and Euclidean spaces. Suppose that Ψ is an interval

½0,T�, where T > 0. Let F : Ψ ! 2R be a set-valued operator. A selection of F is the function

f : Ψ ! R∪{� ∞} such that f ðtÞ∈ FðtÞ a.e. t∈Ψ . We write ℱ to denote the set containing all

integrable selections of F. According to Aumann [2], the set-valued integral is determined by

the operator J in the following:

JΨFðtÞdt :¼

ð

Ψ

f ðtÞdt ; f ∈ℱ

� �

that is, the set of the integrals of integrable selections of F.

On the other hand, in elementary calculus, one deals with derivatives and integrals, includ-

ing the higher-integer-order iterations. Here, in fractional integral, one looks at a broader

concept where the real-order iteration is taken into account. There are many approaches to

study this kind of extensions. In our context, we shall use the classical notion introduced by

Riemann and Liouville, the latter of which is the first one to point out the possibility of

fractional calculus in 1832. Given a function f ∈L1ðΨ ,μÞ, the fractional integral of order

α > 0 is given by

IαΨ f ðtÞdt :¼
1

ΓðαÞ

ð

Ψ

ðt−τÞα−1f ðτÞdτ

Naturally, we may further consider the following fractional integral:

JαΨFðtÞdt :¼ IαΨ f ðtÞdt ; f ∈ℱ
� 	

These two concepts have brought up the studies of new systems, the set-valued dynamical

systems and the fractional dynamical systems. Even the combination of the two, the fractional

set-valued dynamical systems, is an emerging area in research. We shall be particular with this

latter class of systems and give some brief investigations over the problem.

The very concept of set-valued fractional integral operator was first proposed by El-Sayed and

Ibrahim [3–5] and this has opened a new universe of investigation to fractional operator

equations. It has been reflected that such theory can better describe nonlinear phenomena,

compared to the classical theory of differential and integral equations. The extensive use of this

theory lays naturally in automatic control theory, network theory and dynamical systems (see,

e.g. [6–10]).
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The central system that we are going to investigate in this chapter is the following delayed

system:

uðtÞ−
X

n

i¼1

βiðtÞuðt−τiÞ∈ IαFðt, uðtÞÞ ;   α∈ ð0, 1�,   t∈ J :¼ ½0,T�,   T > 0 (2)

where τi ∈ ½0, t� for all i∈ {1, 2,⋯, n}, F : J ·R! CBðRÞ, IαFðt, uðtÞÞ is the definite integral of

order α given by

IαFðt, uðtÞÞ :¼
1

ΓðαÞ

ðt

0

ðt−τÞα−1f ðτ,uðτÞÞdτ ; f ∈SFðuÞ

� �

and

SFðuÞ :¼ ff ∈L1ðJ,RÞ ; f ðtÞ∈Fðt, uðtÞÞ a:e: t∈ Jg

denotes the set of selections of F and βi : J ! R is continuous for each i∈ {1, 2,⋯, n}. Also, set

B :¼ max1 ≤ i ≤ nsupt∈ JβiðtÞ.

In this chapter, we shall bring up some recent results in fixed point theory in several

approaches and then show how these theorems apply to different classes of dynamical sys-

tems. Going precise, in Section 2, we investigate the system (2) in standard metric spaces

through a newly developed fixed point theorem. The mentioned fixed point theorem deals

with an operator that satisfied the so-called implicit contractivity condition only on a portion

of a space, where such partial partition is obtained from the cyclicity behavior that we

imposed. We also note the relation between this cyclicity behavior and the one that arises from

the partial ordering relation approach. The solvability of the dynamical system (2) in this

section is naturally obtained via the cyclicity and implicit contractivity assumptions. For

further readings related to this topic, consult [11–17]. In Section 3, we consider a newly

emerged approach of studying fixed point theory, i.e., fixed point theory in modular metric

spaces. This theory has only been introduced to researchers only a few years ago and has been

investigated reasonably in such a short duration. We bring up one of the fundamental fixed

point theorem in this modular metric spaces, give appropriate examples and then apply it to

guarantee the solvability of, again, the system (2). Even the studies of modular metric spaces

are relatively limited at the time, we suggest that further readings from Refs. [18–20] should

give some ideas about the theory itself and also how to develop further dynamical systems in

this framework.

2. Cyclic operators in metric spaces

In this section, we consider a very general class of operators that satisfy the implicit

contractivity condition. Moreover, we also assume the operator to be cyclic over its domain.

This cyclicity weakens the contractivity only to a portion of the space. This is a more general
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case than the contractivity on comparable pairs, as we show later in this chapter. This also

allows the coexistence result that is better than the exact solution and the sub-/super-

solution.

Note that results in this section are based on our paper [21]. Recall the following notion of

cyclic operators.

DEFINITION 2.1. Let X be a nonempty set and A1,A2,⋯,Ap be nonempty subsets of X. An

operator F : ∪
p
k¼1 Ak ! 2∪

p
k¼1

Ak is called a phset-valued cyclic operator over ∪
p
k¼1Ak if

FðAiÞ⊆Aiþ1 for all i∈ {1, 2,⋯, p−1} and FðApÞ⊆A1.

There is a special property about the location of fixed point of this operator, as illustrated in the

following.

PROPOSITION 2.2. Let X be a nonempty set and A1,A2,⋯,Ap be nonempty subsets of X. If F is a set-

valued cyclic operator over ∪
p
k¼1Ak, then we have the inclusion FixðFÞ⊆∩

p
k¼1Ak, where FixðFÞ denotes

the fixed point set of F.

PROOF. If either FixðFÞ ¼ ptyset or ∩
p
k¼1Ak ¼ ptyset, the conclusion is clear. Thus, let z∈ ∪

p
k¼1Ak be

a fixed point of F. Then, z∈Aq for some q∈ {1, 2,⋯, p} and z∈Fz⊆Aqþ1. Consequently, we also

have z∈Fz⊆Aqþ2. It is easy to see that z∈Aqþn for all n∈N. Therefore, it is enough to conclude

that z∈ ∩
p
k¼1Ak.

The following classes of functions are necessary to our further contents.

DEFINITION 2.3. Let Φ be the class of functions ϕ : Rþ ! Rþ satisfying the following conditions:

(Φ1) ϕ is right continuous.

(Φ2) ϕ (0) = 0.

(Φ3) ϕ(t) < t for all t > 0.

DEFINITION 2.4. Let Ψ be the class of functions ψ : R
6
þ ! R satisfying the following condi-

tions:

ðΨ1Þ ψ is continuous.

ðΨ2Þ ψ is nondecreasing in the first variable and is nonincreasing in the remaining variables.

ðΨ3Þ There exists a function ϕ∈Φ such that, for all u, v ≥ 0, either ψðu, v, u, v, 0, uþ vÞ ≤ 0

  or   ψðu, v, 0, 0, u, vÞ ≤ 0 implies that u ≤ϕðvÞ.

ðΨ4Þ ψðu, 0, u, 0, 0, uÞ,ψðu, u, 0, 0, u,uÞ > 0 for all u > 0.

REMARK 2.5. If ϕ∈Φ, then ϕnðtÞ ! 0.

EXAMPLE 2.6 ([22]). The following functions are contained in the class Ψ :

a. ψ1ðt1, t2,⋯, t6Þ :¼ t1−αmax{t2, t3, t4}−ð1−αÞ½at5 þ bt6�, where α∈ ½0, 1Þ and a, b∈ 0,

1
2

� �

.

b. ψ2ðt1, t2,⋯, t6Þ :¼ t1−ϕ max t2, t3, t4,

1
2 ½t5 þ t6�

� 	� �

, where ϕ∈Φ.
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c. ψ3ðt1, t2,⋯, t6Þ :¼ t21−t1ðαt2 þ βt3γt4Þ−δt5t6, where α > 0 and β,γ, δ≥0 with αþ βþ γ < 1

and αþ δ < 1.

2.1. Fixed point theorem for cyclic operators

Now, we give the main fixed point theorem for cyclic implicit contractive operators.

THEOREM 2.7. Let ðX, dÞ be a complete metric space and let A1,A2,…,Ap be nonempty closed subsets of

X. Suppose that F is a proximal set-valued cyclic operator over ∪
p
k¼1Ak in which there exists some ψ∈Ψ

satisfying

ψðHðFx, FyÞ, dðx, yÞ, dðx, FxÞ, dðy, FyÞ, dðx, FyÞ, dðy, FxÞÞ ≤ 0

whenever either ðx, yÞ∈Ai ·Aiþ1 or ðx, yÞ∈Aiþ1 ·Ai holds for some i∈ {1, 2,⋯, p}. Then, we have the

following:

(I) F has at least one fixed point;

(II) F has no fixed point outside ∩
p
k¼1Ak.

PROOF. For (I), let x0 be chosen arbitrarily from some Aj. Choose any x1 ∈Fx0. Then, we define

implicitly a sequence ðxnÞ by choosing xnþ1 ∈ Fxn satisfying

dðxn, xnþ1Þ ¼ dðxn, FxnÞ:

Note that this definition is valid since F is a proximal operator. Also note that by this definition,

we may derive that

dðxn, xnþ1Þ ≤HðFxn−1, FxnÞ (3)

Now, since ðxnþ1, xnÞ∈Ajþnþ1 ·Ajþn, we have

0 ≥ ψ
HðFxnþ1, FxnÞ, dðxnþ1, xnÞ, dðxnþ1, Fxnþ1Þ,

dðxn, FxnÞ, dðxnþ1,FxnÞ, dðxn,Fxnþ1Þ

 !

≥ ψ
H Fxn, Fxnþ1ð Þ, dðxn, xnþ1Þ,HðFxn, Fxnþ1Þ,

dðxn, xnþ1Þ, 0, dðxn, xnþ1Þ þHðFxn, Fxnþ1Þ

 !

Suppose that ϕ∈Φ is chosen according to ðΨ3Þ. Thus, we have

HðFxn, Fxnþ1Þ ≤ϕðdðxn, xnþ1ÞÞ

At this point, we assume that xn≠xnþ1 for all n∈N, otherwise a fixed point is already obtained.

Together with Eq. (3), we may deduce that

dðxn, xnþ1Þ ≤HðFxn−1, FxnÞ ≤ϕðdðxn−1, xnÞÞ ≤⋯ ≤ϕn−1ðdðx0, x1ÞÞ

Therefore, we have immediately that dðxn, xnþ1Þ ! 0.
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Next, we show that ðxnÞ is Cauchy. Suppose to the contrary. So, we may find ε0 > 0 and two

strictly increasing sequences of integers ðmkÞ and ðnkÞ in which

dðxmk
, xnk Þ≥ε0

We can assume, without loss of generality, that nk > mk > k and nk is minimal in the sense that

dðxmk
, xrÞ < ε0 for all mk ≤ r < nk.

Consequently, dðxmk
, xnk−1Þ < ε0. Moreover, we may obtain that ε0 ≤ dðxmk

, xnkÞ ≤ dðxmk
, xnk−1Þ

þdðxnk−1, xnkÞ < ε0 þ dðxnk−1, xnkÞ: Letting k ! ∞, we have dðxmk
, xnkÞ ! ε0.

On the other hand, for each k∈N, we may find jk ∈ {1, 2,⋯, p} in which nk−mk þ jk≡1ðmodpÞ.

For k sufficiently large, we may see that mk−jk > 0. Observe that

jdðxmk−jk
, xnkÞ−dðxnk , xmk

Þj ≤ dðxmk−jk
, xmk

Þ

≤

X

jk−1

l¼0

dðxmk−jkþl, xmk−jkþlþ1Þ

≤

X

p−1

l¼0

dðxmk−jkþl, xmk−jkþlþ1Þ

Letting k ! ∞, we have dðxmk−jk
, xnk Þ ! ε0. Also consider that

jdðxnk , xmk−jk
Þ−dðxmk−jk

, xnkþ1Þj ≤ dðxnk , xnkþ1Þ:

As k ! ∞, we have dðxmk−jk
, xnkþ1Þ ! ε0. Similarly, we have

jdðxmk−jk
, xnkÞ−dðxnk , xmk−jkþ1Þj ≤ dðxmk−jk

, xmk−jkþ1Þ:

So, we get dðxnk , xmk−jkþ1Þ ! ε0 as k ! ∞. Also observe that

jdðxnk , xnkþ1Þ−dðxnkþ1, xmk−jkþ1Þj ≤ dðxnk , xmk−jkþ1Þ:

Again, letting k ! ∞, we obtain that dðxnkþ1, xmk−jkþ1Þ ! ε0. Finally, by the fact that

ðxmk−jk
, xnk Þ∈Ai ·Aiþ1 for some i∈ {1, 2,⋯, p} and Eq. (3), we may obtain that

0 ≥ ψ
HðFxmk−jk

, FxnkÞ, dðxmk−jk
, xnkÞ, dðxmk−jk

,Fxmk−jk
Þ,

dðxnk , FxnkÞ, dðxmk−jk
, Fxnk Þ, dðxnk , Fxmk−jk

Þ

 !

≥ ψ
dðxmk−jkþ1, xnkþ1Þ, dðxmk−jk

, xnkÞ, dðxmk−jk
, xmk−jkþ1Þ, dðxnk , xnkþ1Þ,

dðxmk−jk
, xnkþ1Þ, dðxnk , xmk−jk

Þ þ dðxmk−jk
, Fxmk−jk

Þ

 !

¼ ψ
dðxmk−jkþ1, xnkþ1Þ, dðxmk−jk

, xnkÞ, dðxmk−jk
, xmk−jkþ1Þ, dðxnk , xnkþ1Þ,

dðxmk−jk
, xnkþ1Þ, dðxnk , xmk−jk

Þ þ dðxmk−jk
, xmk−jkþ1Þ

 !

By the condition ðΨ4Þ and letting k ! ∞, we may deduce that
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0 ≥ψðε0, ε0, 0, 0, ε0, ε0Þ > 0

which is absurd. Hence, the sequence ðxnÞ is Cauchy. Since ∪
p
k¼1Ak is closed, it is complete and

therefore ðxnÞ converges to some unique point x∗ ∈ ∪
p
k¼1Ak.

Next, we shall prove that x∗ is, in fact, a fixed point of F. Let us assume now that dðx∗, Fx∗Þ > 0.
Note that for any n∈N, ðx∗, xnÞ∈Ai ·Aiþ1 for some i∈ {1, 2,⋯, p}. So, it is followed that

0 ≥ ψðHðFx∗, FxnÞ, dðx∗, xnÞ, dðx∗, Fx∗Þ, dðxn, FxnÞ, dðx∗, FxnÞ, dðxn, Fx∗ÞÞ

≥ ψ
dðxnþ1, Fx∗Þ, dðx∗, xnÞ, dðx∗, Fx∗Þ, dðxn, xnþ1Þ,

dðx∗, xnÞ þ dðxn, FxnÞ, dðxn, Fx∗Þ

 !

¼ ψ
dðxnþ1, Fx∗Þ, dðx∗, xnÞ, dðx∗, Fx∗Þ, dðxn, xnþ1Þ,

dðx∗, xnÞ þ dðxn, xnþ1Þ, dðxn, Fx∗Þ

 !

Passing to the limit as n ! ∞, we obtain that

0 ≥ψðdðx∗, Fx∗Þ, 0, dðx∗, Fx∗Þ, 0, 0, dðx∗, Fx∗ÞÞ > 0

which is absurd. Therefore, dðx∗, Fx∗Þ ¼ 0. Since Fx∗ is closed, we conclude that x∗ ∈ Fx∗.

To obtain (II), apply Proposition 2.2.

2.2. Ordered spaces as corollaries

Let X be a nonempty set, recall that the binary relation Êa is said to be a ph(partial) ordering on
X if it is reflexive, antisymmetric and transitive. By an phordered set, we shall mean the pair
ðX,⊑Þwhere X is nonempty and ⊑ is an ordering on X. A ph(partially) ordered metric space is
the triple ðX,⊑, dÞ, where ðX,⊑Þ is an ordered set and ðX, dÞ is a metric space.

In this part, we show that contractivity on comparable pairs is particularly a cyclic operator
over a single set. The following general assumption on the ordered structure is central in the
few forthcoming theorems.

DEFINITION 2.8. Let ðX,⊑, dÞ is said to satisfies the phcondition ðΘÞ if every convergent sequence
ðxnÞ in X and every point z0 ∈X such that z0 ⊑ xn for all n∈N, there holds the property z0⊑x∗,
where x∗ ∈X is the limit of ðxnÞ.

THEOREM 2.9. Let ðX,⊑, dÞ be a complete ordered metric space satisfying the condition ðΘÞ and let

F : X ! CBðXÞ be a nondecreasing proximal operator in the sense that if x, y∈X satisfies x⊑ y, then

u⊑ v for all u∈ Fx and v∈ Fy. Suppose that there exists ψ∈Ψ such that

ψðHðFx, FyÞ, dðx, yÞ, dðx, FxÞ, dðy, FyÞ, dðx, FyÞ, dðy, FxÞÞ ≤ 0 (4)

for all x, y∈X in which we can find some z∈X satisfying both z⊑ x and z⊑ y. If there exists x0 ∈X

such that x0 ⊑w for all w∈ Fx0, then F has at least one fixed point.
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PROOF. By the existence of such a point x0, we shall now construct a set

Cðx0Þ :¼ {z∈X ; x0⊑z}

Taking any sequence ðxnÞ in Cðx0Þ. By the condition ðΘÞ with z0 :¼ x0, we may see that if ðxnÞ
converges, its limit is also included in Cðx0Þ. Hence, Cðx0Þ is closed and therefore it is complete.

On the other hand, we define an operator G : Cðx0Þ ! CBðXÞ by

G :¼ FjCðx0Þ:

For any z∈Cðx0Þ, observe that x0⊑w for all w∈Gz. Thus, GðCðx0ÞÞ⊆Cðx0Þ so that G is cyclic

over Cðx0Þ. Moreover, for any x, y∈Cðx0Þ, we have by definition that x0⊑x and x0⊑y, so that the

inequality (4) holds whenever ðx, yÞ∈Cðx0Þ ·Cðx0Þ. Therefore, we can now apply Theorem 2.7

to obtain that G has at least one fixed point. Passing this property to F, we have now proved

the theorem.

COROLLARY 2.10. Let ðX,⊑, dÞ be a complete ordered metric space and let F : X ! CBðXÞ be a

nondecreasing proximal operator in the sense that if x, y∈X satisfies x⊑y, then u⊑v for all u∈Fx and

v∈ Fy. Suppose that there exists ψ∈Ψ such that

ψðHðFx, FyÞ, dðx, yÞ, dðx, FxÞ, dðy, FyÞ, dðx, FyÞ, dðy, FxÞÞ ≤ 0

whenever x, y∈X satisfy x⊑y. Also assume that if the sequence ðxnÞ in X is nondecreasing and

converges to x∗ ∈X, then xn⊑x∗ for all n∈N. If there exists x0 ∈X such that x0⊑w for all w∈ Fx0,

then F has at least one fixed point.

PROOF. Note that if x, y∈X are comparable, then, according to Theorem 2.9, we may choose

z :¼ x∈X so that z⊑x and z⊑y.

On the other hand, let ðynÞ be a sequence in X which is both nondecreasing and convergent to

y
∗
∈X. According to the condition ðΘÞ, set z0 :¼ y1. We may see easily that, in this case, X

satisfies the condition ðΘÞ. We next apply Theorem 2.9 to finish the proof.

2.3. An example

We now give a validating example for our fixed point theorem to help the understanding of the

content.

EXAMPLE 2.11. Consider the Euclidean space E2 with its standard metric d. For each t∈R, we define

ℓ0 :¼ ½0,
1

2
� · {0},   ℓ1 :¼ ½0,

1

2
� · { 1

ffiffiffi

2
p },   and   ℓ2 :¼ ½0,

1

2
� · {− 1

ffiffiffi

2
p }:

Suppose that A1 and A2 are two closed sets defined by

A1 :¼ ℓ0∪ℓ1   and  A2 :¼ ℓ0∪ℓ2:

Let F : A1∪A2 ! 2A1∪A2 be an operator defined by
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Fx :¼
{x}, ifx∈ ℓ0;
P−1
ℓ1
ðxÞ∩A2, ifx∈ ℓ1;

P−1
ℓ2
ðxÞ∩A1, ifx∈ ℓ2:

8

<

:

(5)

Note that the notation P as is appeared in Eq. (5) is the metric projection onto the

corresponding sets ℓ1 and ℓ2, respectively. The cyclicity of F is apparent.

Claim. The operator F satisfies the inequality in Theorem 2.7 with ψ defined as in (c) of

Example 2.6 when α ¼ 9
20, β ¼ γ ¼ 1

4 and δ ¼ 1
2.

The case x, y∈ ℓ0 is trivial and so we omit it. For the case x∈ ℓ0 as y∈ ℓ1 and x∈ ℓ1 as y∈ ℓ2, we

consider the following calculation.

From Table 1(A), we have

½HðFx,FyÞ�2
¼ ðx1−y1Þ

2 þ 1
2

≤ 9
20 þ 1

4
ffiffi

2
p þ 1

2

� �

ðx1−y1Þ
2 þ 1

2

� �

≤ 9
20 ðx1−y1Þ

2 þ 1
2

� �

þ 1
4
ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

þ 1
2 ðx1−y1Þ

2 þ 1
2

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

þ 1
4
ffiffi

2
p

� �

þ 1
2 ðx1−y1Þ

2 þ 1
2

� �

¼ HðFx, FyÞ½αdðx, yÞ þ βdðx, FxÞ þ γdðy, FyÞ� þ δdðx, FyÞdðy,FxÞ

for all x∈ ℓ0 and y∈ ℓ1. We can similarly obtain from Table 1(B) the following:

(A) x∈ ℓ0 as y∈ ℓ1

HðFx, FyÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1=2

q

dðx, yÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1=2

q

dðx,TxÞ 0

dðy,TyÞ 1=
ffiffiffi

2
p

dðx,TyÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1=2

q

dðy,TxÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1=2

q

(B) x∈ ℓ1 as y∈ ℓ2

HðFx, FyÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1=2

q

dðx, yÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 2

q

dðx,TxÞ 1

dðy,TyÞ 1

dðx,TyÞ jx1−y1j

dðy,TxÞ jx1−y1j

Table 1. Distances.

Dynamical Systems - Analytical and Computational Techniques152



½HðFx,FyÞ�2

¼ ðx1−y1Þ
2 þ 1

2

≤ 9
20

ffiffi

5
2

p

þ
ffiffiffi

2
p� �

ðx1−y1Þ
2 þ 1

2

� �

≤ 9
20

ffiffi

5
2

p� �

ðx1−y1Þ
2 þ 1

2

� �

þ
ffiffiffi

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

≤ 9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
2 ðx1−y1Þ

2 þ 1
2

� �2
r

þ
ffiffiffi

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

¼ 9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

� �2
þ 3

2 ðx1−y1Þ
2 þ 1

2

� �2
r

þ
ffiffiffi

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

≤ 9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

� �2
þ 3

2 ðx1−y1Þ
2 þ 1

2

� �

r

þ
ffiffiffi

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

¼ 9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

� �

ðx1−y1Þ
2 þ 1

2 þ 3
2

� �

r

þ
ffiffiffi

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

¼ 9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

� ��

ðx1−y1Þ
2 þ 2

�

r

þ
ffiffiffi

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 1

2

q

9
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1−y1Þ
2 þ 2

q

þ 1
ffiffi

2
p þ 1

ffiffi

2
p

� �

¼ HðFx, FyÞ½αdðx, yÞ þ βdðx, FxÞ þ γdðy,FyÞ�
≤ HðFx, FyÞ½αdðx, yÞ þ βdðx, FxÞ þ γdðy,FyÞ� þ δdðx,FyÞdðy,FxÞ

for all x∈ ℓ1 and y∈ ℓ2. Therefore, we have now proved our claim.

Observe now that FixðFÞ ¼ ℓ0 ¼ A1∩A2, coincide with the Theorem 2.7.

2.4. Fractional set-valued dynamical systems

For convenience, we shall always consider the nonempty closed and bounded subspace

Ω⊂CðJ,RÞ :¼ {u : J ! R ; uiscontinuous},

endowed with the supremum norm ∥ � ∥ given by

∥u∥ :¼ sup
t∈ J

juðtÞj:

The solutions for the problem (2) are assumed to be in Ω under this circumstance. Moreover,

we shall need some more notions in order to obtain the existence of solutions for the problem

(2).

DEFINITION 2.12. Let (X, d) be a metric space and let J be an interval of R. An operator F : J ! 2X

is said to be measurable if for each x∈X and t∈ J, the mapping x↦dðx, FðtÞÞ is measurable.

Next, we shall define the set-valued operator Λ : Ω ! 2Ω given by
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ðΛuÞðtÞ :¼ w∈Ω ; wðtÞ ¼
X

n

i¼1

βiðtÞuðt−τiÞ þ U
αf ðt, uðtÞÞ, f ∈SFðuÞ

( )

, (6)

where U is the ordinary single-valued fractional integral.

We shall next illustrate that the operator Λ possesses closed values.

LEMMA 2.13. Suppose that the operator Λ is given as in (2.4), then Λu is closed for all u∈Ω.

PROOF. Let u∈Ω and let ðukÞ be a sequence in Λu which converges to some u∗ ∈Ω. We shall

prove the statement by showing that limits of convergent sequence in Λu are in Λu. Then, there

exists a sequence ðf kÞ in SFðuÞ in which

ukðtÞ ¼
X

n

i¼1

βiðtÞuðt−τiÞ þ U
αf kðt,uðtÞÞ:

Also note that this sequence ðf kÞ converges to some f
∗
∈L1ðJ,RÞ. Since Fðt, uðtÞÞ is closed,

f
∗
∈ SFðuÞ. Actually, we have

u∗ðtÞ ¼
X

n

i¼1

βiðtÞuðt−τiÞ þ U
αf ∗ðt, uðtÞÞ∈Λu:

This completes the proof.

Now, we give the solvability of the system (2).

THEOREM 2.14. According to Eq. (2), assume that there exist non-empty closed subsets Π1,Π2,⋯,Πp in

Ω such that ∪
p
k¼1Πk ¼ Ω and F has the following properties:

1. t↦Fðt, uðtÞÞ is measurable for each u∈Ω;

2. there exists a function ξ : R
5
þ ! Rþ such that

HðFðt, uðtÞÞ, Fðt, vðtÞÞÞ ≤ ξð∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞwhenever either

ðu, vÞ∈Πi ·Πiþ1 or ðu, vÞ∈Πiþ1 ·Πi holds for some i∈ {1, 2,⋯, p};

3. Λ is proximal and cyclic over ∪
p
k¼1Πk ¼ Ω.

If the function ψ : R
6
þ ! Rþ given by

ψðt1, t2,⋯, t6Þ :¼ t1−nBt2−
Tα

Γðαþ 1Þ
ξðt2, t3, t4, t5, t6Þ

is in the class Ψ , then the problem (1.2) has at least one solution.

PROOF. Let ðu, vÞ∈Πi ·Πiþ1 for some i∈ {1, 2,⋯, p}. By 2, wemay choose some f 1ðt,uðtÞÞ∈ Fðt, uðtÞÞ

and f 2ðt, vðtÞÞ∈Fðt, vðtÞÞ in which
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jf 1ðt, uðtÞÞ−f 2ðt, vðtÞÞj ≤ ξð∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞ

Consider the two functions

w1ðtÞ ¼
Xn

i¼1

βiðtÞuðt−τiÞ þ U
αf 1ðt, uðtÞÞ∈Λu

and

w2ðtÞ ¼
Xn

i¼1

βiðtÞvðt−τiÞ þ U
αf 2ðt, vðtÞÞ∈Λv:

Next, observe that

jw1ðtÞ−w2ðtÞj

≤

Xn

i¼1

βiðtÞjuðt−τiÞ−vðt−τiÞj þ jUαf 1ðt, uðtÞÞ−U
αf 2ðt, vðtÞÞj

≤

Xn

i¼1

βiðtÞjuðt−τiÞ−vðt−τiÞj þ U
αjf 1ðt, uðtÞÞ−f 2ðt, vðtÞÞj

≤ nB∥u−v∥þ
Tα

Γðαþ 1Þ
jf 1ðt, uðtÞÞ−f 2ðt, vðtÞÞj

≤ nB∥u−v∥þ
Tα

Γðαþ 1Þ
ξð∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞ

It follows that

HðΛu,ΛvÞ ≤nB∥u−v∥þ
Tα

Γðαþ 1Þ
ξð∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞ:

Consequently, we have for each ðu, vÞ∈Πi ·Πiþ1, i∈ {1, 2,⋯, p}, that

ψðHðΛu,ΛvÞ, ∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞ ≤ 0:

We may deduce similarly that the above inequality holds also in the case ðu, vÞ∈Πiþ1 ·Πi.

Apply Theorem 2.7 to obtain the desired result.

We next consider the existence of solutions to Eq. (2) in the case when an ordering ⊑ is defined

on Ω in such a way that for u, v∈Ω,

u⊑v⇔uðtÞ ≤ vðtÞ a:e: t∈ J

It is easy to see that if ðunÞ is a nondecreasing sequence in Ω which converges to some u∗ ∈Ω,

then un⊑u∗ for all n∈N. In the further step, we shall need in the initial state that a weak

solution to Eq. (2) exists.
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DEFINITION 2.15. Suppose that ðΩ,⊑Þ is a partially ordered set. A phweak solution for the

problem (2) (w.r.t. ⊑) is a function u∈Ω such that u⊑v for all v∈Λu.

COROLLARY 2.16. According to Eq. (2), assume that there is an ordering ⊑ defined on Ω. Suppose also

that we have the following properties:

1. t↦Fðt, uðtÞÞ is measurable for each u∈Ω;

2. there exists a function ξ : R
5
þ ! Rþ such that

HðFðt, uðtÞÞ, Fðt, vðtÞÞÞ ≤ ξð∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞ whenever u, v∈Ω are

comparable;

3. Λ is proximal and nondecreasing;

4. a weak solution u0 ∈Ω to the problem (2) exists.

If the function ψ : R
6
þ ! Rþ given by

ψðt1, t2,⋯, t6Þ :¼ t1−nBt2−
Tα

Γðαþ 1Þ
ξðt2, t3, t4, t5, t6Þ

is in the class Ψ , then the problem (2) has at least one solution.

PROOF. As in the proof of the previous theorem, we may similarly derive that

ψðHðΛu,ΛvÞ, ∥u−v∥, dðu,ΛuÞ, dðv,ΛvÞ, dðu,ΛvÞ, dðv,ΛuÞÞ ≤ 0

whenever u, v∈Ω are comparable. Therefore, we may apply Corollary 2.10 to obtain the

desired result.

3. Fractional set-valued systems in modular metric spaces

In this section, we shall consider on fixed point inclusions that are studied within a modular

metric spaces. With certain conditions, we can extend Nadler ’s theorem to the context of

modular metric spaces successfully. A modular metric space is a relatively new concept. It

generalizes and unifies both modular and metric spaces. It is therefore not necessarily

equipped with a linear structure.

Before we go further, let us first give basic definitions and related properties of a modular

metric space.

DEFINITION 3.1. ([23]). Let X be a nonempty set. A function w : ð0,∞Þ ·X ·X ! ½0, þ ∞� is said to

be a phmetric modular on X if the following conditions are satisfied for any s, t > 0 and

x, y, z∈X:

1. x ¼ y if and only if wtðx, yÞ ¼ 0 for all t > 0.

2. wtðx, yÞ ¼ wtðy, xÞ.

3. wsþtðx, yÞ ≤wsðx, zÞ þ wtðz, yÞ.
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Here, we use wtð�, �Þ :¼ wðt, � , �Þ. In this case, we say that ðX,wÞ is a phmodular metric space.

Notice that the value of a metric modular can be infinite.

Since we are focusing on the generalized metric space approach, we shall not be discussing

about modular space theory here. Suppose that ðX, dÞ is a metric space, then wtð�, �Þ :¼ dð�, �Þ is

a metric modular on X.

Now, we turn to basic definitions we need in this particular space. We start by giving the

topology of the space.

Let ðX,wÞ be a modular metric space. By defining an open ball with Bw(x;r):={z∈X; supt>0wt(x,z)

<r}, we can define a Hausdorff topology on X having the collection of all such open balls as a

base. The convergence in this topology can therefore be written by:

ðxnÞ ! x⇔sup
t>0

wtðxn, xÞ ! 0,

where ðxnÞ⊂X and x∈X. With this characterization, we now have a good hint to define the

Cauchy sequence. A sequence ðxnÞ⊂X is said to be phCauchy if for any given ε > 0, there exists

n∗ ∈N such that

sup
t>0

wtðxm, xnÞ < ε

wheneverm, n > n∗. Naturally, X is said to be phcomplete if Cauchy sequences in X converges.

We next give another route of investigation of fixed point inclusion in modular metric spaces.

This time, we shall apply more on analytical assumptions. Briefly said, we shall use the

contractivity assumptions.

Before we could stomp into the main exploration, we need the following knowledge of metric

modular of sets.

We write CðXÞ to denote the set of all nonempty closed subsets of X. For any subset A⊂Xw and

point x∈X, we denote wtðx,AÞ :¼ infy∈Awtðx, yÞ.

Given two subsets A,B∈CðXÞ, define wtðA,BÞ :¼ supx∈Awtðx,BÞ. Most importantly, the

Hausdorff-Pompieu metric modular W tðA,BÞ :¼ max{wtðA,BÞ,wtðB,AÞ}:

LEMMA 3.2. Let ðX,wÞ be a modular metric space, A∈CðXÞ and x∈X. Then,

wtðx,AÞ ¼ 0 f or all t > 0 ⇔ x∈A:

DEFINITION 3.3. Given a modular metric space ðX,wÞ and an arbitrary point x∈X. A subset Y⊂X

is said to be phreachable from x if

inf
y∈Y

sup
t>0

wtðx, yÞ ¼ sup
t>0

wtðx,YÞ < ∞:

This lemma gives a simple criterion of when the reachability holds.
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LEMMA 3.4. Let ðX,wÞ be a modular metric space with w being l.s.c., Y⊂X a nonempty compact subset.

For a point x∈X, if either infy∈Ysupt>0wtðx, yÞ < ∞ or supt>0wtðx,YÞ < ∞, then Y is reachable from

x.

The following lemma is essential in showing the solvability of fixed point inclusion for

contractivity condition.

LEMMA 3.5. Suppose that Y,Z∈CðXÞ are nonempty and z∈Z. If Y is reachable from z, then for each

ε > 0, there exists a point y
ε
∈Y such that supt>0 wtðz, yεÞ ≤ supt>0 W tðX,YÞ þ ε.

3.1. Fixed point inclusion in modular metric spaces

Now, we state the notion of the contraction and the Kannan’s contraction. Make note that these

two concepts are not generalizations of one another.

DEFINITION 3.6. Let ðX,wÞ be a modular metric space. A set-valued operator F : X⇉X is said to

be a phcontraction if there exists a constant k∈ ½0, 1Þ such that

W tðFx,FyÞ ≤ kwtðx, yÞ, (7)

for all t > 0 and x, y∈X.

If k is restricted in ½0, 12Þ and Eq. (7) is replaced with the following inequality:

W tðFðxÞ, FðyÞÞ ≤ k½wtðx, FðxÞÞ þ wtðy, FðyÞÞ�:

Then, we call F a phKannan’s contraction

Now, we present the main existence theorems.

THEOREM 3.7. Let ðX,wÞ be a complete modular metric space with w being l.s.c. and F a contraction on

X having compact values with contraction constant k. Suppose that there exists a pair of points x0 ∈X

and x1 ∈ Fðx0Þ with the following properties:

(A) the set {x0, x1} is bounded,

(B) Fðx1Þ is reachable from x1.

Then, F has at least one fixed point.

PROOF. Since Fðx1Þ is reachable from x1, by using Lemma 3.5, we may choose x2 ∈Fðx1Þ such

that

sup
t>0

wtðx1, x2Þ ≤ sup
t>0

wtðFðx0Þ, Fðx1ÞÞ þ k:

From the above evidence and the hypothesis that {x0, x1} is bounded, it comes to the follow-

ing inequalities:
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sup
w>0

wtðx2,Fðx2ÞÞ ≤ sup
t>0

wtðFðx1Þ, Fðx2ÞÞ

≤ k sup
t>0

wtðx1, x2Þ

≤ k½sup
t>0

W tðFðx0Þ, Fðx1ÞÞ þ k�

≤ k
2sup
t>0

wtðx0, x1Þ þ k
2

< ∞:

By the assumptions, we apply Lemma 3.4 to guarantee that Fðx2Þ is actually reachable from x2.

Inductively, by this procedure, we define a sequence ðxnÞ in X, with the supplement from

Lemma 3.5, satisfying the following properties for all n∈N:

xn ∈Fðxn−1Þ,
sup
t>0

wtðxn, xnþ1Þ ≤ sup
t>0

W tðFðxn−1Þ, FðxnÞÞ þ k
n
,

FðxnÞ is reachable from xn:

8

>

<

>

:

Hence, by the contractivity of F, we have

sup
t>0

wtðxn, xnþ1Þ ≤ sup
t>0

W tðFðxn−1Þ, FðxnÞÞ þ k
n

≤ k sup
t>0

wtðxn−1, xnÞ þ k
n

≤ k½k sup
t>0

wtðxn−2, xn−1Þ þ k
n−1� þ k

n

≤ k
2sup
t>0

wtðxn−2, xn−1Þ þ 2kn:

Thus, by induction, we have

sup
t>0

wtðxn, xnþ1Þ ≤ k
nsup

t>0

wtðx0, x1Þ þ nk
n
:

Moreover, it follows that

sup
t>0

X

n∈N

wtðxn, xnþ1Þ ≤ sup
t>0

wtðx0, x1Þ
X

n∈N

k
n þ

X

n∈N

nk
n
< ∞:

Without loss of generality, suppose m, n∈N and m > n. Observe that

sup
t>0

wtðxn, xmÞ ≤ sup
t>0

½w t

m−n

ðxn, xnþ1Þ þ…þ w t

m−n

ðxm−1, xmÞ�

≤ sup
t>0

wtðxn, xnþ1Þ þ…þ sup
t>0

wtðxm−1, xmÞ

≤

X

∞

n¼n∗

sup
t>0

wtðxn, xnþ1Þ

< ε,

for all m > n ≥n∗ for some n∗ ∈N. Hence, ðxnÞ is a Cauchy sequence so that the completeness of

Xw implies that ðxnÞ converges to some point x∈Xw. Consequently, we may conclude from the
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contractivity of F that the sequence ðFðxnÞÞ converges to FðxÞ. Since xn ∈ Fðxn−1Þ, we have for

any t > 0,

0 ≤wtðx, FðxÞÞ ≤wt
2
ðx, xnÞ þW t

2
ðFðxn−1Þ, FðxÞÞ,

which implies that wtðx, FðxÞÞ ¼ 0 for all t > 0. Since FðxÞ is closed, it then follows from Lemma

3.2 that x∈ FðxÞ.

EXAMPLE 3.8. Suppose that X ¼ ½0, 1� and w : ð0, þ ∞Þ ·X ·X ! ½0, þ ∞� is defined by

wtðx, yÞ ¼
1

ð1þ tÞ
jx−yj:

Clearly, w is an l.s.c. metric modular on X. Notice that any two-point subset is bounded. Now,

we define a set-valued operator F : X⇉X by

FðxÞ :¼
xþ 1

2
; 1

� �

for every x∈X.

Observe that F has compact values on X. Note that for each t > 0 and x, y∈X, we have

W tðFx, FyÞ ¼
1

2ð1þ tÞ
jx−yj ≤

1

2
wtðx, yÞ:

Therefore, F is a contraction with contraction constant k ¼ 1
2. Moreover, it is easy to see that the

conditions (A) and (B) hold. Finally, we have that 1 is a fixed point of F (and it is unique).

Next, we shall show that the fixed point in the above theorem needs not be unique, as we shall

see in the following example:

EXAMPLE 3.9. Suppose that X is defined as in the previous example. Consider the operator

G : X⇉X given by

GðxÞ :¼ 0,

xþ 1

2

� �

,

for each x∈X.

Note that this operator G is also a contraction with constant k ¼ 1
2 and takes compact values on

X. Also, the conditions (A) and (B) hold. However, every point in X is a fixed point of G. This

shows the nonuniqueness of fixed points for a set-valued contraction.

THEOREM 3.10. Replacing F in Theorem 3.7 with a Kannan’s contraction yields the same existence result.

PROOF. Since Fðx1Þ is reachable from x1, by using Lemma 3.5, we may choose x2 ∈Fðx1Þ such that
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sup
t>0

wtðx1, x2Þ ≤ sup
t>0

W tðFðx0Þ, Fðx1ÞÞ þ k:

Now, observe that

sup
t>0

wtðx2, Fðx2ÞÞ

≤ sup
t>0

W tðFðx1Þ, Fðx2ÞÞ

≤ k sup
t>0

wtðx1, Fðx1ÞÞ þ k sup
t>0

wtðx2,Fðx2ÞÞ

≤ k sup
t>0

W tðFðx0Þ,Fðx1ÞÞ þ k sup
t>0

wtðx2, Fðx2ÞÞ

≤ k sup
t>0

wtðx0, Fðx0ÞÞ þ k sup
t>0

wtðx1,Fðx1ÞÞ þ k sup
t>0

wtðx2, Fðx2ÞÞ

≤ k sup
t>0

wtðx0, x1Þ þ k sup
t>0

wtðx1, Fðx1ÞÞ þ k sup
t>0

wtðx2, Fðx2ÞÞ:

Writing ξ :¼ k

1−k < 1, we obtain, from the boundedness of {x0, x1} and the reachability of Fðx1Þ

from x1, that

sup
t>0

wtðx2, Fðx2ÞÞ ≤ ξ sup
t>0

wtðx0, x1Þ þ ξ sup
t>0

wtðx1, Fðx1ÞÞ < ∞:

Thus, from the assumptions and Lemma 3.5, we may see that Fðx2Þ is reachable from x2.

Inductively, we can construct a sequence ðxnÞ in X with exactly the same properties appearing

in the proof of Theorem 3.7.

Now, consider further that

sup
t>0

wtðxn, xnþ1Þ

≤ sup
t>0

W tðFðxn−1Þ, FðxnÞÞ þ k
n

≤ k sup
t>0

wtðxn−1, Fðxn−1ÞÞ þ k sup
t>0

wtðxn, FðxnÞÞ þ k
n

≤ k sup
t>0

wtðxn−1, Fðxn−1ÞÞ þ k sup
t>0

wtðxn, xnþ1Þ þ k
n
:

Moreover, we get

sup
t>0

wtðxn, xnþ1Þ ≤ ξ sup
t>0

wtðxn−1, xnÞ þ
k
n

1−k

≤ ξ
2 sup

t>0

wtðxn−2, xn−1Þ þ
k
n

ð1−kÞ2
þ

k
n

ð1−kÞ

≤ ξ2 sup
t>0

wtðxn−2, xn−1Þ þ 2 �
k
n

ð1−kÞ2

⋮

≤ ξn sup
t>0

wtðx0, x1Þ þ nξn:

As in the proof of Theorem 3.7, the sequence ðxnÞ converges to some x∈X. Observe now that
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sup
t>0

wtðx, FðxÞÞ

¼ sup
t>0

wtð{x}, FðxÞÞ

≤ sup
t>0

wtð{x}, FðxnÞÞ þ sup
t>0

wtðFðxnÞ, FðxÞÞ

¼ sup
t>0

wtðx, FðxnÞÞ þ sup
t>0

wtðFðxnÞ, FðxÞÞ

≤ sup
t>0

wtðx, xnþ1Þ þ sup
t>0

W tðFðxnÞ, FðxÞÞ

≤ sup
t>0

wtðx, xnþ1Þ þ k sup
t>0

wtðxn, FðxnÞÞ þ k sup
t>0

wtðx, FðxÞÞ

¼ ð1þ kÞsup
t>0

wtðx, xnþ1Þ þ k sup
t>0

wtðx, FðxÞÞ:

Thus, we have

sup
t>0

wtðx, FðxÞÞ ≤
1þ k

1−k
sup
t>0

wtðx, xnþ1Þ:

Letting n ! ∞ to conclude the theorem.

3.2. Fractional integral inclusion

In this particular subsection, we shall use notations a bit differently than those of earlier

sections. This is due to conventional uses of variables and functions that is common to integral

and differential equations.

Suppose that Ψ is the interval mentioned in the previous section. Let us assume throughout

the section that the real line R is equipped with the metric modular

ωRλ ðx, yÞ :¼
1

1þ λ
jx−yj,

for λ > 0 and x, y∈R. Thus, for the space CðΨ Þ of all continuous (in ωR-topology) real-valued

functions on Ψ , we shall use the metric modular

ω
CðΨ Þ
λ ðϕ,ψÞ :¼ sup

t∈Ψ

ωRλ ðϕðtÞ,ψðtÞÞ,

for λ > 0 and ϕ,ψ∈CðΨ Þ. Note that both ωR and ωCðΨ Þ satisfy the Fatou’s property. Also note

that the set R is second countable, i.e., it has a countable base, w.r.t. ωR-topology. Moreover, it

is clear that the set {ϕ,ψ} is bounded w.r.t. ωCðΨ Þ, for any ϕ,ψ∈CðΨ Þ. Suppose that

F : Ψ ·R! 2R is a set-valued operator with nonempty compact values and u∈CðΨ Þ. We shall

use the following notation to explain the collection of integrable selections:

SFðuÞ :¼ f ∈L1ðΨ ,μÞ ; f ðtÞ∈ Fðt, uðtÞÞa:e:t∈Ψ
� 	

:

It is clear that SFðuÞ is closed. Next, for each i∈ {0, 1,⋯,N}, N∈N, assume that βi : Ψ ! R is

continuous and τi : Ψ ! Rþ is a function with τiðtÞ ≤ t. We write B :¼ max0 ≤ i ≤Nsupt∈ΨβiðtÞ.

The main aim of this section is to consider the fractional integral inclusion:

Dynamical Systems - Analytical and Computational Techniques162



uðtÞ−
X

N

i¼0

βiðtÞuðt−τiðtÞÞ∈ JαΨFðt, uðtÞÞdt,   α∈ ð0, 1�: (FII)

In the above inclusion, the summation here is interpreted to be the delay term.

We shall define a set-valued operator Λ : CðΨ Þ ! 2CðΨ Þ by

ΛðuÞ :¼ w∈CðΨ Þ ; wðtÞ ¼
X

N

i¼0

βiðtÞuðt−τiðtÞÞ þ IαΨ f ðt,uðtÞÞdt,   f ∈SFðuÞ

( )

:

Note here that for any ϕ∈CðΨ Þ, we have ΛðϕÞ is reachable from ϕ w.r.t. ωCðΨ Þ. To restrict the

operator Λ with some nice property, we assume that SFðuÞ is nonempty.

LEMMA 3.11. The operator Λ given above is compact valued if SFðuÞ is nonempty.

PROOF. For the proof, we shall show the compactness by its sequential characterization. Sup-

pose that u∈CðΨ Þ and ðwnÞ is an arbitrary sequence in ΛðuÞ. By definition, there corresponds a

convergent sequence ðf nÞ in SFðuÞ⊂Fð�, uð�ÞÞ satisfying

wnðtÞ ¼
X

N

i¼0

βiðtÞuðt−τiðtÞÞ þ IαΨ f nðt, uðtÞÞdt:

The conclusion is then followed.

Now, we shall state now the solvability result for the problem (FII). It is clear that u∈CðΨ Þ

solves Eq. (FII) if and only if u is a fixed point of Λ.

THEOREM 3.12.Suppose that F defined above is compact-valued and SFðuÞ is nonempty.Assume further that

(F1) for any given u, v∈CðΨ Þ and a selection f ∈ SFðuÞ of F, there corresponds a function f ′ ∈ SFðvÞ

such that

ωRλ ðf ðt, uðtÞÞ, f
′ðt, vðtÞÞÞ ¼ ωRλ ðf 1ðt, uðtÞÞ, Fðt, vðtÞÞÞ,

ωRλ ðf ðt, uðtÞÞ, f
′ðt, vðtÞÞÞ ≤ Lω

CðΨ Þ
λ ðu, vÞ,

(

for all t∈Ψ ;

(F2) ðNþ1ÞBΓðαÞþLTα

ΓðαÞ < 1.

Then, Λ has a fixed point.

PROOF. For each u, v∈CðΨ Þ, we may choose, from the assumption, functions f 1, f 2 such that

f 1 ∈SFðuÞ,

f 2 ∈SFðvÞ,

ωRλ ðf 1ðt, uðtÞÞ, f 2ðt, vðtÞÞÞ ¼ ωRλ ðf 1ðt, uðtÞÞ, Fðt, vðtÞÞÞ,

ωRλ ðf 1ðt, uðtÞÞ, f 2ðt, vðtÞÞÞ ≤Lω
CðΨ Þ
λ ðu, vÞ,

8

>

>

>

>

<

>

>

>

>

:
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for each t∈Ψ . Consider the two functions w1 ∈ΛðuÞ and w2 ∈ΛðvÞ, respectively as follows:

w1ðtÞ :¼
XN

i¼0
βiðtÞuðt−τiðtÞÞ þ IαΨ f 1ðt, uðtÞÞdt,

w2ðtÞ :¼
XN

i¼0
βiðtÞvðt−τiðtÞÞ þ IαΨ f 2ðt, vðtÞÞdt:

8

>

<

>

:

Now, consider the following computation:

ωRλ ðw1ðtÞ,w2ðtÞÞ

≤

X

N

i¼0

βiðtÞω
R

λ ðuðt−τiðtÞÞ, vðt−τiðtÞÞ

þ ω
CðΨ Þ
λ ðIαΨ f 1ðt, uðtÞÞdt, I

α
Ψ f 2ðt,uðtÞÞdtÞ

≤ ðN þ 1ÞBω
CðΨ Þ
λ ðu, vÞ þ IαΨω

R

λ ðf 1ðt, uðtÞÞ, f 2ðt, vðtÞÞÞ

≤ ðN þ 1ÞBω
CðΨ Þ
λ ðu, vÞ þ

LTα

ΓðαÞ
ω

CðΨ Þ
λ ðu, vÞ

¼
ðN þ 1ÞBΓðαÞ þ LTα

ΓðαÞ

� �

ω
CðΨ Þ
λ ðu, vÞ:

It follows that

Ω
CðΨ Þ
λ ðΛðuÞ,ΛðvÞÞ ≤

ðN þ 1ÞBΓðαÞ þ LTα

ΓðαÞ

� �

ω
CðΨ Þ
λ ðu, vÞ:

The proof ends here by applying Theorem 3.7.
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