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Abstract

Non‐typhoidal Salmonella is the primary foodborne zoonotic agent of salmonellosis in 
many countries. Non‐typhoidal Salmonella infections are transmitted to humans primar‐
ily through consumption of contaminated foods from animal origin, whereas S. Typhi 
and Paratyphi infections are spread directly or indirectly by contact with an infected 
person. Quinolones exhibit potent antibacterial activity against Salmonella and are usu‐
ally the first choice of treatment for life‐threatening salmonellosis due to multidrug‐
resistant strains. However, by the early 1990s, quinolones have been approved for use 
in food‐producing animals. The increased use of this group of antimicrobials in animal 
has led to the concomitant emergence of quinolone‐resistant non‐typhoidal Salmonella 
strains. However, in some countries, there are no legal provisions, which apply to vet‐
erinary drugs. This situation provides favorable conditions for spread and persistence 
of quinolone‐resistant bacteria in food‐producing animals. The objective of this chapter 
is to review the current regulatory controls for the use of quinolones in food‐producing 
animals, its effect on development of quinolone resistance, and the potential impact on 
human and animal health. Moreover, this chapter reviews the current knowledge of qui‐
nolone resistance mechanisms and the future directions of research with particular atten‐
tion to the strategies to control the emergence of quinolone‐resistant Salmonella.

Keywords: non‐typhoidal Salmonella, quinolones, resistance

1. Introduction

Non‐typhoidal Salmonella refers to a group of bacteria that cause diarrheal illness in humans 

and domestic animals. More than 2500 different serovars of non‐typhoidal Salmonella have 

been described: all serovars of Salmonella except for Typhi, Paratyphi A, Paratyphi B (tartrate 

negative), and Paratyphi C. Non‐typhoidal Salmonella are important causes of foodborne 

infection because Salmonella have a broad host range and are strongly associated with animal 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and plant products. Humans are infected by consumption of food or water contaminated 

with Salmonella and direct contact transmission between infected animals and humans in 

a variety of ways or contaminated environment and directly between humans. The recent 

outbreaks show that fresh fruits and vegetables can be contaminated with non‐typhoidal 

Salmonella especially sprouts, tomatoes, fruits, peanuts, and spinach [1–5]. Non‐typhoidal 

Salmonella is commonly found in food products derived from the animal species such as 

poultry, eggs, dairy products, and contaminated pets such as cats, dogs, rodents, reptiles, or 

amphibians [6–9].

Non‐typhoidal Salmonella is a leading cause of bacterial diarrhea worldwide, in contrast to 

typhoid fever, which remains endemic in developing countries. There are an estimated 

93.8 million cases of non‐typhoidal Salmonella gastroenteritis, resulting in approximately 

155,000 deaths globally each year [10]. Gastroenteritis is the most frequent clinical symptom 

of non‐typhoidal Salmonella infection. The incubation period of non‐typhoidal Salmonella gas‐

troenteritis is 6–72 h, usually 12–36 h after initial exposure. The classic presentation in non‐
typhoidal Salmonella gastroenteritis has self‐limiting, acute gastroenteritis, watery diarrhea, 

abdominal pain, fever, nausea, and sometimes vomiting [11]. The gastroenteritis usually lasts 

4–7 days, and most people recover with little or no treatment [12]. Non‐typhoidal salmonel‐

losis clinical presentations differ significantly by serovars such as S. Typhimurium and S. 

Enteritidis, have a broad host range, and can cause gastrointestinal infections with less sever‐

ity than typhoidal enteric fever which affects both humans and a wide variety of animal hosts. 
An infection with S. Choleraesuis is primarily responsible for the severe systemic illness of 

salmonellosis in human and swine. Some serotypes such as S. Dublin are responsible for the 

systemic salmonellosis in humans and also cause death in young calves, occasionally death 

in mature cattle and results in decreased milk production, diarrhea, and abortion in cattle. 
Rates of invasive systemic salmonellosis and death are generally higher among persons with 

high‐risk conditions, infants aged <3 months, elderly aged ≥60 years, the debilitated, immu‐

nosuppressive conditions, and malignant neoplasms.

Antimicrobial therapy can prolong the duration of excretion of non‐typhoidal Salmonella and, 

therefore, is only considered for gastroenteritis patients caused by Salmonella species with 

moderate‐to‐severe diarrhea, high fever, or systemic infection and for gastroenteritis in peo‐

ple at increased risk of invasive disease (persons with high‐risk conditions). Current recom‐

mendations are that fluoroquinolones (FQs) be reserved for patients with moderate‐to‐severe 
diarrhea by non‐typhoidal Salmonella infection. Resistance among non‐typhoidal Salmonella 

serovars to the first‐line antibiotics such as chloramphenicol, ampicillin, trimethoprim‐sulfa‐

methoxazole, and cotrimoxazole has been present for many years, and resistance to FQs has 
also increased over the last decade.

The emergence of quinolone‐resistant non‐typhoidal Salmonella varies by serotype and geo‐

graphic location. Therefore, the control of quinolone‐resistant non‐typhoidal Salmonella infec‐

tion is difficult. There is a high need to understand the quinolone resistance mechanisms for 
preventing the further quinolone resistance development through the better interventional 
strategies that prevent spread of quinolone‐resistant Salmonella between humans and animal 

reservoirs along the food chain.
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2. Quinolone use in food‐producing animals

The first quinolone was generated in the early 1960s. The first member of the quinolones is 
nalidixic acid (NAL), a 1,8‐naphthyridine as shown in Figure 1, which had a good activity 

against Gram‐negative pathogens and was used to treat urinary tract infections. However, 

the use of NAL was decreased due to the increasing resistance of this drug and because of 

the synthesis of new, broad‐spectrum, and safer antimicrobials. The molecular modifications 
of the core quinolone structure significantly affect their antimicrobial activity, allowing the 
synthesis of various compounds of this drug class.

FQs (fluorinated derivatives of quinolones) were first developed since the 1980s. The presence 
of fluorine in position 6 of the core quinolone structure provides broad and potent antimicrobial 
activity against Gram‐positive and Gram‐negative bacteria because it significantly enhances 
the antibiotics’ penetration into the bacterial cell membrane. Norfloxacin (NOR), launched 
in 1980, is a first broad‐spectrum FQ which consisted of a piperazinyl ring that replaces the 
methyl group at position 7 (Figure 1) results in enhancing activity against Gram‐negative bac‐

teria [13]. Ciprofloxacin (CIP) has similar structure to NOR except the ethyl group at N‐1 of 
CIP is replaced by a cyclopropyl group (Figure 1) that increasing the spectrum of action which 

not only active against Gram‐negative bacteria but also against Gram‐positive bacteria [14]. 

The structure of enrofloxacin (ENR) is similar to CIP but with an additional ethyl group on the 
piperazinyl ring (Figure 1).

Figure 1. The structural features of four different quinolones.
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All these structural modifications in the molecular molecule of quinolones improved a spec‐

trum of drug activity, tissue penetration, long half‐life in the body, lower toxicity, and greater 

capacity to cross bacterial cell membranes and consequently better activity against Gram‐
negative bacteria and Gram‐positive species. Their treatment indications developed from uri‐

nary infection to applications against many other systemic diseases. The last generations of 

quinolones provide the activity against anaerobic bacteria.

FQs have been licensed for use in food animals at the beginning of the 1990s, and subse‐

quently, a new FQs extensively have been authorized, and a large number of different 
veterinary pharmaceutical products have been launched in the market [15]. ENR exhibits 

good activity against most Gram‐negative bacteria, including Escherichia coli, Campylobacter, 

Enterobacter, Serratia, Chlamydia, and Mycobacterium, and has a variable effect on Pseudomonas, 

Enterococcus, Clostridium, Staphylococcus, and Streptococcus. The efficacies of ENR treatment in 
food‐producing animals have been reported in turkeys against Pasteurella multocida infections 

and in chickens against E. coli infections. Danofloxacin (DFX) and ENR are licensed for use 
in food‐producing animals in the United States. ENR and DFX are currently approved to be 
good choices for therapy of bovine respiratory disease (BRD) in high‐risk cattle. ENR is also 
currently approved for treatment of swine respiratory disease (SRD). DFX and ENR are only 
available as a sterile injectable solution for animal usage and should be administered under 

a prescription from a veterinarian. ENR is FQ antimicrobial agent frequently used in poultry 
production, sold by the Bayer Corporation under the trade name Baytril; however, it is also 

sold under the various generic names. ENR is a FQ antibiotic that is very similar to the human 
drug CIP. Under current legislation, if a small number of chickens present the clinical signs 
and symptoms, ENR can be used to treat the whole flock by adding the drug into the drinking 
water, even when most of the chickens are not sick. FQs can also be used to treat infections in 
breeding flocks, and the transmission of drug‐resistant organisms may occur among chicks.

Finland and Denmark ban all the uses of FQs in poultry; however, they are used in other 
species of farm livestock. Australia has never approved the use of FQs in poultry and any 
farm animals, and consequently, resistance to FQs in zoonotic bacteria such as Campylobacter 

and Salmonella has a low prevalence in farm animals. The prevalence in human infected with 

resistant bacteria is also much lower than in many other countries. Resistant Campylobacter 

infections were low just 0% in 2003 and 2.6% in 2006; however, nearly all of these cases were 

returning travelers [16]. Human infections with resistant E. coli were also low in preva‐

lence at 4–5% [16]. Finland does not approve the use of FQs in poultry result in no resis‐

tant Campylobacter from poultry productions in 2007, and the resistance in Campylobacter was 

found only 1% in 2008 and 2009. Resistant Campylobacter infections of Finnish patients who 
had not traveled abroad were found 2–3% and 61% were investigated from the patients who 

have traveled abroad within 2 weeks [17].

In September 2005, the U.S. Food and Drug Administration (FDA) banned the use of FQs for 
treating bacterial infections in U.S. poultry result from concerns about increasing in FQ resis‐

tance among Campylobacter isolates of poultry and humans. Although the FQs were banned 
in the US in 2005, the impact of the ban on resistance in human C. jejuni is not clear because 

the resistant isolates in 2013 remained at the same level as in 2005 (22%). In retail chicken, 
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CIP resistance in C. coli has decreased to 13.5% in 2010 from 29% in 2005; however, resistance 

in C. jejuni significantly increased from 15.2 to 22.5% from 2002 to 2010. It may be caused by 
the illegal use of FQs in the U.S. poultry industry.

3. A contribution of veterinary usage of quinolones to resistance in 

human non‐typhoidal Salmonella isolates

Multidrug resistance in non‐typhoidal Salmonella is a global problem, and these strains are 

linked to more severe disease outcome. Serovars Typhimurium and Newport, two of most 

common serotypes, are more resistant to multiple antimicrobial agents than the other sero‐

types [18]. Multidrug‐resistant S. Typhimurium definitive type (DT) 104, was first detected in 
1980s, emerged as a public health concern because of its global distribution in diseases among 

animal species such as poultry, pigs, and sheep and humans [19, 20]. The emergence and 

worldwide spread of multidrug‐resistant S. Typhimurium DT104 isolates are associated with 

the intake of contaminated meat and meat products. Many strains of S. Typhimurium DT104 

are generally resistant to ampicillin, chloramphenicol, streptomycin, sulphonamides, and 

tetracycline [21]. Moreover, new resistant strains of non‐typhoidal Salmonella are constantly 

rising worldwide and resistant against ampicillin, chloramphenicol, kanamycin, streptomy‐

cin, trimethoprim, and cotrimoxazole [22–24], for example, a multidrug‐resistant strains of 

serovars Virchow [25], Heidelberg [26], and Infantis [27, 28].

Quinolones were introduced for veterinary use in various countries, and subsequent use has 

been followed by the development of quinolone resistance in bacteria of food‐producing 

animals and consequently transmits the resistant zoonotic bacteria to humans [29]. In many 
countries, FQs are drug of first choice for prescription in acute gastrointestinal symptoms 
caused by Salmonella infection, and resistance to this drug group has often been described, 

particularly to NAL [15]. In a study performed between 1996 and 2003, Salmonella isolates 

were investigated for quinolone susceptibility; the results revealed that NAL and CIP resis‐

tances were 1.6 and 7%, respectively. A significant upward trend in resistance was observed 
for NAL from 0.4% in 1996 to 2.3% in 2003 [30]. In Germany, an increase in the frequency 
of NAL‐resistant Salmonella strains was discovered after the approval and use of ENR [31]. 

Concurrent increase in resistance was observed in France among Salmonella isolates from 

animals and humans, and the same clones were determined among the different hosts [32]. 

In the United Kingdom, also in Spain, the incidence of NAL‐resistant Salmonella illnesses in 

humans was increased followed the introduction for veterinary use of FQs in 1993 [33, 34]. 

A study from Denmark and Taiwan described the emergence of salmonellosis caused by 

multidrug and quinolone‐resistant S. Typhimurium DT104 linked to a swine herd and the 

subsequent spread of those isolates to humans [35–37]. In European countries, similar associa‐

tions between FQ resistance development in Salmonella infecting humans and retail poultry 

products have been described. Therefore, the FQ‐resistant Salmonella in poultry has reached 

alarming proportions in some countries [38]. In the United States, there was an increase in the 
proportion of FQ resistance development in Salmonella infections following the first approved 
use of FQs in food‐producing animals in 1995 [39].
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The data indicate that it would be reasonable to assume that the veterinary usage of FQs will 
have made a remarkable contribution to FQ resistance in human Salmonella infections.

4. The potential impact on human health

FQ resistance in Salmonella is clearly associated with FQ use in food‐producing animals, 
and foodborne infections caused by such resistant bacteria are well investigated in human. 

FQ resistance in S. Typhimurium DT104 has been associated with increased hospitalization, 

more frequent and longer illness, treatment failures, and a higher risk of death [40]. Many 

studies also investigated that infections with multidrug‐resistant Salmonella were associated 

with longer hospitalization and a higher death rate than infections with susceptible isolates 

[41–43]. Previous study has found a 3.15 times increased mortality when patients infected 

with NAL‐resistant S. Typhimurium compared to patients infected with susceptible isolates 

[44]. For treatment of the infections with FQ‐resistant Salmonella, alternative antimicrobials 

are the third or fourth generation cephalosporin. Nevertheless, it should be considered con‐

traindications for treatment of uncomplicated non‐typhoidal Salmonella infection because FQ 
treatment can induce prolonged excretion of Salmonella and increased frequency of relapses 

[45]. However, for patients at risk such as immunocompromised, severely infected and 

elderly, FQs are considered first choice drugs and effective in reducing the disease length if 
the treatment starts early in the infection.

5. The potential impact on animal health

FQs are highly potent antimicrobial agents rapidly absorbed after oral administration and 
have a long half‐life and widespread distribution to most body tissues, which made them 

suitable for using in herd treatment of food‐producing animals. FQs are effective for serious 
infections in food‐producing animals such as systematic gastroenteritis and severe respira‐

tory diseases and are also used to treat urinary tract, skin, and soft‐tissue infections caused by 

Gram‐negative or some Gram‐positive aerobic bacteria. Moreover, they also have potential 

for treatment of infections caused by Mycoplasma, Mycobacterium, Chlamydia, Ehrlichia, and 

Rickettsia. However, documentation about authorized dosages and the effectiveness of FQs to 
treat all these infections in animals have not been determined on the base of the pharmaco‐

kinetic and pharmacodynamics properties. Sufficient knowledge about the selecting optimal 
dose and duration of FQs could help to develop appropriate dosing regimens to maximize 
the clinical efficacy, avoid therapeutic failure, and decrease the selection of resistance which 
would ensure for the benefit of animals and their future use.

However, the potential clinical disadvantage associated with FQ use was a rapid selection 
for resistance. Several pathogenic bacteria of food‐producing animals have been investigated 

the increasing of resistance to FQs following the introduction of ENR [46]. If FQ resistance 
emerges in animal pathogenic bacteria, this may result in treatment failure and increased 

mortality. This is a risk for poor animal welfare conditions and will result in economical 
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losses. Consequently, for some animal infectious diseases, antimicrobial therapeutic use will 

be complicated if FQs lose their efficacy. As described in a previous study, multidrug‐resis‐

tant S. Typhimurium infections in veal calves were resistant to most conventionally used 

antimicrobials and also resistant to ENR resulted in a mortality exceeding 90%. FQs are also 
considered effective in other infections such as pneumonia, neonatal diarrhea, and mastitis 
caused by Gram‐negative organisms in piglets and calves. However, there were insufficient 
data to support the animal health or welfare problems when diseases cannot be treated result 

from FQ resistance during treatment.

6. The current state of knowledge of quinolone resistance mechanisms

FQs are strong inhibitors of bacterial enzymes, which are necessary enzymes associated in 
major biological processes including DNA replication [47–49]. In prokaryotes, DNA is known 
as a double helix because there are two strands that intertwine around each other. However, 

additional complexity comes from the further twisting (supercoiling) of the double‐strand 

structure to put the double helix under torsion stress [50]. This supercoiling process that 

enables the long strands of DNA is condensed into compact supercoils permitting large 
amounts of DNA to be packed into the cell [51].

Topoisomerase I and topoisomerase II enzymes are enzymes that regulate the overwinding 
or underwinding of DNA and control the level of twisting within DNA. Topoisomerase 

I removes the number of negative supercoils, in contrast to topoisomerase II, which intro‐

duces negative supercoils that facilitate the unwinding of the over‐twisted DNA and can 

further change the DNA topology into an under‐twisted DNA [50]. DNA gyrase and DNA 

topoisomerase IV are type II topoisomerase comprising 2 A subunits and 2 B subunits enco‐
ded by the gyrA and gyrB genes or 2 C subunits and 2 E subunits encoded by the parC 

and parE genes, respectively [52]. DNA gyrase and topoisomerase IV have distinct roles 
although both enzymes have homologous action to relax positively supercoiled DNA. DNA 

gyrase decatenates replicating DNA by introducing negative supercoils into relaxed DNA 

while topoisomerase IV unlinks the newly replicated daughter chromosomes during cell 
division [52–54].

FQs are direct inhibitors of bacterial DNA synthesis by inhibiting two enzymes, DNA gyrase 
and topoisomerase IV, which have important roles in DNA replication. The quinolones bind 
to these enzymes with DNA to form drug‐enzyme‐DNA complexes (known as a ternary 

complex) subsequently induces double‐strand DNA breaks and blocks replication, therefore, 

results in damage to bacterial DNA and bacterial cell death [55–58]. However, the primary 

target enzyme, either DNA gyrase or topoisomerase IV, of FQs varies depending on the bacte‐

rial species. The preferential target of FQs in Gram‐negative bacteria is DNA gyrase, whereas 
in Gram‐positive microorganisms, topoisomerase IV is the primary target [58].

Resistance to quinolones occurs by different ways. The major mechanisms of bacterial resis‐

tance to FQs are altered target enzymes, expression of an active efflux, and altered membrane 
permeability.
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6.1. Target‐site mutation

The main mechanism of FQ resistance is due to mutation in target genes (gyrA, gyrB, parC, and 

parE) that encode the primary and secondary target enzymes of these drugs. The mutations 

in quinolone resistance‐determining region (QRDR) of target genes alter the target enzyme 

conformation by amino acid substitutions and subsequently decrease in the drug binding 

affinity of the target enzyme, leading to FQ resistance [59–62].

In Salmonella, quinolone resistance was firstly investigated in the gyrA gene coding for the 

A subunit of gyrase. Mutations associated with FQ resistance in GyrA have been clustered 
between amino acids 67 and 106, termed the QRDR region. Amino acid substitutions of GyrA 

at Ser83 (to Phe, Tyr, or Ala) or at Asp87 (to Gly, Asn, or Tyr) are most usually identified in 
NAL‐resistant Salmonella strains. Previous studies have observed that single point mutation in 

QRDR of gyrA led to reduced sensitivity to CIP in Salmonella isolates [63]. Similar decreasing in 

CIP susceptibility was also found in three amino acid mutations of parC at Ser67 (to Cys), Arg76 

(to Cys), and Cys80 (to Arg) in S. Enteritidis [64, 65]. Nevertheless, less frequently, the previous 

study detected novel mutations inside QRDR of GyrA at codon Asp72, Asp82, and Ala119 and 

also outside the QRDR [66]. Moreover, in another studies, the authors found double mutations 

in GyrA at both Ser83 and Asp87 in S. Typhimurium DT204 [67] and a single mutation at Asp87 

(to Tyr) in all Salmonella strains [68] showing high‐level resistance to FQs. A gyrB gene mutation 

has also been observed in a quinolone‐resistant S. Typhimurium at Ser463 (to Tyr) [69].

These target‐site mutations show that different mutations of FQ‐resistant Salmonella isolates 

can result in very different resistance levels of quinolones, and this is not the same for all 
strains and all resistance mutations. Therefore, amino acid substitutions in topoisomerases 

are inadequate to clarify the level of resistance to quinolones in S. enterica. Nevertheless, 

it remains to be investigated what the specific role of these mutations on quinolone resistance 
in Salmonella.

6.2. Transmissible quinolone‐resistance mechanisms

Plasmid‐mediated quinolone resistance (PMQR) genes on mobile genetic elements are able to 

reduce susceptibility of quinolone or FQ antimicrobials. The PMQR gene, qnr, encodes a pen‐

tapeptide repeat motif protein (Qnr) that protects the target enzyme DNA gyrase and topoi‐

somerase IV by blocking the quinolone inhibition [70]. Recently, several Qnr proteins were 

investigated in Enterobacteriaceae (QnrA, QnrB, QnrC, QnrD, QnrS) [71, 72]. A recent study 

reported six variants of qnrB genes in Salmonella and E. coli isolates of human and animal 

isolates [73]. Nonetheless, the prevalence of qnrS genes is higher than the other qnr genes in 

Salmonella. A study from different European countries investigated a qnrS gene in 10% of the 

Salmonella isolates [73]. Moreover, qnrS gene has been identified in non‐typhoidal Salmonella 

clinical isolate from the USA [74]. The qnrD gene also has been investigated in eight different 
Salmonella serovars from 13 European countries [73].

Another plasmid‐encoded quinolone resistance determinant is a variant of an aminogly‐

coside acetyl transferase gene, aac(6')‐Ib‐cr, which is able to acetylate the amino nitrogen 

on the piperazinyl substituent in aminoglycoside, and FQ drug classes lead to decreased 
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susceptibility of these drugs [75–77]. However, the variant enzyme is not able to acetylate 

moxifloxacin and levofloxacin due to the absence of a piperazinyl substituent at position 
C‐7. Recently, this aac(6')‐Ib‐cr gene has been reported in Salmonella isolated from chickens 

in China [78]. Plasmid‐mediated quinolone resistance determinants in Salmonella isolated 

from food‐producing animals are serious public health concern. Continuous surveillance of 

quinolone resistance determinants at national and international levels needs for limiting the 

dissemination of quinolone‐resistant Salmonella strains.

6.3. Membrane permeability

The membrane permeability and the ability of FQs to enter the bacterial cells are an  important 
determinant of the potency of these drugs that have intracellular targets [79]. The outer‐

membrane proteins (OMPs) of Gram‐negative bacteria consist of pore‐forming outer‐mem‐

brane proteins which serve as a particular barrier for the entry of hydrophilic molecules into 

the cell. It has been shown that CIP (hydrophilic quinolones) preferentially entry into the 
cells via porin pathway [80]. Down‐regulation of OMPs results in reduced FQ susceptibility 
in FQ‐resistant isolates of different species [81–84]. Very few researches have investigated on 

alterations of OMP expression or the role of lipopolysaccharide composition in quinolone‐
resistant Salmonella isolates [68, 85–89]. The lengthening of the O chains has been studied in 
quinolone‐resistant Salmonella that could also lead to a lower level in the permeability of the 

outer membrane [85]. The previous studies have found the lack of OmpF porin expression 
result from SoxS up‐regulates micF transcription in quinolone‐resistant Salmonella strains 

[86–88, 90]. However, it remains unclear whether such alterations contributed to signifi‐

cant reduction of outer‐membrane permeability and reduced susceptibility of quinolones in 

Salmonella isolates.

6.4. Efflux

Chromosomal multidrug efflux pumps are capable of actively removing FQs and a broad 
range of antimicrobial agents from the bacterial cell and are mostly encoded by chromo‐

somal genes. These efflux systems consist of different classes of transporters such as the 
resistance nodulation division (RND) family of tripartite transporters of Gram‐negative 

pathogens [91, 92]. These systems are mainly responsible for the intrinsic pattern of reduced 
susceptibility to FQs and other antimicrobial agents but are also responsible for increased 
resistance resulting from derepression of the transporter. Previous studies showed the evi‐

dence for the participation of active efflux in quinolone‐resistant Salmonella isolates [85, 93]. 

It was concluded that the overproduction of the AcrAB‐TolC efflux pump appeared prior 
to gyrA mutations in in vitro selected quinolone‐resistant Salmonella mutants [85]; therefore, 

the AcrAB‐TolC efflux system is the major mechanism that involved in quinolone resis‐

tance in S. Typhimurium DT104 strains. However, both target gene mutations and active 

efflux mediated by AcrAB‐TolC are necessary to obtain high‐level FQ resistance for S. 

Typhimurium DT204 strains [94]. Nevertheless, there is no direct evidence to demonstrate 

the role of the AcrAB‐TolC efflux system in quinolone‐resistant Salmonella; therefore, sub‐

stantial work remains to be done in order to understand the role of efflux and its regulation 
in Salmonella.
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6.5. The fitness costs

Mechanisms associated with high‐level FQ resistance are multiple mutations in the type II 
topoisomerase‐encoding genes and the over‐expression of multidrug resistance efflux pumps. 
The presence of mutations in these structural or regulatory genes not only increases resistance 

to quinolones but also affects fitness costs such as reduced growth rates and virulence of the 
bacterial cell in a lack of antibiotic selective pressure [95–99]. However, maintenance of resis‐

tance can arise through the development of second‐site compensatory mutations that restore 

fitness and virulence without loss of resistance [100].

The fitness cost of the genes responsible for quinolone resistance traits has not been fully 
elucidated in high‐level FQ‐resistant Salmonella. Nevertheless, results from previous stud‐

ies suggest that high‐level CIP resistance mechanisms in Salmonella lead to restrictive condi‐

tions of fitness costs and minimizing the emergence and spread of highly resistant clones in 
the absence of drug selection pressure [101, 102]. As demonstrated in previous study [103], 

high‐level CIP‐resistant S. Enteritidis in vitro derived mutants in the absence of antibiotic 

selective pressure result in compensatory evolution favoring a reversion back to a more sensi‐

tive phenotype associated with lesser fitness costs, rather than the compensatory mutations 
that would restore resistance. However, under in vivo conditions, a previous study has found 

that chromosomal mutations of S. Typhimurium that confer resistance to NAL, streptomy‐

cin, or rifampicin decrease growth rate and ability to colonize in mice rather than a rever‐

sion to the susceptible phenotype and restore virulence [104]. In contrast to the high‐level FQ 
resistance, an intermediate level of resistance to CIP of S. Typhimurium mutants apparently 

favored a partial reversion to a susceptible level and a normal growth rate with successfully 

colonized the gut of chickens, rather than the acquisition of resistance to FQs [101].

Quinolone resistance of non‐typhoidal Salmonella is complicated. The understanding of the 

various mechanisms of quinolone resistance, the fitness costs of each Salmonella strain, and the 

interplay between different quinolone resistance mechanisms has increased in recent years. 
Increased resistance to quinolones could be selected under a wide range of selective conditions 
even in the absence of quinolone selective pressure. Therefore, minimizing the emergence and 

spread of quinolone resistance will not be as simple as limiting the use of these drugs.

7. To decrease the emergence and spread of quinolone resistance

FQs are intensively used in animal production and have allowed better treatment of several 
animal infectious diseases. The risks of the overuse and misuse of FQs in food‐animal produc‐

tion can contribute to higher levels of resistance in human Salmonella infections. Therefore, the 

FQ resistance of Salmonella should be taken into account and prevented as resistant bacteria or 

resistance genes may be transferred to humans through the food chain. Given the importance 

of FQ resistance as a global health concern, many researchers have reviewed the existing sci‐
entific literatures and developed guidelines to limit all compounds of FQ use, including use in 
food‐producing animals. FQs should be banned for all preventive use and mass medication, 
but only used as life‐saving therapeutic treatment of individual sick animals.
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Priority setting of agendas for research on minimizing the emergence of FQ resistance in 
Salmonella is needed to identify missing scientific data and to specify research designs and 
methods to address these resistance problems in food‐producing animals and human medi‐

cine. The priorities identified by the research agenda must include contributions by different 
experts in basic genetics and microbiology sciences, veterinary medicine, human medicine, 

public health organization, social sciences, economics sciences, and public policy.

Furthermore, sufficient research funding for minimizing the FQ resistance of Salmonella in 

human and food‐producing animals has likely contributed to the adequate scientific evidence 
which necessary for informing public health decisions. Given the scale of the FQ resistance 
problem and the demonstrated role of FQ uses in food‐producing animals in this public 
health crisis, adequate support for research specific to the role of food‐producing animal uses 
of FQs in the development of resistance must be a national priority.

Urgently address complex barriers that limit the quality of data on the use of FQs in food‐produc‐

ing animals and human medicine. Currently, such data from human and veterinary medicine 

are provided on a voluntary basis, and the methods used to collect, analyze, and report are not 

standardized because of political, economic, and social barriers. Effective surveillance of FQ use 
in food‐producing animals and humans is a key first step toward for estimating the full scope of 
FQ resistance in Salmonella. Despite increasingly widespread recognition that FQ use in food‐pro‐

ducing animals is a major factor of human infections with FQ‐resistant Salmonella, there remains 

a significant need for scientific evidence of the FQ use practices that affect the human health risk.

8. Conclusion

Infections in humans with quinolone‐resistant Salmonella resulted in increased risk of hospi‐

talization and mortality. FQs are efficient and valuable antimicrobials in some serious animal 
indications because FQs are the only alternative available. Therefore, if FQs lose their ability 
for the treatment of animal diseases, the therapeutic effect of some diseases will be compli‐
cated and may result in poor animal welfare and economical losses. Recently, it is now critical 

that food‐producing animal use of FQs be recognized as one of the major contributors to the 
development of resistant Salmonella strains that result in life‐threatening human infections 

and included as part of the strategy to control the public health crisis of FQ resistance.
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