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Abstract
In the human organism, the circadian regulation of carbohydrates metabolism is essential 
for the glucose homeostasis and energy balance. Unbalances in glucose and insulin tissue 
and blood levels have been linked to a variety of metabolic disorders such as obesity, meta-
bolic syndrome, cardiovascular diseases and type 2 diabetes. Melatonin, the pineal hor-
mone, is the key mediator molecule for the integration between the cyclic environment and 
the circadian distribution of physiological and behavioral processes and for the optimiza-
tion of energy balance and body weight regulation, events that are crucial for a healthy 
organism. This chapter reviews the interplay between melatonin modulatory physiological 
effects, glucose homeostasis and metabolic balance, from the endocrinology perspective. 
The tremendous effect of melatonin in the regulation of metabolic processes is observed 
from the chronobiology perspective, considering melatonin as a major synchronizer of the 
circadian internal order of the physiological processes involved in energy metabolism.

Keywords: melatonin, pineal gland, chronobiology, glucose homeostasis, metabolic 
syndrome

1. Introduction

Chronobiology depicts the temporal structure of biology. It integrates the rhythmic develop-

ment and existence of the utmost majority of cells, comprising also cellular functions, as a 
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fundamental property of the living matter, detectable at all levels of its organization, from the 
molecular level to rhythms in the integrity of the complex organisms. It regulates the species’ 

biological clock, the circadian and seasonal biorhythms, synchronizing the existence of a cell 

within an organ, the functioning rationale of an organ within a system and the epigenetic 

temporal regulation of the whole living entity.

Synchronicity between external and internal circadian rhythms and harmony among 

molecular fluctuations within cells are essential for normal organ biology. Circadian 
clocks exist within multiple components of the metabolic, cardiovascular and immune 

systems, having the potential of affecting multiple cellular processes and, therefore, hold-

ing the promise of modulating various physiopathological aspects over the course of the 

24 h cycle.

2. The pineal gland, a neuroendocrine transducer

Metabolic physiology undergoes diurnal variations, and serious pathologic events appear 

to be conditioned by the time of day. The suprachiasmatic nucleus imprints the control of 

circadian rhythms in peripheral tissues, by different neural and humoral signals, such as 
melatonin.

The molecular clock mechanism in mammals is currently understood as a transcriptional 

feedback loop involving several genes. The genes Clock and Bmal1 encode bHLH-PAS 

(basic helix-loop-helix) proteins that form the positive limb of the feedback circuit. The 

CLOCK:BMAL1 heterodimer initiates the transcription by binding to specific DNA elements, 
E-boxes (5′-CACGTG-3′) and E′-boxes (5′-CACGTT-3′) in the promoters of target genes. This 
set of activated genes includes members of the negative limb of the feedback loop including 

the PER (PER1 and PER2) and CRY (CRY1 and CRY2) genes. The resulting PER and CRY pro-

teins dimerize and inhibit further CLOCK:BMAL1 transcriptional activity allowing the cycle 

to repeat from a level of low transcriptional activity. Thus, cellular metabolism may prove to 

play an important role in regulating the transcriptional state and therefore the phase of the 

clock. Degradation of the negative limb proteins PER and CRY is required to terminate the 
repression phase and restart a new cycle of transcription. The transcriptional feedback loop 

described above can be observed not only in the SCN, but also in nearly every mammalian 
cell. If viewed at the single-cell level, the molecular clockwork of transcription and translation 

can be observed as autonomous single-cell oscillators [1].

Melatonin (N-acetyl-5-methoxytryptamine) is synthesized by multiple tissues in the body, 

but the pineal gland is the major contributor to circulating melatonin concentration, as pine-

alectomy abolishes detectable melatonin in the blood.

In young- and middle-aged people, pineal melatonin is secreted based on a circadian pattern, 
with a high rhythm amplitude and a considerable nocturnal maximum.

Melatonin from extrapineal sites often oscillates with considerably lower amplitudes. According 

to current knowledge, some of the extrapineal sources are of particular importance, either 
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in quantitative terms, such as the gastrointestinal tract or, with regard to functional aspects, 
some areas of the central nervous system (CNS) and several leukocytes. The physiological sig-

nificance of other sites of melatonin biosynthesis is, at the moment, uncertain. Melatonin is 
secreted in small amounts from most of the extrapineal sites or only under specific conditions, 
for example, the postprandial release from the gastrointestinal tract, during which relatively 

high quantities can enter the circulation, being chronobiologically rather irrelevant. Thus, mela-

tonin is not only a pineal hormone but also has additional functions as a local tissue factor and 

leukocyte-derived cell hormone with paracrine and autocrine actions [2].

The pineal gland or the epiphysis weighs about 150 mg, and it is located in the posterior part 

of the third cerebral ventricle. The pineal gland of mammals is a homogeneous tissue contain-

ing pinealocytes, glial cells, phagocytic cells and neurons. The pineal gland is innervated by 

nervous fibers of different origins. The gland was considered a vestigial organ until 1950s. Its 
position in the center of the brain and its presence in other species of vertebrates indicate its 

evolution in the evolutionary cerebral system of the humans, based on its absolute necessity 

on the overall organism development and important particular functions.

In the current scientific frame, it is generally acknowledged that the pineal organ is a neu-

roendocrine transducer. The pinealocytes, the main secretory pineal parenchymal cells, are 

fotoneuroendocrine cells, phylogenetically derived from primary sensory cells, having neu-

ral embryological origin. They primary respond to nervous-photic modulated stimulation 

and secondary to hormones in target organs. The endocrine secretory function is directly 

dependent on sympathetic innervation, the pinealocytes translating the nervous information 

in endocrine information.

In terms of phylogenetic evolution, the pinealocyte functions as a fotoneuroendocrine neu-

ron. On some species of amphibians, reptiles and birds, the epiphysis is also called “parietal 

eye” or third eye because it has the form of a rudimentary eye fitted with a lens and a retina. 
Therefore, it is considered to be a vestigial of a sensory organ, functional in primitive verte-

brates. Being directly affected by the light absorbed by the eye, the pineal gland regulates the 
sleep-wake states, the menstruation and the reproduction, the hibernation and the seasonal 

migration and other “instinctive” behaviors.

The role of the pineal gland, as an integral component of the brain, evolved on the phyloge-

netic scale from photoreceptor organ (fish, amphibians, reptiles), to neuroendocrine modu-

lator of brain functions, in mammals and humans, thus having a role in the adaptation of 

reproductive conditions environment in some mammals (particularly rodents) and to a major 

role in the modulation of brain excitability in relation to the external environmental condi-

tions in humans.

Nowadays, melatonin, the major pineal hormone, is considered the master hormone, regulat-
ing all other hormones within the human organism.

The main regulatory pathway is a complex one called the retinoic-hypothalamic-pineal axis that 

ends with the sympathetic transmission of the pineal parenchymal. The pineal gland receives 

neuronal transmissions of central and parasympathetic origin. These pineal nervous endings 

contain a great variety of neurotransmitters. The rhythm of melatonin synthesis depends on 
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three interrelated factors: the endogenous circadian oscillator, located in the suprachiasmatic 

nucleus (SCN), the light/dark and day/night cycles that synchronize the endogenous oscillator 
and the light that dramatically inhibits the synthesis of melatonin [3].

In conclusion, the pineal gland is a connection point between various neural transmissions, its 

activity being under the high-fidelity control of the hypothalamic clock, the temporal message 
being delivered to the pineal gland via a polysynaptic path. However, new neuroanatomic 

and immunocytochemical proofs changed the concept according to which the pineal gland is 

innervated only by the sympathetic nervous system, presently, being unanimously accepted 

to be the target of several neurotransmitters of different origins.

3. Melatonin, the universal synchronizer

Melatonin biosynthesis at the level of pinealocytes occurs and is initiated by the absorption 

of tryptophan from the blood. Increased daytime tryptophan concentration at the pineal level 

precedes increased serum free and total tryptophan, suggesting that the essential amino acid 

is captured by the pineal against a concentration gradient. Once arrived in the pinealocyte, 

the major part of tryptophan is used for the synthesis of indole derivatives and the rest for 

protein synthesis (Figure 1).

The transformation of tryptophan into serotonin occurs in two stages: first, the hydroxyl-
ation into 5-hydroxytryptophan under the enzymatic action of tryptophan hydroxylase, this 

being a limiting step of the synthesis. The enzyme activity requires the presence of oxygen, 
tetrahydrobiopterin, NADPH+ and a metal, iron or copper. Second, the decarboxylation of 

5-hydroxytryptophan into serotonin by the action of L-aromatic amino acid decarboxylase, in 

the presence of pyridoxal phosphate (PLP).

The transformation of serotonin into melatonin also includes two stages: the acetylation of 

–NH
2
 group by the N-acetyltransferase (NAT) enzyme to form N-acetyl-serotonin, and there-

after, the methylation of –OH group in position 5 by hydroxyl-indole-O-methyltransferase 

(HIOMT), an enzyme that catalyzes the transfer of methyl group from S-adenosyl methi-

onine. This final step results in acetyl-5-methoxytryptamine or melatonin synthesis. The 
two enzymes, NAT and HIOMT, specific for this synthesis pathway, have different profiles of 
activity. The NAT enzyme is a limiting enzyme of reaction: it is subject to many mechanisms 
of transcriptional and/or posttranscriptional regulation depending on the species, which 
allows it to be active only during darkness. The NAT activity is strongly regulated by circa-

dian alternation light/dark, contrary to HIOMT enzyme showing a constitutive activity along 
the nictemeral cycle. For example, in rats and humans, a short exposure to bright light during 

the dark period causes an inhibition of the NAT activity for the next 15 min [3].

The enzymes responsible for the melatonin production can be modulated in a circadian man-

ner, in order to imprint its nictemeral synthesis cycle.

Extrapineal melatonin synthesis in mammals has been reported in the retina, Harderian 

glands, gastrointestinal tract and pancreas. In humans, melatonin has been reported outside 
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the pineal gland in the follicles, the lining of the intestinal appendix, platelets and red blood 

cells. Melatonin is also produced by numerous nonendocrine cells, as is the case of the immune 

cells. In conclusion, while the pineal gland quantitatively accounts for most of the circulating 
melatonin, substantial local synthesis also occurs in retinal and peripheral tissues such as the 

gastrointestinal tract [4].

Figure 1. Melatonin biosynthesis pathway.

Melatonin: A Silent Regulator of the Glucose Homeostasis
http://dx.doi.org/10.5772/66625

103



Melatonin appears to be secreted by the pineal gland in circulation by simple diffusion, 
because it is highly soluble in the cell membrane lipoproteins. Furthermore, melatonin may 

have effects on the pineal gland itself, as there are specific receptors for it, at this level. The 
cells of the suprachiasmatic nucleus also possess receptors for melatonin. In conclusion, mela-

tonin has an inhibitory effect on the activity of the suprachiasmatic nucleus. So, melatonin is 
self-regulating its own synthesis. However, melatonin secreted into the bloodstream will send 

to all central and peripheral structures that possess receptors or melatonergic sites this infor-

mation regarding the photoperiodicity, allowing the organism a physiological adaptation to 

alternations day/night or to the seasonal ones.

The circadian pacemaker within the suprachiasmatic nucleus triggers the pineal gland to 

produce high melatonin concentrations at night. There is a photic synchronized endogenous 

circadian biorhythm, allowing the maximum human melatonin production at night, between 

midnight and 3 a.m., and the serotonin during the day (Figure 2a). Initiating the melatonin 

synthesis in humans occurs between 9 and 11 p.m. and lasts for about 8–9 h in adults, these 
parameters being fairly constant from day to day. The daily and seasonal melatonin rhythms 

are involved in time of day and time of year signaling, and it is for this reason that they are 

considered to serve as a bioclock and biocalendar.

In humans, it is required an intensity of light greater than in other mammals, over 1500 lux, 
for disrupting this synthesis biorhythm by external light. In all studied mammals, those with 

activity at day and at night, the nocturnal melatonin production is maximal and prevailing 

overnight.

In humans, blood levels of melatonin have a particular dynamics from birth (Figure 2b). The 

pineal synthesis begins in infants over 3 months old, to older age, and the time of puberty is 
very controversial whether it represents or not a particular step on the downward slope. It is of 

real interest the fact that melatonin synthesis decreases with the age of humans and has abnor-

mal low levels in a series of age-related pathological disorders, as it is the case of cardiovascular 

and metabolic disease. Melatonin rhythmic profile has many implications in pathophysiologi-
cal processes as inflammation, oxidative stress, hypertension and metabolic syndrome.

Figure 2. The daily (a) and lifetime (b) melatonin biosynthesis fluctuations.
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The half-life of blood melatonin is under 30 min, and the metabolic clearance is 630 mL/min 
in healthy men. Melatonin is a lipophilic substance metabolized in several compounds both 

in the liver (Figure 3a) and in the central nervous system (Figure 3b) [3, 5].

Circulating melatonin is catabolized in humans, under the action of hepatic microsomal 

hydroxylases in N-acetylserotonin, which is biologically inactive, and 6-hydroxymelatonin, 
which is urinary eliminated, as a sulfate (75%) or glucuronide (5%) conjugate. The rest of 

melatonin is eliminated under three forms: the native form (below 1%), as 5-metoxy indol-

acetic acid (0.5%) or catabolized as N-acetyl-5-metoxy kynurenamine via N-formyl-5-metoxy 

kynurenamine in the central nervous system (15%).

In the brain, melatonin is metabolized in several compounds of which 5-metoxytriptamine 

is involved in the dreaming process and it will subsequently metabolize N, N-dimethyl-5-

methoxytryptamine and other tryptamines.

Approximately 60–70% of the circulating melatonin in the bloodstream is bound to albumin, 
and about 30% is found in free state, this fraction being the one, that crosses the blood brain 
barrier [6, 7].

4. Melatonin’s pleiotropic effects and the metabolic epigenetic regulation

Considered as nature’s most versatile biological signaling and multitasking molecule, mela-

tonin is a highly conserved molecule found in almost all types of organisms. Melatonin has 

several functions ranging from coordination of circadian activity, which is generally consid-

ered as a sleep-promoting effect, and melatonin administration induces hypothermic effects 
and heat loss via the distal skin regions, and stabilizes sleep-wake cycles [8].

Figure 3. Melatonin hepatic (a) and cerebral (b) metabolism.
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Melatonin demonstrates properties of a powerful antioxidant, at sufficiently high concen-

trations as a direct radical scavenger, but, at lower, near-physiological levels, as a regulator 

of redox-relevant enzymes, suppressor of prooxidant excitatory and inflammatory processes 
and as a mitochondrial modulator [2]. Melatonin also acts on bone metabolism, activating its 

MT1 and MT2 specific receptors in an autocrine or paracrine fashion, near the target tissues. 
Melatonin may exert vasodilatatory (MT2) or vasoconstriction (MT1) effects, depending on 
the receptor type or the target cell, and it can also down-regulate the cortisol secretion [9].

Melatonin has a great influence on diabetes and associated metabolic unbalances by regulat-
ing insulin secretion, and also by scavenging reactive oxygen species, the pancreatic β-cells 
being highly susceptible to oxidative stress, and possessing only low-antioxidative potential. 

On the other hand, in several genetic studies, human MT2 receptor polymorphisms have been 

described as being causally linked to an elevated risk of developing type 2 diabetes [4].

5. Chronobiology, metabolic control and disease modulation  
by melatonin

It is universally accepted that social and industrial pressures, such as shift work, which 

opposes the physiological temporal circadian order, may be factors determining the occur-

rence or the development of chronic illnesses, such as metabolic disorders. In many disease 

states as diabetes mellitus and hypertension, neurohumoral circadian rhythms are chroni-

cally impaired and result in dyssynchrony of cellular order in different tissues and between 
the organism and the environment.

Diabetes mellitus is associated with a phase shift in the cardiac circadian clock. Shift workers 
have an increased incidence of cardiovascular disease, which might be related to alterations 

in cardiovascular and metabolic intracellular circadian clock function [5, 10].

The cardiovascular system actually exhibits significant daily variation regarding physiologi-
cal, pathophysiological and molecular processes. Diurnal variations also affect gene and pro-

tein expression. Circadian clocks exist in cardiomyocytes, vascular smooth muscle cells and 

endothelial cells.

At molecular level, a complex interplay occurs between environmental influences and intrin-

sic mechanisms, which contributes to change in metabolic functions over the 24 h period.

Loss of synchronization occurs when there are changes in feeding or sleep patterns and during 
exposure to light at abnormal times, at night, considering this phenomenon as “light-at-night 

pollution.” Such dyssynchronization is seen in patients with hypertension, diabetes mellitus, 

obesity and shift workers, in whom there is an elevated risk of cardiovascular disease [5, 11].

Melatonin is the key mediator molecule in the in vivo scenario, mediating the integration between 

the cyclic environment and the circadian distribution of physiological and behavioral processes.

The relation between pineal gland, melatonin and energy metabolism was initially studied 

in both humans and rodents. Over 70 years ago, one of the first references to the  functional 
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 connection between the pineal gland and carbohydrates metabolism was made by the 

Romanian researcher Constantin I. Parhon, followed by his coworkers, endocrinologists Milcu 

and Nanu. They conducted animal experiments on “pinealin,” a pineal peptide, described as 
having metabolic effects similar to insulin, displaying hypoglycemic, anabolic, anticholester-

olemic and glomerulotrophic characteristics. In the following years, a controversial discus-

sion was carried out in many publications on the importance of pineal extracts on glucose 

metabolism. Even after the isolation and identification of the molecular structure of melato-

nin, by Aron Lerner and colleagues, this discussion continued [12].

6. The functional synergism between melatonin and insulin

The scientific literature states that first experimental injections with pineal extracts led to 
hypoglycemia, increased glucose tolerance, and hepatic and muscular glycogenesis. The 

metabolic disruption caused by the absence of melatonin in the pinealectomized animals was 

characterized as a diabetogenic syndrome depicted by glucose intolerance and insulin resis-

tance, both expressed peripherally: hepatic, adipose, and skeletal muscle, and centrally, at the 

level of the hypothalamus. This pathological picture can be reverted by melatonin replace-

ment therapy or restricted feeding.

In addition to this dramatic finding, insulin resistance, glucose intolerance, and several other 
metabolic disorders can be seen in some physiological or pathological states associated with 

reductions in blood melatonin levels, as aging, diabetes, shift work, and environmental illu-

mination during the night and the so-called phenomenon of light pollution. An adequate 
melatonin replacement therapy alleviates most of these alterations.

Emphasizing the functional synergism between melatonin and insulin, it is considered that 

the pinealectomy-induced insulin resistance and glucose intolerance are related to the mecha-

nistic consequences of the depletion of melatonin, perceived at the molecular level as a defi-

ciency in the insulin-signaling pathway and reduction in GLUT4 gene expression and protein 
content. It was shown that melatonin, acting through MT1 membrane receptors, induces 

rapid tyrosine phosphorylation and activation of the tyrosine kinase beta-subunit of the insu-

lin receptor, succeeding to overcome several intracellular transduction steps of the insulin-

signaling pathway [6, 7].

7. Melatonin effects on adipocytes

The melatonin-insulin synergism was described in an in vitro experiment which supposed 

the incubation of isolated visceral white adipocytes with melatonin, the peripheral function 

of insulin being potentiated by the action of melatonin, and, in addition, this was the first 
evidence of a direct action of melatonin on adipocytes [6].

All in all, this was a proof that the adipose tissue is a peripheral target of melatonin for the 

regulation of the overall metabolism. Similarly, it was demonstrated that melatonin activation 
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of MT2 receptors in human adipocytes modulates glucose uptake by these cells. Considering 

the adipose tissue physiology, it was possible to document synergistic effect of melatonin on 
several other insulin actions in addition to glucose uptake: insulin-induced leptin synthesis 

and release in isolated adipocytes is potentiated by the MT1-mediated melatonin action, and 

melatonin regulates other aspects of adipocyte biology that influence energy metabolism, lip-

idemia and body weight, as lipolysis, lipogenesis, adipocyte differentiation and fatty acids 
uptake [6].

Melatonin also exerts different effects on the carbohydrates metabolism, considering various 
targets: it stimulates glucose uptake in muscle cells by phosphorylation of insulin receptor 

substrate-1 through MT2 signaling, MT2 receptors are expressed in hepatocytes, and melato-

nin therapy elevates glucose release from the liver [9].

Another major site of melatonin’s action in reference to the regulation of energy metab-

olism is the pancreatic islets where it influences insulin and glucagon synthesis and 

release.

Molecular and immunocytochemical studies confirmed the presence of melatonin receptors 
MT1 and MT2 in the islets of Langerhans and also in human pancreatic tissue [13]. MT1 and/
or MT2-mediated melatonin action decreases glucose-stimulated insulin secretion in isolated 

rat pancreatic islets and rat insulinoma beta-cells.

Melatonin influences exocytosis of insulin by β-cells as concluded from experiments via 
nonhydrolyzable guanosine-5′-trisphosphate (GTP) analog and luzindole, a melatonin 
antagonist, both of which inhibit the melatonin action on secretion of insulin from neonatal 

rat islets.

The intracellular signal transduction pathways of the pancreatic β-cell influenced by melato-

nin via MT1 and MT2 membrane receptors include cAMP, cGMP and IP3 signaling pathways. 
The activation of these receptors inhibits glucose- and forskolin-induced insulin secretion, 

showing that melatonin acts by inhibiting the adenylate cyclase/cAMP system and reducing 
the content of PKA.

The pineal indolamine induces IGF-1 receptor phosphorylation, which participates in the 
integrity of islet cells. Moreover, it has been demonstrated, as well, that melatonin stimulated 

glucagon synthesis and secretion.

Above all considerations, these actions of melatonin are required to build the circadian 
profile of insulin secretion, synchronizing the pancreatic metabolic rhythms with the cir-

cadian rhythm of the activity/rest profile. And it should be also noted that insulin is able to 
regulate pineal melatonin synthesis by potentiating norepinephrine-stimulated melatonin 

production.

Interestingly, the association between melatonin and type 2 diabetes could be based on the 

observation that insulin secretion is inversely proportional to plasma melatonin concentra-

tion. These two hormones, melatonin and insulin, exhibit a circadian rhythm, but there is 

negative correlation between their synthesis dynamics.
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Decreased abnormally regulated melatonin levels have been related to diabetes, which sug-

gests that the melatonin signal is critical for glucose homeostasis. In patients with type 

2 diabetes, gluconeogenesis and endogenous glucose production exhibit circadian rhythms 

that impose fasting high blood glucose and do not exist in healthy humans.

Melatonin inhibits glucose-mediated release of insulin from pancreatic cells emphasizing its 

activity in the function of insulin. Suppression of melatonin secretion by nocturnal light expo-

sure could be a trigger for type 2 diabetes development (Figure 4) [9].

As an addition to the importance of melatonin on the regulatory processes in energy metabo-

lism, it was recently demonstrated that the intrauterine metabolic programming is completely 

disturbed by the deficiency of melatonin in the pregnant mother. The adult child of a mela-

tonin unpaired mother presents glucose intolerance, insulin resistance and a serious delay in 

the glucose-induced insulin secretion by isolated pancreatic islets [6, 13, 14].

This in once more a clear evidence that melatonin has a crucial role in the metabolic epigenetic 

regulation of a healthy organism that undergoes vicious trials and environmental demands 

that are, to a certain extent, meant to test the physiological robustness.

Figure 4. Melatonin depletion induced pathological consequences.
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Robustness is one of the fundamental organizational principles of biological systems, this 

being the major characteristic involved in their adaptation, survival and reproduction. 

Metabolic diseases are considered a breakdown in the robustness in biological systems, 

the continuous maintenance of physiological functions being of extreme importance, despite 

external and internal disturbances [4].

Melatonin is a powerful chronobiotic, regulating the daily metabolic processes so that the activ-

ity/feeding phase of the day is assimilated with high insulin sensitivity, and the rest/fasting  
is synchronized to the insulin-resistant metabolic phase of the day. Melatonin is the key 

mediator molecule for the nictemeral integration of physiological and behavioral processes 

and for the modulation of energy balance and body weight regulation, all crucial for a healthy 

life [6].

The hypothalamus controls a great variety of physiological processes, including sleep/wake 
cycles, sexual behavior and reproduction, and metabolic control such as thermoregulation, 

glucose metabolism, lipid metabolism, energy intake/expenditure, and food and water intake, 
all these functions following circadian rhythms.

The hypothalamus identifies nutrients such as glucose and lipids, and via a specialized area 
of the blood brain barrier in the arcuate nucleus it also detects circulating metabolic hormones 

such as leptin, insulin, thyroid hormone, adiponectin and ghrelin. Researchers showed that 

SCN lesions abolished the daily rhythms in plasma concentrations of glucose and insulin 
and revealed the existence of a pronounced day/night difference in the response to 2-deoxy 
glucose, a glucose-utilization inhibitor, proving that the SCN is involved in the daily rhythm 
of glucose metabolism. SCN-lesioned rats do not have a rhythm in food intake either, so it 
should not be excluded an indirect effect of the lack of a feeding rhythm on glucose metabo-

lism [11].

The chronobiotic nature of energy balance and energy metabolism is depicted by the two 

separated phases that exist during a 24 h period. The first one is characterized by energy har-

vesting and eating that results in energy intake, utilization, and storage, a period associated 

with high central and peripheral sensitivity to insulin and high glucose tolerance, elevated 

insulin secretion, high glucose uptake by the insulin-sensitive tissues, glycogen synthesis and 

hepatic and muscular glycolysis, blockade of hepatic gluconeogenesis, and increased adipose 

tissue lipogenesis and adiponectin production.

In opposition, the second one, the rest/sleep phase of the day, is characterized by fasting peri-
ods that require the use of stored energy for maintaining the cellular homeostasis, exhibiting 
insulin resistance, accentuated hepatic gluconeogenesis and glycogenolysis, adipose tissue 

lipolysis, and leptin secretion [6].

Other hormones exerting modulatory effects on cellular metabolism, as glucocorticoids, 
growth hormone and catecholamines, present circadian rhythmic fluctuations in their secre-

tion and activity. Melatonin, as an orchestrating factor in the circadian organization of the 

metabolic processes, prepares and modifies the central and peripheral metabolic tissues in 
order to respond to these hormones.
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The antiobesogenic effect of melatonin is, in part, a result of its regulatory role on the bal-
ance of energy, acting mainly on the regulation of the energy mobilization from the stores 

and in energy expenditure. It was demonstrated that in healthy young animals, melatonin 

supplementation therapy reduces long-term body weight gain and the size of the visceral fat 

deposits, effects independent on the reduction in food intake. The same antiobesity protective 
effect of melatonin was seen in experiments of diet-induced obesity [6, 15, 16].

The adequate supplementation of melatonin lowers body weight and regulates body weight 
gain as well as the intra-abdominal visceral fat accumulation, as a result of the reestablish-

ment of the circadian distribution of energy metabolism, the insulin signaling pathway rein-

statement, the consequent disappearance of insulin resistance and glucose intolerance and, 
most importantly, the accentuation of the energy expenditure over the energy intake.

8. Conclusions

Melatonin is the key modulatory molecule responsible for the integration between the cyclic 

environment and the circadian distribution of physiological and behavioral processes, assur-

ing a healthy metabolism and the optimization of energy balance and body weight regulation.

The circadian system may be a tractable target for decreasing the prevalence of metabolic 

disturbances. Melatonin acts by potentiating central and peripheral insulin action either due 

to regulation of GLUT4 expression or triggering the insulin-signaling pathway. Melatonin is 
responsible for maintaining an adequate energy balance mainly by regulating energy flow 
and the energy expenditure through the activation of brown adipose tissue. It also assures the 

metabolic processes respect the nictemeral physiology of the two major phases existent dur-

ing 24 h, the activity/wakefulness/feeding state versus the rest/sleep/fasting phase.

The decline in melatonin synthesis, during physiological processes as aging, or pathology 

associated events as shift-work or illuminated environments during the night, induces insu-

lin resistance, glucose intolerance, sleep disturbances and metabolic circadian disorganiza-

tion, depicting a state of chronodisruption and metabolic imbalances, aggravating the general 

health state.

The present evidence that melatonin induces insulin secretion and can improve β-cell function 
certify melatonin supplementation as an accurate therapeutic approach for glucose homeo-

stasis reestablishment. The available scientific proofs support the suggestion that melatonin 
replacement therapy, if adequately carried out, in terms of dose, formulation and time of the 
day of administration, might contribute to maintaining optimal blood glucose levels in dia-

betic patients and restore the chronobiotic order for achieving a more robust healthy state of 

the organism.
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