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Abstract

Undergraduate  data  science  research  projects  form  an  integral  component  of  the
Wesley  College  science  and  mathematics  curriculum.  In  this  chapter,  we  provide
examples for hypothesis testing, where statistical methods or strategies are coupled
with methodologies  using interpolating polynomials,  probability  and the expected
value  concept  in  statistics.  These  are  areas  where  real-world  critical  thinking  and
decision analysis applications peak a student’s interest.

Keywords: Wesley College, STEM, undergraduate research, solvolysis, phenyl chloro-
formate, benzoyl chloride, benzoyl fluoride, benzoyl cyanide, Grunwald-Winstein
equation, transition-state, addition-elimination, multiple regression, time-series, Ebo-
la, polynomial functions, probability, expected value

1. Introduction

Wesley College (Wesley) is a minority-serving, primarily undergraduate liberal-arts institu-
tion. Its STEM (science, technology, engineering and mathematics) fields contain a robust
(federal and state) sponsored directed research program [1, 2].  In this program, students
receive individual mentoring on diverse projects from a full-time STEM faculty member. In
addition, undergraduate research is a capstone thesis requirement and students complete
research projects within experiential courses or for an annual Scholars’ Day event.
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Undergraduate research is indeed a hallmark of Wesley’s progressive liberal-arts core-
curriculum. All incoming freshmen are immersed in research in a specially designed quanti-
tative reasoning a 100-level mathematics core course, a first-year seminar course and 100-level
frontiers in science core course [1]. Projects in all level-1 STEM core courses provide an
opportunity to develop a base knowledge for interacting and manipulating data. These courses
also introduce students to modern computing techniques and platforms.

At the other end of the Wesley core-curriculum spectrum, the advanced undergraduate STEM
research requirements reflect the breadth and rigor necessary to prepare students for (possible)
future postgraduate programs. For analyzing data in experiential research projects, descriptive
and inferential statistics are major components. In informatics, students are trained in the SAS
Institute’s statistical analysis system (SAS) software and in the use of geographic information
system (GIS) spatial tools through ESRI’s ArcGIS platform [2].

To help students with poor mathematical ability and to further enhance their general thinking
skills, in our remedial mathematics courses, we provide a foundation in algebraic concepts,
problem-solving skills, basic quantitative reasoning and simple simulations. Our institution
also provides a plethora of student academic support services that include an early alert
system, peer and professionally trained tutoring services and writing center support. In
addition, Wesley College non-STEM majors are required to take the project-based 100-level
mathematics core course and can then opt to take two project-based 300-level SAS and GIS
core courses. Such students who are trained in the concepts and applications of mathematical
and statistical methods can then participate in Scholars’ Day to augment their mathematical
and critical thinking skills.

2. Linear free energy relationships to understand molecular pathways

Single and multiparameter linear free energy relationships (LFERs) help chemists evaluate
multiple kinds of transition-state molecular interactions observed in association with com-
pound variability [3]. Chemical kinetics measurements are understood by correlating the
experimental compound reaction rate (k) or equilibrium data and their thermodynamics. The
computationally challenging stoichiometric analysis elucidates metabolic pathways by
analyzing the effect of physiochemical, environmental and biological factors on the overall
chemical network structure. All of these determinations are important in the design of chemical
processes for petrochemical, pharmaceutical and agricultural building blocks.

In this section, through results obtained from our undergraduate directed research program
in chemistry, we outline examples with statistical descriptors that use inferential correctness
for testing hypotheses about regression coefficients in LFERs that are common to the study of
solvent reactions. To understand mechanistic approaches, multiple regression correlation
analyses using the one- and two-term Grunwald-Winstein equations (Eqs. (1) and (2)) are
proven to be effective instruments that elucidate the transition-state in solvolytic reactions [3].
To avoid multicollinearity, it is stressed that the chosen solvents have widely varying ranges
of nucleophilicity (N) and solvent-ionizing power (Y) values [3, 4]. In Eqs. (1) and (2) (for a
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particular substrate), k is the rate of reaction in a given solvent, ko is the 80% ethanol (EtOH)
reaction rate, l is the sensitivity toward changes in N, m is the sensitivity toward changes in Y
and c is a constant (residual) term. In substrates that have the potential for transition-state
electron delocalization, Kevill and D’Souza introduced an additional hI term to Eqs. (1) and (2)
(and as shown in Eqs. (3) and (4)). In Eqs. (3) and (4), h represents the sensitivity to changes in
the aromatic ring parameter I [3].

( )log /   ok k mY c= + (1)

( )log /   ok k lN mY c= + + (2)

( )log /     ok k mY h I c= + + (3)

( )log /   ok k lN mY hI c= + + + (4)

Eqs. (1) and (3) are useful in substrates where the unimolecular dissociative transition-state
(SN1 or E1) formation is rate-determining. Eqs. (2) and (4) are employed for reactions where
there is evidence for bimolecular associative (SN2 or E2) mechanisms or addition-elimination
(A-E) processes. In substrates undergoing similar mechanisms, the resultant l/m ratios
obtained can be important indicators to compensate for earlier and later transition-states (TS).
Furthermore, l/m ratios between 0.5 and 1.0 are indicative of unimolecular processes (SN1 or
E1), values ≥ 2.0 are typical in bimolecular processes (SN2, E2, or A-E mechanisms) and values
<<0.5 imply that ionization-fragmentation is occurring [3].

To study the (solvent) nucleophilic attack at a sp2 carbonyl carbon, we completed detailed
Grunwald-Winstein (Eqs. (1), (2) and (4)) analyses for phenyl chloroformate (PhOCOCl) at
25.0°C in 49 solvents with widely varying N and Y values [3, 4]. Using Eq. (1), we obtained an
m value of −0.07 ± 0.11, c = −0.46 ± 0.31, a very poor correlation coefficient (R = 0.093) and an
extremely low F-test value of 0.4. An analysis of Eq. (2) resulted in a very robust correlation,
with R = 0.980, F-test = 568, l = 1.66 ± 0.05, m = 0.56 ± 0.03 and c = 0.15 ± 0.07. Using Eq. (4), we
obtained l = 1.77 ± 0.08, m = 0.61 ± 0.04, h = 0.35 ± 0.19 (P-value = 0.07), c = 0.16 ± 0.06, R = 0.982
and the F-test value was 400.

Since the use of Eq. (2) provided superior statistically significant results (R, F-test and P-values)
for PhOCOCl, we strongly recommended that in substrates where nucleophilic attack occurs
at a sp2 hybridized carbonyl carbon, the PhOCOCl l/m ratio of 2.96 should be used as a guiding
indicator for determining the presence of an addition-elimination (A-E) process [3, 4]. Fur-
thermore, for n-octyl fluoroformate (OctOCOF) and n-octyl chloroformate (OctOCOCl), we
found that the leaving-group ratio (kF/kCl) was close to, or above unity. Fluorine is a very poor
leaving-group when compared to chlorine, hence for carbonyl group containing molecules,
we proposed the existence of a bimolecular tetrahedral transition-state (TS) with a rate-
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determining addition step within an A-E pathway (as opposed to a bimolecular concerted
associative SN2 process with a penta-coordinate TS).

For chemoselectivity, the sp2 hybridized benzoyl groups (PhCO─) are found to be efficient and
practical protecting agents that are utilized during the synthesis of nucleoside, nucleotide and
oligonucleotide analogue derivative compounds. Yields for regio- and stereoselective reactions
are shown to depend on the preference of the leaving group and commercially, benzoyl
fluoride (PhCOF), benzoyl chloride (PhCOCl) and benzoyl cyanide (PhCOCN) are cheap and
readily available.

We experimentally measured the solvolytic rates for PhCOF at 25.0°C [5]. In 37 solvent systems,
a two-term Grunwald-Winstein (Eq. (2)) application resulted in an l value of 1.58 ± 0.09, an m
value of 0.82 ± 0.05, a c value of −0.09, R = 0.953 and the F-test value was 186. The l/m ratio of
1.93 for PhCOF is close to the OctOCOF l/m ratio of 2.28 (in 28 pure and binary mixtures)
indicating similar A-E transition states with rate-determining addition.

On the other hand, for PhCOCl at 25.0°C, we used the available literature data (47 solvents)
from various international groups and proved the presence of simultaneous competing dual
side-by-side mechanisms [6]. For 32 of the more ionizing solvents, we obtained l = 0.47 ± 0.03,
m = 0.79 ± 0.02, c = −0.49 ± 0.17, R = 0.990 and F-test = 680. The l/m ratio is 0.59. Hence, we
proposed an SN1 process with significant solvation (l component) of the developing aryl
acylium ion. In 12 of the more nucleophilic solvents, we obtained l = 1.27 ± 0.29, m = 0.46 ± 0.07,
c = 0.18 ± 0.23, R = 0.917 and F-test = 24. The l/m ratio of 2.76 is close to the 2.96 value obtained
for PhOCOCl. This suggests that the A-E pathway is prevalent. In addition, there were three
solvents where there was no clear demarcation of the changeover region.

At 25.0°C in solvents that are common to PhCOCl and PhCOCF we observed kPhCOCl > kPhCOF.
This rate trend is primarily due to more efficient PhCOF ground-state stabilization.

Lee and co-workers followed the kinetics of benzoyl cyanide (PhCOCN) at 1, 5, 10, 15 and 20°C
in a variety of pure and mixed solvents and proposed the presence of an associative SN2 (penta-
coordinate TS) process [7]. PhCOCN is an ecologically important chemical defensive secretion
of polydesmoid millipedes and cyanide is a synthetically useful highly active leaving group.
Since the leaving group is involved in the rate-determining step of any SN2 process, we became
skeptical with the associative SN2 proposal and decided to reinvestigate the PhCOCN analysis.
We hypothesized that since PhCOCl showed mechanism duality, similar analogous dual
mechanisms should endure during PhCOCN solvolyses.

Using the Lee data within Arrhenius plots (Eq. (5)), we determined the PhCOCN solvolytic
rates at 25°C (Table 1). We obtained the rates for PhCOCN in 39 pure and mixed

( ) ( )ln lnEak A
RT
-

= + (5)
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Solvent (v/v) 105 k/s−1 NT Ycl I Solvent (v/v) 105 k/s−1 NT Ycl I

90% EtOH1 139.9 0.16 −0.94 0.10 30% acetone1 2447 −0.96 3.21 −0.38

80% EtOH1 210.0 0.00 0.00 0.00 20% acetone1 3726 −1.11 3.77 −0.40

70% EtOH1 322.8 −0.20 0.78 −0.06 10% acetone1 4071 −1.23 4.28 −0.434

60% EtOH1 598.8 −0.38 1.38 −0.15 30% dioxane1 1690 −0.98 2.97 −0.295

50% EtOH1 986.7 −0.58 2.02 −0.23 20% dioxane1 2887 −1.12 3.71 −0.25

40% EtOH1 1761 −0.74 2.75 −0.24 10% dioxane1 4196 −1.25 4.23 −0.345

30% EtOH1 3064 −0.93 3.53 −0.30 10T−90E2 37.20 0.274 −1.994 0.264

20% EtOH1 3732 −1.16 4.09 −0.33 20T−80E2 41.64 0.08 −1.42 0.31

90% MeOH1 390.5 −0.01 −0.18 0.28 30T−70E2 35.50 −0.11 −0.95 0.38

80% MeOH1 575.3 −0.06 0.67 0.14 40T−60E2 32.98 −0.34 −0.48 0.43

70% MeOH1 800.2 −0.40 1.46 0.04 50T−50E2 30.30 −0.64 0.16 0.51

60% MeOH1 1616 −0.54 2.07 −0.19 70T−30E2 27.70 −1.34 1.24 0.654

50% MeOH1 2573 −0.75 2.70 −0.05 76.3 TFE3 639.9 −2.194 2.84 0.28

40% MeOH2 4205 −0.87 3.25 −0.13 67.4 TFE3 886.1 −1.884 2.934 0.224

30% MeOH2 5351 −1.06 3.73 −0.22 57.9 TFE3 1075 −1.784 3.054 0.144

80% acetone1 9.547 −0.37 −0.83 −0.23 47.9 TFE3 1512 −1.334 3.214 0.064

70% acetone1 86.02 −0.42 0.17 −0.29 37.1 TFE3 2089 −1.194 3.444 −0.034

60% acetone1 157.1 −0.52 0.95 −0.28 25.6 TFE3 2944 −1.154 3.734 −0.154

50% acetone1 505.9 −0.70 1.73 −0.32 13.3 TFE3 3870 −1.234 4.104 −0.294

40% acetone1 1149 −0.83 2.46 −0.35 – – – – –

1Calculated using four data points in an Arrhenius plot.
2Calculated using three data points in an Arrhenius plot.
3Calculated using three data points in an Arrhenius plot and are w/w compositions.
4Determined using a second-degree polynomial equation.
5Determined using a third-degree polynomial equation.

Table 1. The 25.0°C calculated rates for PhCOCN, the NT, YCl and I values.

aqueous organic solvents of ethanol (EtOH), methanol (MeOH), acetone (Me2CO), dioxane,
2,2,2-trifluoroethanol (TFE) and in TFE-EtOH (T-E) mixtures. For all of the Arrhenius plots,
the R2 values ranged from 0.9937 to 1.0000, except in 60% Me2CO, R2 was 0.9861. The Arrhenius
plot for 80% EtOH is shown in Figure 1. In order to utilize Eqs. (1)–(4) for all 39 solvents, second
degree or third-degree polynomial equations were used to calculate the missing NT, YCl and I
values. The calculated 25°C PhCOCN reaction rates and the literature available or interpolated
NT, YCl and I values are listed in Table 1.

Using Eq. (2) for 32 of the PhCOCN solvents in Table 1 (20–90% EtOH, 30–90% MeOH, 20–
80% Me2CO, 10–30% dioxane, 10T–90E, 20T–80E, 30T–70E, 40T–60E, 50T–50E and 70T–30E),
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we obtained R = 0.988, F-test = 595, l = 1.54 ± 0.11, m = 0.74 ± 0.03 and c = 0.13 ± 0.04. Using Eq.
(4), we obtained R = 0.989, F-test = 432, l = 1.62 ± 0.11, m = 0.78 ± 0.03, h = 0.22 ± 0.11 (P-value =
0.07) and c = 0.13 ± 0.04.

Figure 1. Arrhenius plot for 80% EtOH.

The l/m ratio of 2.08 obtained (for PhCOCN) using Eq. (2) is close to that obtained (1.93) for
PhCOF and hence we propose a parallel A-E mechanism.

For the seven highly ionizing aqueous TFE mixtures, using Eq. (1) we obtained, R = 0.977,
F-test = 105, m = 0.61 ± 0.06 and c = −1.15 ± 0.20. Using Eq. (2) we obtained R = 0.999, F-test
= 763, l = 0.25 ± 0.031, m = 0.42 ± 0.03 and c = −0.13 ± 0.14. Using Eqs. (3) and (4) we obtained
R = 0.998, F-test = 417, m = −0.65 ± 0.22 (P-value = 0.04), h = −2.83 ± 0.491 (P-value = 0.01) and
c = 3.12 ± 0.73 (P-value = 0.01) and R = 0.989, F-test = 572, l = 0.17 ± 0.07 (P-value = 0.11), m
= 0.02 ± 0.33 (P-value = 0.96), h = −1.04 ± 0.86 (P-value = 0.31), c = 1.10 ± 1.02 (P-value = 0.36),
respectively.

In the very polar TFE mixtures, in Eq. (2) the l/m ratio was 0.60, indicating a dissociative SN1
process. The l value of 0.25 is consistent with the need of small preferential solvation to stabilize
the developing SN1 carbocation and the lower m value (0.42) attained can be rationalized in
terms of less demand for solvation of the cyanide anion (leaving group).

In all of the common solvents at 25.0°C, kPhCOCl > kPhCOCN > kPhCOF. In addition, PhCOCN was
found to be faster than PhCOF by a factor of 18–71 times in the aqueous ethanol, methanol,
acetone and dioxane mixtures and 185–1100 times faster in the TFE-EtOH and TFE-H2O
mixtures. These observations are very reasonable as the cyanide group is shown to have a
greater inductive effect and in addition, the cyanide anion is a weak conjugate base. This
rationalization is logical as (l/m)PhCOCN > (l/m)PhCOF.
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3. Estimating missing values from a time series data set

Complete historical data time series are needed to create effective mathematical models.
Unfortunately, systems that track and record the data values periodically malfunction thereby
creating missing and/or inaccurate values in the time series. If a reasonable estimate for the
missing value can be determined, the data series can then be used for future analysis.

In this section, we present a methodology to generate a reasonable estimate for a missing or
inaccurate values when two important conditions exist: (1) a similar data series with complete
information is available and (2) a pattern (or trend) is observable.

The extent of the ice at the northern polar ice cap in square kilometers is tracked on a daily
basis and this data is made available to researchers by the National Snow & Ice Data Center
(NSIDC). A review of the NASA Distributed Active Archive Center (DAAC) data at NSIDC
indicates that the extent of the northern polar ice cap follows a cyclical pattern throughout the
year. The extent increases until it reaches a maximum for the year in mid-March and decreases
until it reaches a minimum for the year in mid-September. Unfortunately, the data set contains
missing data for some of the days.

The extent of the northern polar ice cap in the month of January for 2011, 2012 and 2013 is
utilized as an example. Complete daily data for January in 2011 and 2012 is available. The 2013
January data has a missing data value for January 25, 2013.

Figure 2 presents the line graph of the daily ice extent for January of 2011, 2012 and 2013. A
complete time series is available for 2011 and 2012, so the first condition is met. The line graphs
also indicate that the extent of the polar ice caps is increasing in January, so the second condition
is met. An interpolating polynomial will be introduced and used to estimate the missing value
for the extent of the polar ice cap on January 25, 2013.

Let t = the time period or observation number in a time series.

Let f(t) = the extent of the sea ice for time period t.

The extent of the sea ice can be written as a function of time.

For a polynomial of degree 1, the function will be: � � = �0+ �1 �
For a polynomial of degree 3, the function will be: � � = �0+ �1 � + �2 � 2+ �3 � 3
Polynomials of higher degrees could also be used. The extent of the polar ice for January 25
will be removed from the data series for 2011 and 2012 and an estimate will be prepared using
polynomials of degree 1. Another estimate is prepared using polynomials of degree 3. The
estimated value will be compared to the actual value for the years 2011 and 2012. The degree
of the polynomial that generates the best (closest) estimate for January 25 will be the degree
of the polynomial used to generate the estimate for January 25, 2013.
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Figure 2. The extent of sea ice in January 2011, 2012 and 2013.

A two-equation, two-unknown system of equations is created when using polynomials of
degree 1. One known value before and after the missing value for each year is used to set up
the system of equations. To simplify the calculations, January 24 is recorded as time period 1,
January 25 is recorded as time period 2 and January 26 is recorded as time period 3. The time
period and extent of the sea ice for each year was recorded in Excel.

Time period 2011 2012 2013

1 12,878,750 13,110,000 13,077,813

2 12,916,563 13,123,125

3 12,996,875 13,204,219 13,404,688

The system of equations using a first-order polynomial for January 2011 is:

( )
( )

0 1

0 1

1 12,878,750

3 12,996,875

+ =

+ =

a a

a a
(6)

The coefficients �� can be found by solving the system of equations. Substitution, elimination,

or matrices can be used to solve the system of equations. A TI-84 graphing calculator and
matrices were used to solve this system.
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The solution to this system of equations is: �0 = 12, 819, 687.5, �1 = 59, 062.5
The estimate for January 25, 2011 is: 12, 819, 687.5 + 59, 062.2 2 = 12, 937, 812.5 km2.

The system of equations using a first-order polynomial for 2012 is:

( )
( )

0 1

0 1

1 13,110,000

3 13,204,219

+ =

+ =

a a

a a
(7)

The solution to this system of equations is: �0 = 13, 062, 890.5, �1 = 47, 109.5
The estimate for January 25, 2012 is: 13, 062, 890.5 + 47, 109.5 2 = 13, 157, 109.5km2.

The absolute values of the deviations (actual and estimated values) were calculated in Excel.

Degree Year Actual Estimated Absolute deviation

1 2011 12,916,563 12,937,812.5 21,249.5

1 2012 13,123,125 13,157,109.5 33,984.5

A four-equation, four-unknown system of equations is created when using polynomials of
degree 3. Two known values before and after the missing value are used to set up the system
of equations. To simplify the calculations, January 23 is recorded as time period 1, January
24 is recorded as time period 2, January 25 is recorded as time period 3, January 26 is record-
ed as time period 4 and January 27 is recorded as time period 5. The time period and extent
of the sea ice for each year was recorded in Excel.

Time period 2011 2012 2013

1 12,848,281 13,199,375 13,168,594

2 12,878,750 13,110,000 13,077,813

3 12,916,563 13,123,125

4 12,996,875 13,204,219 13,404,688

5 13,090,625 13,227,344 13,388,750

The system of equations using a third-order polynomial for 2011 is:
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

1 1 1 12,848,281

2 2 2 12,878,750

4 4 4 12,996,875

5 5 5 13,090,625

+ + + =

+ + + =

+ + + =

+ + + =

a a a a

a a a a

a a a a

a a a a

(8)

The solution to this system of equations is: �0 = 12, 832, 811.67, �1 = 8, 985.17,�2 = 5, 976.33, �3 = 507.83
The estimate for January 25, 2011 is: 12, 832, 811.67 + 8, 985.17 3 + 5, 976.33 3 2+507.33 3 3 = 12, 927, 252.1km2.

The system of equations using a third-order polynomial for 2012 is:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

1 1 1 13,199,375

2 2 2 13,110,000

4 4 4 13,204,219

5 5 5 13,227,344

+ + + =

+ + + =

+ + + =

+ + + =

a a a a

a a a a

a a a a

a a a a

(9)

The solution to this system of equations is: �0 = 13, 486, 719,   �1 = − 413, 073.33,   �2 = 139,101.75,   �3 = − 13, 372.42
The estimate for January 25, 2012 is: 13, 486, 719 − 413, 073.33 3 + 139, 101.75 3 2− 13,372.42 3 3 = 13, 138, 359.42   km2
The absolute values of the deviations (actual and estimated values) were calculated in Excel.

Degree Year Actual Estimated Absolute deviation

3 2011 12,916,563 12,927,252.1 10,689.1

3 2012 13,123,125 13,138,359.4 15,234.4

The mean of the absolute deviations for polynomials of degree 1 and the mean of the absolute
deviations for polynomials of degree 3 were calculated in Excel. The polynomial of degree 3
provided the smallest mean absolute deviation.
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Degree Mean absolute deviation

1 27,617.00

3 12,961.75

Therefore, a third order polynomial will be used to generate an estimate for the sea ice extent
on January 25, 2013.

The system of equations using a third-order polynomial for 2013 is:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

1 1 1 13,168,594

2 2 2 13,077,813

4 4 4 13,404,688

5 5 5 13,388,750

+ + + =

+ + + =

+ + + =

+ + + =

a a a a

a a a a

a a a a

a a a a

(10)

The solution to this system of equations is: �0 = 13, 717, 916.67,   �1 = − 850, 859.17,   �2 = 337,669.33,   �3 = − 36, 132.83.

The estimate for January 25, 2013 is: 13, 717, 916.67 − 850, 859.17 3 + 337, 669.33 3 2− 36,132.83 3 3 = 13, 228, 776.72 km2. Figure 3 shows the extent of the sea ice in January, 2013 with
the estimate for January 25.

Figure 3. The extent of sea ice in January 2013 with the January 25, 2013 estimate.
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4. Statistical methodologies and applications in the Ebola war

In 2014, an unprecedented outbreak of Ebola occurred predominantly in West Africa. Accord-
ing to the Center for Disease Control (CDC), over 28.5 thousand cases were reported resulting
in more than 11,000 deaths [8]. The countries that were affected by the Ebola outbreak were
Senegal, Guinea, Nigeria, Mali, Sierra Leone, Liberia, Spain and the United States of America
(USA). Statistics through dynamic modeling played a crucial role with clinical data collection
and management. The lessons learned and the resultant statistical advances continue to inform
and drive current and subsequent pandemics.

For this honors thesis project, we tracked and gathered Ebola data over an extended period of
time from the CDC, World Health Organization (WHO) and the news media [8, 9]. We used
statistical curve fitting that involved both exponential and polynomial functions as well as
model validation using nonlinear regression and R2 statistical analysis.

The first WHO report (initial announcement) of the West Africa Ebola outbreak was made
during the March 23rd, 2014 week. Consequently, the data for this project began from that
week to October 31, 2014. The 2014 Ebola data was used to create epidemiological models to
predict the possible pathway of a 2014 West Africa type of Ebola outbreak. The WHO number
of Ebola cases and death toll as of October 31st, 2014 were Liberia (6635 cases with 2413 deaths),
Sierra Leone (5338 cases with 1510 deaths), Guinea (1667 cases with 1018 deaths), Nigeria (20
cases with eight deaths), the United States (four cases with one death), Mali (one case with one
death) and Spain (one case with zero death).

Microsoft Excel was used for the modeling of the three examples shown and were predi-
cated upon the following assumptions: (1) Week 1 is the week of March 23rd, 2014; (2) X
is the number of weeks starting from Week 1 and Y is the number of Ebola deaths; (3)
there was no vaccine/cure; and (4) the missing data for the 24th week was obtained by
interpolation.

4.1. Modeling of weekly Guinea Ebola deaths

The dotted curve in Figure 4 shows the actual observed deaths while the solid line shows the
number of deaths as determined by the fitted model. As shown in Figure 4, the growth of the
Guinea deaths is exponential. The best fit curve for the projected growth is y = 72.827e0.0823x. A
comparison of the actual data to the projected data shows that the two are similar but not exact
(Table 2). The projected amount of deaths is approximately 1300 by week 35 (or the week of
November 23, 2014).

4.2. Modeling of Liberia Ebola deaths (weekly)

Unlike the Guinea deaths, the Liberian deaths are modeled using polynomial function
(Figure 5).
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Figure 4. Weekly deaths in Guinea.

Ebola deaths in Guinea

Week Deaths Model Week Deaths Model Week Deaths Model

1 29 79 13 264 212 25 494 570

2 70 86 14 267 231 26 494 619

3 95 93 15 303 250 27 648 672

4 108 101 16 307 272 28 739 730

5 136 110 17 304 295 29 862 792

6 143 119 18 314 320 30 904 860

7 155 130 19 339 348 31 XXX 934

8 157 141 20 363 378 32 XXX 1014

9 174 153 21 377 410 33 XXX 1101

10 193 166 22 396 445 34 XXX 1195

11 215 180 23 406 483 35 XXX 1298

12 226 196 24 450 525 36 XXX XXX

Table 2. Actual and projected Ebola deaths in Guinea.

The best fit curve is best defined with the polynomial equation y = 0.0003x5 − 0.0069x4

+ 0.0347x3 + 0.5074x2 − 4.1442x + 10.487. The model is not exact but it is close enough to predict
that by week 35, there would be over 7000 deaths in Liberia (Table 3).
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Figure 5. Weekly deaths in Liberia.

Ebola deaths in Liberia

Week Deaths Model Week Deaths Model Week Deaths Model

1 0 7 13 24 33 25 871 1001

2 0 4 14 25 43 26 670 1267

3 10 3 15 65 58 27 1830 1589

4 13 3 16 84 79 28 2069 1976

5 6 3 17 105 107 29 2484 2436

6 6 5 18 127 145 30 2705 2981

7 11 7 19 156 197 31 XXX 3620

8 11 9 20 282 264 32 XXX 4366

9 11 12 21 355 352 33 XXX 5231

10 11 15 22 576 464 34 XXX 6230

11 11 20 23 624 606 35 XXX 7377

12 11 25 24 748 783 36 XXX XXX

Table 3. Actual and projected Ebola deaths in Liberia.

4.3. Modeling of total deaths (World)

When analyzing the total deaths of Ebola (for 35 weeks), the data was best modeled using the
polynomial function y = 0.033x4 − 1.4617x3 + 23.437x2 − 118.18x + 231.59 (Figure 6). An expo-
nential function was not used as it was not suitable since the actual growth was not (initially)
fast enough to match the exponential growth. As shown in Table 4, the projected total deaths
according to this model would be greater than 11,000 by week 35.
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Figure 6. Weekly world-wide deaths.

Total Ebola deaths in the world

Week Deaths Model Week Deaths Model Week Deaths Model

1 29 135 13 337 387 25 1848 1977

2 70 78 14 350 428 26 1647 2392

3 105 51 15 467 470 27 3091 2893

4 121 49 16 518 516 28 3439 3494

5 142 65 17 603 571 29 4555 4206

6 149 93 18 660 638 30 4877 5044

7 166 131 19 729 722 31 XXX 6022

8 168 173 20 932 829 32 XXX 7155

9 185 217 21 1069 967 33 XXX 8461

10 210 262 22 1350 1141 34 XXX 9955

11 232 305 23 1427 1362 35 XXX 11656

12 244 347 24 1638 1637 36 XXX XXX

Table 4. Actual and projected worldwide deaths.

4.4. Nonlinear regression and R-squared analysis

A visual inspection of the graphs and tables shows that the model for Liberia as well as the
model for the world-wide total deaths evidently fits the data more closely and a lot better than
does the Guinea model. Hence, other statistical goodness-of-fit tests are used to reassert these
observations. Here, nonlinear polynomial regression (Eq. (11)) and R2 statistical analysis are
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employed. In Eq. (11), Σ signifies summation, w refers to the actual (observed) number of Ebola
deaths, z is the number of Ebola deaths as calculated with the model and n is the total number
of weeks.

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
2

22

2 2

2

wz n w z w w
R

w n w w w

+ - -
=

+ -

å å å
å å

(11)

For the Guinea epidemiological Ebola model, the nonlinear regression equation is y =
72.827e0.0823x with R2 as 0.9077 indicating that about 91% of the total variations in y (the number
of actual Ebola deaths) can be explained by the regression equation. The polynomial epide-
miological model for Ebola deaths in Liberia, y = 0.0003x5 − 0.0069x4 + 0.0347x3 + 0.5074x2

− 4.1442x + 10.487, has R2 as 0.9715 so that about 97% of the total variations in y (the number
of observed Ebola deaths) can be explained by the regression equation. For the third world-
wide model, the polynomial for the total Ebola deaths for all countries combined is expectedly
better. Here, the R2 is 0.9823, so that about 98% of the total variations in the number of actual
Ebola deaths can be explained by the regression equation, y = 0.033x4 − 1.4617x3 + 23.437x2

− 118.18x + 231.59.

This shows that recording good and organized data that is easily retrievable is paramount in
the fight of pandemics. The statistical models developed, in turn, can continue to inform and
drive current and subsequent pandemic analyses.

5. Probability and expected value in statistics

At Wesley College, probability and expected value in statistics are introduced in two freshman-
level mathematics classes: the quantitative reasoning math-core course and a first-year
seminar, Mathematics in Gambling.

In general, there are two practical approaches to assigning a probability value to an event:

a. The classical approach

b. The relative frequency/empirical approach and

The classical approach to assigning a probability assumes that all outcomes to a probability
experiment are equally likely. In the case of a roulette wheel at a casino, the little rolling ball is
equally likely to land in any of the 38 compartments of the roulette wheel. In general, the rule
for the probability of an event according to the classical approach is:

( )          
      
number of waysevent AcanoccurP event A

total number of ways anything canoccur
= (12)
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In the case of roulette, the probability an individual wins by placing a bet on the color red is
18/38. Since there are 18 red, 18 black and 2 green compartments, the probability of a gambler

winning by placing a bet on the color red is 1838 = 919  or approximately 0.474.

Unfortunately, the classical approach to probability is not always applicable. In the insur-
ance industry, actuaries are interested in the likelihood of a policyholder dying. Since the
two events of a policyholder living or dying are not equally likely, the classical approach
cannot be used.

Instead, the relative frequency approach is used, which is:

( )                 
  ,   

number of timesevent Bhas happened inthe past ntrialsP event B
number of trials n

= (13)

When setting life insurance rates for policyholders, life insurance companies must consider
variables such as age, sex and smoking status (among others). Suppose recent mortality data
for 65-year-old non-smoking males indicates 1800 such men died last year out of 900,000 such
men. Based on this data, one would say the probability a 65-year-old non-smoking male will
die in the next year, based on the relative frequency approach is:

P (65-year-old non-smoking male dies) = 1, 800900, 000  or approximately 0.002 or 0.2%.

The field of decision analysis often employs the concept of expected value. Take the case
of  a  65-year-old non-smoking male buying a $250,000 term life  insurance policy.  Is  it
worth buying this  policy? Based on the concept  of  expected value,  a  calculation based
on probability  is  made and interpreted.  If  the value turns out  to  be negative,  students
then have to explain the rationale  justifying the purpose of  purchasing the term life
insurance policy.

For a casino installing, a roulette wheel or craps table will the table game be a money maker
for the casino? In the Mathematics of Gambling first-year seminar course, students research the
rules for the game of roulette and the payoffs for various bets. Based on their findings, they
determine the “house edge” for various bets. They also compare various bets in different games
of chance to analyze which is a “better bet” and in what game.

Assume a situation has various outcomes/states of nature which occur randomly and are
unknown when a decision is to be made. In the case of a person considering a life-insurance
policy, the person will either live (L) or die (D) during the next year. Assuming the person has
no adverse medical condition, the person’s state of nature is unknown when he has to make
the decision to buy the term life-insurance (the two outcomes will occur in no predictable
manner and are considered random). If each monetary outcome (denoted �� ) has a probability

(denoted �� ), then the expected value can be computed by the formula:
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where there are n possible outcomes.

In other words, it is the sum of each monetary outcome times its corresponding probability.

Example 1: A freshman-level quantitative reasoning mathematics-core class

Assume a 67-year-old non-smoking male is charged $1180 for a one year $250,000 term life-
insurance policy. Assume actuarial tables show the probability of death for such a person to
be 0.003. What is the expected value of this life-insurance policy to the buyer?

A payoff table can be constructed showing the outcomes, probabilities and “net” payoffs:

Outcome: Person dies Person lives

Probability: 0.003 1 – 0.003 = 0.997

Net payoff: $250,000–$1180 −   $1180
$248,820

The payoff in the case of the person living is negative since the money is spent with no return
on the investment. Using these data, the expected value is calculated as

   $248,820 0.003  $1,180 0.997  $430.Expected Value = × +- × =- (15)

The negative sign in the expected value means the consumer should expect to lose money
(while the insurance company can expect to make money). Students are asked to explain the
meaning of the expected value and explain reasons for people throwing their money away like
this. What will they do when it comes time to consider term life insurance?

Example 2: Mathematics of Gambling class

Students are asked to research rules of various games of chance, the meaning of various payoffs
(for example, 35 to 1 versus 35 for 1) and then be asked to calculate and interpret the house
edge in gambling. This is defined by the formula

         
   

ExpectedValueof theBetHouse Edge
Sizeof theBet

= (16)

By asking different students to evaluate the house edge of different gambling bets, students
can analyze and decide which bet is safest if they do choose to gamble.
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Which bet has the lower house edge and why?

Bet #1 – Placing a $10 bet in American roulette on the “row” 25– 27.

Bet #2 – Placing a $5 bet in Craps on rolling the sum of 11.

Students must research each game of chance and determine important information to use,
which is recorded as follows:

$10 Bet on a row in roulette $5 Bet on a sum of 11 in craps

Probability of a winning bet: 338 236 = 118
Payoff odds: 11 to 1 15 to 1

Payoff: −$110 −$75

Probability of a losing bet: 3538 3436 = 1718
Payoff to house for lost bet: +$10 +$5

House Edge: $0.0526 $0.1111

Computed by: 338   ⋅ −$110   +   3538   ⋅ (   + $10   )  $10 118 ⋅ ( − $75) +   1718 ⋅ ( + $5)$5
The roulette bet has a lower house edge and is financially safer in the long run for the gambler.
Students were then asked to compute the house edge using the shortcut method based on the
theory of odds. The house edge is the difference between the true odds (denoted a:b) and the
payoff odds the casino pays, expressed as a percentage of the true total odds (a + b).

In the example involving craps, the true odds against a sum of 11 is 34:2 which reduces to 17:1.
The difference between the true odds and payoff odds is 17 – 15 (see Example 2) = 2. Expressing
this difference as a percentage of (a + b), the house edge is then calculated as 2 ÷ (17 + 1) =2 ÷ 18 = 19 = 0.1111 which is the same answer found using the expected value.

Due to the concept of the house edge, casinos know that in the long run, every time a bet is
made in roulette, the house averages a profit of $0.0526 for each dollar bet. Yes, gamblers do
win at the roulette table and large amounts of money are paid out. But in the long run, the
game is a money maker for the casino.
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