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Abstract

Radiotherapy is a treatment method using radiation for cancer treatment based on 
a patient treatment planning for each radiotherapy machine. At this time, the dose, vol-
ume, device setting information, complication, tumor control probability, etc. are consid-
ered as a single-patient treatment for each fraction during radiotherapy process. Thus, 
these filed-up big data for a long time and numerous patients’ cases are inevitably suit-
able to produce optimal treatment and minimize the radiation toxicity and complica-
tion. Thus, we are going to handle up prostate, lung, head, and neck cancer cases using 
machine learning algorithm in radiation oncology. And, the promising algorithms as the 
support vector machine, decision tree, and neural network, etc. will be introduced in 
machine learning. In conclusion, we explain a predictive solution of radiation toxicity 
based on the big data as treatment planning decision support system.

Keywords: big data, machine learning, radiation toxicity, predictive solution, radiation 
treatment planning

1. Introduction

1.1. Definition of big data and each clinical application overview

Trifiletti et al. [1] describe the big data as follows: a lot of information and massive data sets or 

number of grains of sand in the earth for human analysis with 1012–1018 bytes [1].

Murdoch listed that the big data are the inevitable application in healthcare field as four 
things [10]:

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



(a) Expanding capacity to create new knowledge

(b) Helping with knowledge dissemination

(c) Translating personalized medicine in clinical practice with EHR data

(d) Allowing for a transformation of health care by transferring information to patient [10]

This trend is called to be “big bang” to adapt and research for big data and machine learn-

ing in medicine. Especially, machine learning is widely used [4–6]. Radiotherapy is a treat-

ment method using radiation for cancer treatment based on a patient treatment planning 

for each radiotherapy machine. At this time, the dose, volume, device setting information, 
complication, tumor control probability, etc. are considered as a single-patient treatment 

for each fraction during radiotherapy process. Thus, these filed-up big data for a long time 
and numerous patient cases are inevitably suitable to produce optimal treatment and mini-

mize the radiation toxicity and complication. Thus, we describe various clinical cases and 

key machine learning algorithms in radiation oncology in this chapter.

First, what is the big data for a single patient in hospital? The data type and its size for each 

patient can be summarized in Table 1. In case of radiation oncology, imaging and treatment 

planning information could be a major treatable data [15].

Second, we would like to explain radiation treatment planning and decision support system 

in radiation oncology. When we set up treatment planning with parameters for patient cure in 

radiotherapy, it is based on the radiation treatment planning (RTP) system. The clinical target 

volume (CTV) and planning target volume (PTV) have to be targeted by maximum radiation, 

and critical organs have to be radiated by minimum. It is established based on the correlation 

between the dose and volume, also known as dose-volume histogram (DVH). At this process, 

considered parameters are the prescription dose (PD), dose distribution, dose fractionation, 

dose constraints at normal tissue, target volume, treatment machine setting values, etc. [2, 16].

Third, when the finish treatment planning has been completed, the DVH is acquired. The 
dose-volume distribution will be the basic information whether it could be use or not. But, 

these limited information do not give hot spot for target volume, conformity, homogeneity, 

Data type Format Approx. size

Clinical features Text 10 MB

Blood tests Numbers 1 MB

Administrative ICD-10 codes 1 MB

Imaging data DICOM 450 MB

Radiation oncology data (planning and 

onboard imaging)

DICOM, RT-DICOM 500 MB

Raw genomic data BAM: position, base, quality 6 GB

Total 7.9 GB

Table 1. Data type and its size for each patient. In case of radiation oncology, imaging and treatment planning information 

could be the major treatable data [15].
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and so on. And, the tumor control probability (TCP) and normal tissue complication prob-

ability (NTCP) have to be analyzed in parallel. As the knowledge-based judgment, other 

rival plans could be generated again [32]. Thus, some decision support system is needed to 

select the best treatment plan for personalized patient care. These decision support systems 

(BIOPLAN, CERR, DRESS, Slicer RT, etc.) that provide different functions to analyze treat-
ment efficiency. And these were being researched and studied as the software program since 
the early 2000s to up to date [3, 26–28].

But now, these decision support systems are needed to add to specific function using machine 
learning and historical treatment results and previously mentioned big data information to 

predict patient toxicity or complication after radiation treatment.

2. Clinical application using big data in radiation oncology

2.1. Prostate cancer

Çınar et al. [25] describe prostate cancer as follows:

a. Prostate cancer occurs most frequently in men over 50.

b. Prostate cancer is currently most common in men except lung cancer [25].

Thus, this clinical application is meaningful to deal with machine learning in big data. Coates 

et al. [4] studied the integrated big data research for prostate cancer in radiation oncology. 

The parameters are dose-volume metrics (EUD), clinical parameter [gastrointestinal (GI) 
toxicities or rectal bleeding and genitourinary (GU) toxicities or erectile dysfunction (ED)], 
spatial parameters (zDVH), biological variables (genetic variables), etc., and the risk quan-

tification modeling of TCP and NTCP has performed. These modeling methods are various, 
and the neural network and kernel-based methods are widely used. Figure 1 shows that the 

toxicity prediction results using principle component analysis (PCA) [4].

Figure 1. The predicted NTCP via principle component analysis (PCA) (reproduced from James Coates et al. [4]). 
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De Bari et al. [5] have done the pilot study for the prediction of pelvic nodal status using 

machine learning of prostate cancer. A 1555 cN0 and 50 cN+ prostate cancer patients enrolled, 

and decision tree and machine learning algorithm were used to study for performance results 

of Roach formula and Partin table. The accuracy, specificity, and sensitivity ranging between 
48–86%, 35–91%, and 17–79%, respectively, were showed through this study (Figure 2).

In addition, several analysis articles have been reported for prostate cancer with index results, 

which could be the example for adding above machine learning algorithm in the next step 

[30, 31].

2.2. Lung cancer

Das et al. [6] describe radiation-induced pneumonitis as a serious problem around thorax 

including the lung as follows:

a. Important problem for the incident radiation to the adjacent or surrounding normal lung.

b. Occurrence of high grade in 15–36% with retrospective studies.

Das et al. [6] conducted prediction modeling based on 234 lung cancer patients and Lyman 

normal tissue complication probability (LNTCP) by decision tree analysis. Table 2 shows 

injury prediction by various settings for a male patient.

2.3. Head and neck cancer

Head and neck cancer patients undergo anatomical change during radiotherapy for a few 

weeks. Thus, kilovoltage cone-beam computed tomography (kV-CBCT) and mega-voltage 

computed tomography (MVCT) combined with a linear accelerator (LINAC) permit to con-

trol patient’s daily anatomical change for treatment fractions in recent radiotherapy [7]. 

The adaptive radiotherapy (ART) could fix the anatomical variation for the patient through 
the dose distribution adjustment. Finally, reducing unexpected toxicity can be possible. But, 

This ART accompanies time and labor for daily setup about the variation fixing. At this time, 

Figure 2. A decision tree example for prediction of pelvic nodal status in prostate cancer patients [5].
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when replanning has to be done daily/weekly for numerous patients, then it is laborious and 

time-consuming for this process.

Guidi et al. [7] studied the prediction of replanning benefit using unsupervised machine 
learning on retrospective data considering this process and patient characteristics. Figure 3 

is the algorithm architecture for this study. From the DVH input, clustering which classifies 
into data group, support vector machine (SVM) training which analyzes the parotid gland, 

and clinical acceptance level with test and output process are shown in Figure 3 [7]. Thus, the 

results suggest that the replanning for 77% patients is needed because the significant morpho-
dosimetric changes affect them when the fourth week of treatment starts.

Plan name Histological 
type

Chemotherapy 
before RT

Once/twice-daily 
treatment

LNTCP Injury output 
(simplified 
model)

% Injured 

patients 
below

% Uninjured 

patients 
above

A1 Nonsquamous No Either 0.5 0.38 3 72

A2 Nonsquamous No Either 0.73 0.49 36 29

A1 Squamous No Either 0.5 0.5 37 28

A1 Any Yes Twice 0.5 0.51 43 24

A1 Any Yes Once 0.5 0.55 64 13

A2 Squamous No Either 0.73 0.61 88 4

A2 Any Yes Twice 0.73 0.62 91 3

A2 Any Yes Once 0.73 0.66 97 1

RT, radiotherapy; LNTCP, Lyman normal tissue complication probability.

Table 2. Comparison table of injury prediction for combinations of radiotherapy plan and various settings for a male 
patient [6].

Figure 3. Algorithm architecture for prediction using clustering and support vector machine training [7].
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3. Machine learning methodology

When the machine learning method has to be selected in radiation oncology, input and out-

put variables are considered to predict expected analysis results by accuracy validation. Kang 

et al. [14] describe the principles of modeling as follows (Figure 4).

3.1. Machine learning introduction

Ethem Alpaydin [8] defines machine learning as the computer program for optimizing 
 performance factor using data, and Mitchell also describes that a computer program can be 

said to be learned in experience (E), task (T), and performance (P) [9].

A machine learning algorithm can be divided into the unsupervised learning and supervised 

learning [8, 11]. For unsupervised and supervised learning process is little different as with 
training and test in Figure 5. A differentiation is the feedback loop for training and test differ-

ence between supervised and unsupervised learning in Figure 5(a) and (b).

3.2. Supervised learning

A supervised learning is a machine learning method to find a result from training data. For 
example, we know beforehand about the doughnut and bagel classification group. Doughnut 
is classified from the training. Then, we classify the group whether this doughnut belongs to 
doughnut group or bagel. This is the example of supervised learning.

Figure 4. Core principles for modeling [14].
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Generally, the training data include input characteristics with vector type; the vector presents 
wanted results. Thus, this continuous trial showing the result process is the regression. A clas-

sification is the division of input vector whether this value comes from several groups. When 
the supervised learner is executed, training data have to be measured by proper method to 

achieve final goal. The accuracy and validation for classification are needed to count numeri-
cally to measure its performance.

Figure 5. Unsupervised learning and supervised learning algorithm process and types. (a) Unsupervised learning 

process; (b) supervised learning process; and (c) Supervised and unsupervised learning algorithm types.
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3.2.1. Decision tree

A decision tree consists of node and branch. If the nodes have more complicated hierarchy, 

leaf nodes and braches follow by certain decision. Thus, a diagram formed into the unknown 

condition at the nodes and the decision “yes” or “no” goes to a direction in a tree. This is 

beneficial to trace for a created hypothesis with the results. Figure 6 shows that a decision 

tree and it is shown that its rules for their conditions whether patient characteristics about 

chemotherapy, cell, treatment, and sex for RT radiotherapy.

A hyperplane h(x) defines Eq. (1) for the points x [12]:

  h  (  x )    :  w   T  x + b=0  (1)

where w is the weight vector and b is the offset. The generic form of a separate point for a 
numeric attribute X

i
 is given in Eq. (2):

   X  
i
   ≤ v  (2)

where v = −b is the certain value in the domain of X
i
. The decision point X

i
 ≤ v thus divides 

R, the input data space into two regions R
YY

 and R
NN

. Each split of R into R
YY

 and R
NN

 also 

induces a binary partition of the corresponding input data point D. That is, a split point of the 

form X
i
 ≤ v induces the data partition in Eqs. (3) and (4):

    D  
YY

   =  {  x |   x ∈  D,x  
i
   ≤ v }     (3)

    D  
NN

   =  {  x |   x ∈  D,x  
i
   >v }     (4)

where D
YY

 is the subset of data points that lie in region R
YY

 and D
NN

 is the subset of input 

points that line in R
NN

 [12].

Figure 6. A decision tree and its rules for their conditions whether patient characteristics about chemotherapy, cell, 

treatment, and sex for RT radiotherapy (reproduced from Das et al. [7]).
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3.2.2. Support vector machine

A support vector machine (SVM) is a machine learning method for pattern recognition and 
information analysis. Generally, it is used for classification and regression analysis. The SVM 
makes the decision about input data to determine whether a given set of data belongs to any 

category. For understanding the SVM, data group and hyperplane terms have to be defined.

A hyperplane in d dimensions is given as the set of all points x ∈ Rd that satisfies the equation 
h(x) = 0, where h(x) is the hyperplane function, defined as follows in Eq. (5) [12]:

  h  (  x )    =  w   T  x + b  (5)

Here, w is the d dimensional weight vector and b is the scalar, called the bias. For points that 

lie on the hyperplane, it gives us Eq. (6):

  h  (  x )    =  w   T  x + b = 0  (6)

The hyperplane is defined as the set of all points wTx = −b. If the input data group is linearly 
able to classify, then a dividing hyperplane h(x) = 0 could be found for all points classified as 
yi = −1, h(xi) < 0 and for all points classified as yi = +1, thus h(xi) > 0:

  y =   {    
+1if h(x ) < 0

   − 1if h(x ) < 0
    (7)

   w   T   (  a1 − a2 )    = 0  (8)

The weight vector w can be designated at the direction that is normal to the hyperplane, how-

ever, b; the bias fixes the offset of the hyperplane in the d-dimensional space. Because w and 
−w are normal to the hyperplane, the vagueness that h(xi) > 0 where yi = 1 and h(xi) < 0 where 
yi = −1 can be removed.

Thus, let xp be the orthogonal projection, x the hyperplane, and let r
1
 = x − xp:

  x =  x  
p`
   +  r  

1
    (9)

  x =  x  p   +  r  
1
     w ____  ‖  w ‖      (10)

where r is the directed distance of x from x
p
, r

1
 is the x from x

p
,    w

 
____

  ‖  w ‖      is the unit weight vector.

r
1
: + when r

1
 is in the same direction as w; r

1
 : – when r

1
 is in an opposite direction to w 

(Figure 7) [12].

In case of nonlinear SVM, the classes are not separable by linear SVM. The shape is in Figure 8, 

and some kernels include polynomial, Gaussian, etc.

There is the library for various programming languages using the support vector machine in 

Table 3.

3.2.3. Neural network

A neural network example in radiation oncology is shown in Figure 9. A three-layer neural 

network defines as follows, and this would have the following model for the approximated 
function as [11]
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Figure 7. The support vectors and hyperplane (reproduced from Zaki and Wagner Meira [12]).

Figure 8. A nonlinear SVM (reproduced from Zaki and Wagner Meira[12]).
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  f  (  x )    =y   T   w   (2)  +  b   (2)   (11)

where the elements are the output of the neurons:

  v=s  (   x   T   w  
i
  (1)  +  b   (1)  )     (12)

(where x: the input vector; w(j), b(j): the interconnect weight vector, and j: the bias of layer)

3.3. Unsupervised learning

Unsupervised learning, otherwise supervised learning, does not know the specific group 
information. But the learning algorithm infers the results such as doughnut and bagel 

example. That is, there is no target value in unsupervised learning. It is related to  density 

Programming language Library name Library diversity

MATLAB MATLAB toolbox and open library 

C/C++ Open library 

JAVA Open library ○

Python Open library 

LabVIEW Machine learning toolkit ◑

Table 3. Various programming languages to implement SVM algorithm (Good, ○; Better, ◑; Best, ).

Figure 9. Neural network for head and neck cancer of 3-class classification example [17].
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estimation on statistics. This unsupervised learning is beneficial to data characteristics 
analysis and its explanation. Typical example is clustering. Another one is an independent 

component analysis.

3.3.1. Principal component analysis (PCA)

Zaki and Wagner Meira defined the PCA as follows:

a. Finding r-dimensional basis that take the data variance.

b. It is called that the largest projected variance direction is the first principal component.

c. In case of orthogonal direction, then it is the second principal component and so forth.

And also, the mean squared error can be minimized by maximizing the data variance [12].

Principal component analysis (PCA) is applied to the normalized X to identify a set of princi-
pal components (PCs) [11]:

  PC =  U   T  X = ∑  V   T   (13)

where UΣVT is the singular value decomposition of X.

3.3.2. Clustering

Clustering is an unsupervised learning method, and that is finding the cluster without data 
label. The data and data label are required to classify. Thus, it needs different classification 
methods for unlabeled data. There are several ways to define cluster. One simple way is that 
we can define as “the data in same cluster inside” is close to each other, and the closest dis-

tance data could be selected. k-Means assume the data is close in same cluster. One cen-

ter exists, and cost which is a distance between center and each data can be defined. Thus, 
k-means is an algorithm to reduce and minimize cost in cluster.

Given a clustering C = {C
1
, C

2
, …, C

k
}, the scoring function evaluates its quality. This sum of 

squared error scoring function is defined as [12]

  SSE(C ) =  ∑ 
i=0

  k     ∑  
 X  

j
  ∈ C  

i
  
    |   |    X  

j
   −  u  

i
   |     |     2    (14)

The goal is to find the clustering that minimizes the SSE score, thus,

   C*=argmin  
c
    {  SSE(C ) }     (15)

k-Means employs a greedy iterative approach to find a clustering that minimizes the SSE 
objective [12].

Here is the advantage and disadvantage of various machine learning algorithms in radiation 

oncology in Table 4.
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4. Conclusion

We summarized various clinical applications such as head, neck, lung, and prostate cancer 

using machine learning algorithm in radiation oncology [13, 18, 19]. And those machine learn-

ing algorithm introductions and several definitions were listed. For the precision medicine 
in radiation oncology, radiation toxicity and complication factors are inevitable parameters 

for patients after radiotherapy. The dose-volume distribution will be the basic information, 

but this  limited information does not give the tumor control probability (TCP) and normal 

tissue complication probability (NTCP) and grade level. Thus, some decision support system 

is needed to select the best treatment plan for personalized patient care. But now, although 

this decision support system is needed to add specific function using machine learning and 
historical treatment results and previously mentioned big data information to predict patients 

toxicity or complication after radiation treatment [29].

Another current big data trend is the research for the medical imaging such as DICOM RT 

in radiotherapy. The images have a lot of information for current patient status and future 

undergoing information as prediction of patient’s quality of life. Thus, lung cancer and breast 
cancer applications are good applications in case of using simple chest X-ray or low-cost 
imaging method for big data research in clinical application.

Algorithm Advantages Limitations

Decision tree Easy to understand Classes must be mutually exclusive

Fast Results depend on the order of attribute selection
Risk of overly complex decision trees

Naïve 

Bayesian

Easy to understand Variables must be statistically independent

Fast Numeric attributes must follow a normal 
distribution

No effect of order on training Classes must be mutually exclusive

Less accurate

k-Nearest 

neighbors

Fast and simple Variables with similar attributes will be sorted in 
the same class

Tolerant of noise and missing values in data All attributes are equally relevant
Can be used for nonlinear classification Requires considerable computer power as the 

number of variables increases

Can be used for both regression and classification
Support 

vector 

machine

Robust model Slow training

Limits the risk of error Risk of overfitting
Can be used to model nonlinear relations Output model is difficult to understand

Artificial 
neural 

network and 

deep learning

Tolerant of noise and missing values in data Output model is difficult to understand (black 
box)

Can be used for classification or regression Risk of overfitting
Can be easily updated with new data Requires a lot of computer power

Requires experimentation to find the optimal 
network structure

Table 4. The advantages and disadvantages by various machine learning algorithms in radiation oncology [15].
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Thus, we explain a predictive solution of radiation toxicity based on the big data as treat-

ment planning decision support system in Figure 10. From this block diagram, the input 

part gives treatment data (i.e., rival plans with DVH) through a radiation treatment plan-

ning system. After this process, the dosimetric and biological index analysis process is 

Figure 10. An example of the big data based on patient-specific treatment prediction in radiation oncology (a), its block 
diagram (b), and overview (c).
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 performed by program. The normal tissue complication probability (NTCP) model could 

be adaptable, and it is used to consider central lung distance (CLD) and maximal heart 

distance information to be measured such as two-dimensional radiation therapy indica-

tors between the three-dimensional conformal radiation therapies in case of lung cancer. 

Dose-volume relationship and tolerance dose in organ-at-risk information are analyzed 

by some machine learning algorithm in decision support system. At this time, numerous 

patient treatment “big data” could be used to evaluate machine learning results and predict 

toxicity and normal tissue complication versus know-based approach. Thus, this will be 

the evidence-based decision to finalize treatment plan for customized patient cure [20–24].

Therefore, current decision support system can be modified and developed to predict com-

plication and toxicity after radiotherapy by adding not only dosimetric index and bio-

logical index function but also clinical big data analysis with various machine learning 

algorithms. This is the fusion solution for customized patient cure method in big data era 

in radiation oncology.
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