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Abstract

Distillation is the process most commonly used in industry to separate chemical mix-
tures; its applications range from cosmetic and pharmaceutical to petrochemical indus-
tries. The equipment required to perform the distillation process is known as distillation
column. Since initial investment and maintenance costs for distillation columns are very
high it is necessary to have an appropriate mathematical model that allows improving
the comprehension of the column dynamics, especially its thermal behaviour, in order to
enhance the control and safety of the process. This chapter presents a general panorama
of the mathematical modelling of distillation columns, having as a specific case of study
the comparison of a space-state non-linear model and a Takagi-Sugeno fuzzy model for
a batch distillation column using a binary mixture (Ethanol-Water).

Keywords: mathematical modelling, distillation column, Takagi-Sugeno, non-linear
models

1. Introduction

Distillation is the process most commonly used in industry to separate chemical mixtures,

being the petrochemical industry one of the most important due to that oil distillation allows

obtaining useful product, such as fuels. Distillation is also widely used in the pharmaceutical

and cosmetics industry in order to obtain specific drugs and in the liquor industry to obtain

wines and liquors, among other applications [1].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Distillation columns are the essential equipment required to perform the distillation process,

these columns allow producing food, fuel, medicine, among other products. However, distil-

lation columns represent an important investment in the process they are used, that is why it is

necessary to have both, corrective and predictive maintenance, in order to prevent failures in

the process as well as in the equipment.

Through the computational and technological continuous development, the industrial pro-

cesses, such as distillation, have become very complex systems due to the high number of

components they have and the several functions they develop, so their vulnerability has also

increased. Having appropriate techniques to model distillation columns, such that these

models allow implementing efficient and reliable control techniques, is very important to

obtain the desired product quality, the adequate process functioning and to improve the

security of the system and the user.

In the literature, different mathematical models have been used to improve distillation col-

umns dynamics and comprehensions have been reported. Simple linear and non-linear models

are representations that consider only few variables and low-order equations, simplifying the

design and implementation of controllers using computational tools. Kienle [2] presents a low-

order model for an ideal multicomponent distillation process considering the non-linear wave

propagation theory.

Balasubramhanya and Doyle Iii [3] present a low-order model for a reactive multicomponent

distillation column as well as the designing of a (MPC) predictive control to obtain the best quality

of the distilled product. In Ref. [4], a model based on neural networks having the aim of optimiz-

ing the energy efficiency in a binary distillation column is presented. Lopez-Saucedo et al. [5]

present the simulation and optimization of a model for a conventional and nonconventional batch

distillation column.

Astorga et al. [6] and Cervantes et al. [7] present high-gain observers to estimate the light

component composition in a continuous distillation column using a set of models for each

plate of the column. In Ref. [8], a fault tolerant scheme for a distillation column, where

observers are used to detect failures in the temperature sensors considering a non-linear model

of the distillation column, is presented. The parametric identification is other methodology

used to estimate certain variables in distillation columns as presented in Refs. [9, 10].

The Takagi-Sugeno fuzzy model is a useful tool to model and control complex systems

based on the concept of decomposing a non-linear model in a multi-model structure formed

by linear models not necessarily independents and fuzzy logic [11, 12], where the non-

linear system representation is obtained through a weighted sum of all the sub-systems.

The Takagi-Sugeno fuzzy model provides a solution to solve the designing and implemen-

tation issues in control strategies for non-linear systems, for instance, Wang et al. [13]

propose a methodology to design control techniques for systems having a Takagi-Sugeno

form.

The stability analysis of the Takagi-Sugeno fuzzy model can be solved considering the

Lyapunov approach and by using the inner point tool as well as optimization techniques based

on linear matrix inequalities (LMIs) [14].
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In this chapter, the design and simulation of a non-linear state-space and Takagi-Sugeno models

for a batch distillation column are presented. These models are simulated and compared in order

to analyse if they aim the objective of representing adequately the process dynamics in order to

facilitate the implementation of control strategies to improve the distilled product quality as well

as the process security.

2. Distillation column operation modes

Due to the variety of substances found in the nature and their different phases (mainly liquid

and vapour), there exist different distillation operation modes in order to separate diverse

mixtures, obtaining different quality of products.

The main distillation operation types are as follows:

• Vacuum distillation: A low-pressure system is used in order to obtain a low-temperature

boiling of the substances in the mixture. Usually, a vacuum pump is used to generate the

low-pressure state, as shown in Figure 1a.

• Destructive distillation: The substance is heated at high temperatures to be decomposed in

other products that can be separated by fractionating, its operation is similar to the one

used in wood and coal, as shown Figure 1b.

• Extractive distillation: Different separation agents are added to azeotropic mixtures, alter-

ing the relative volatility of the mixture components in order to allow their separation (see

Figure 1c).

• Fractionating distillation: Liquid mixtures are separated by heating, considering a high heat

exchange and the liquid and vapour molar rates. This distillation is used to separate

composite mixtures/substances having different but close boiling temperatures. It usually

considers a continuous operation, having a constant feeding flow through a feeding tray.

The section above the feeding tray is named rectifying section, under the feeding tray is

called stripping section, as shown in Figure 2a.

• Batch distillation: Widely used in industry when having small liquid quantities or when

obtaining different products from a single mixture load is required. This operation does

not have steady state due that the mixture composition varies in time; besides, it only

allows enriching or rectifying the distilled (lighter) product (see Figure 2b).

In general, the different distillation operation modes have the same operating principle, mainly

due the physical variables that interact in the process, such as temperature, composition,

pressure and heating energy.

A typical distillation column is formed by a boiler, a condenser and n trays. The boiler is the

element that provides the heating energy necessary to evaporate the mixture into it. The

condenser provides the cooling necessary to condensate vapour, part of this vapour returns to

the column to enrich the mixture, the rest is obtained as a distilled product. The column body

is composed of a set of trays, where a partial separation of the mixture is performed due the

circulation of liquid and vapour flow.
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The vapour flow is generated by the ebullition of the mixture in the boiler, the vapour rises into

the column body and it is enriched by the light element of the mixture in each tray of the

column. The liquid flow, generated by the reflux, descends from the condenser to the boiler by

gravity and it is enriched by the heavy element of the mixture in every tray of the column. This

operation can be described by an adequate mathematical model of the process.

Figure 2. Distillation column operation modes: (a) fractionating and (b) batch.

Figure 1. Distillation columns operation modes: (a) vacuum, (b) destructive and (c) extractive.
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3. Distillation column mathematical modelling

The main objectives of designing a mathematical model of the distillation process are to

simplify the analysis and comprehension of the distillation dynamics, facilitate the design of

control techniques to enhance the distilled product quality and the system performance,

estimate variables difficult to be measured, diagnose failures, among others. In order to deal

with these objectives development of an adequate model is indispensable.

There exist different distillation column models according to its operation, the most commonly

used in industrial applications are the continuous (fractionating) and batch models. Because of

the similarity between the continuous and the batch operating types, in this section, a generic

model that presents adequate results in both cases is presented.

It is well known that having a more complete/complex model implies having more complex

equations difficult to solve, whereas having a simpler representation implies having simpler

equations but the response resolution will have a higher calculation error compared to the real

system response.

In general, there are two main model types according their complexity: simple and complex.

The simple model found in the literature is the differential model, which considers the boiler

and the condenser as trays in the distillation column. The column dynamics is represented by

the component mass balance as shown in Eq. (1).

dWxw
dt

¼
Wdxw
dt

þ
xwdW

dt
¼ −DyD (1)

where W is the bottom product, xW is the bottom product composition, D is the distilled

product and yD is the distilled product composition.

The complex model considers each column element individually, i.e. a condenser, a boiler and

trays are modelled individually, such that the response has a better resolution.

The particular study case presented in this chapter considers a complex model of a batch

distillation column using a binary mixture.

4. Non-linear model of a binary batch distillation column

The model for a binary batch distillation column is obtained considering the light component,

this component is obtained as a final (distilled) product [15]. The light component composition

is obtained in each tray of the distillation column, where the liquid and vapour molar flows

interact.

In order to design the distillation column model, the following assumptions are considered

[16]: total condenser, no heating losses in the body column, constant pressure in the body

column, liquid and vapour phases in thermodynamic equilibrium in each plate, variable

relativity volatility according to the component composition.
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The distillation column dynamics is represented by a set of differential equations that describe

the behaviour of the light component of the mixture, given by Eq. (2).

dxi
dt

¼
Lðxi−1−xiÞ þ Vðyiþ1− yiÞ

Mi
(2)

where xi is the liquid molar composition of the light component in tray i, yi is the vapour molar

composition of the light component in tray i, L is the liquid molar flow, V is the vapour molar

flow and M is the retained mass.

The phase equilibrium is determined by constant K, as shown in Eq. (3) for ideal mixtures.

K ¼
xi
yi

(3)

Such that considering the vapour-liquid equilibrium (VLE) and the relative volatility, the

vapour composition as a function of the liquid composition is obtained. This function is

presented in Eq. (4).

y ¼ f ðx,αÞ (4)

This is specifically presented in Eq. (5).

yi ¼
αixi

1þ ðαi−1Þxi
(5)

where α is the relative volatility in tray i.

Within each element of the distillation column flow different molar rates/quantities, named

molar flows. These flows are the liquid and the vapour entering and leaving each tray, the

distilled product and the bottom product.

In a binary batch distillation column, the liquid flows in both rectifying and stripping sections

are the same, as well as the vapour flows, because there is not feeding flow.

L ¼ LS ¼ LR

V ¼ VS ¼ VR
(6)

The molar flows considered in the binary batch distillation model are four: vapour (V), liquid

(L), distilled (D) and bottom (B) products, these are expressed in Eqs. (7)–(9) [17].

V ¼
QB

H
vap
1 xn þH

vap
1 ð1−xnÞ

(7)

where QB is the heating power (input), xn is the liquid composition of light component in the

boiler (tray n), H
vap
1 is the vaporization enthalpy of the light component and H

vap
2 is the

vaporization enthalpy of the heavy component.
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L ¼ ð1−RÞV (8)

where R is the reflux input.

D ¼ V−L (9)

B, the bottom product, is not calculated, it is considered as the molar flow that remains into the

boiler.

The non-linear model of the binary batch distillation column presented in this chapter is based

on a set of sub-models, each sub-model corresponding to a specific element of the column

(boiler, condenser and trays).

4.1. Condenser sub-model

The condenser is numbered as tray 1. Its dynamics is described by Eq. (10).

dx1
dt

¼
Vy2−Lx1−Dx1

M1
(10)

By substituting L ¼ ð1−RÞV inD ¼ V−L, in order to represent the condenser as a function of the

reflux, Eq. (11) is obtained.

D ¼ RV (11)

By substituting Eq. (11) in Eq. (10), Eq. (12) is obtained.

dx1
dt

¼
Vy2−Lx1−RVx1

M1
(12)

Considering that

y2 ¼
α2x2

1−ðα2−1Þx2
(13)

the non-linear equation that represents the condenser dynamics is finally represented in

Eq. (14).

dx1
dt

¼
V

M1

α2x2
1−ðα2−1Þx2

� �

−

Lx1
M1

−

RVx1
M1

(14)

4.2. Tray sub-model

The column body is formed by a set of n-2 trays. Eq. (15) describes its dynamics.

dxi
dt

¼
Vyiþ2−Vyi þ Lxi−1−Lxi

Mi
; i ¼ 2, 3,…, n−1 (15)

where n is the total number of trays including a boiler and a condenser.
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Considering that

yi ¼
αixi

1−ðαi−1Þxi
(16)

the non-linear equation that represents the condenser dynamics is finally represented in

Eq. (17).

dxi
dt

¼
V

Mi

αiþ1xiþ1

1−ðαiþ1−1Þxiþ1

� �

−

V

Mi

αixi
1−ðαi−1Þxi

� �

þ
Lðxi−1−xiÞ

Mi
(17)

4.3. Boiler sub-model

The boiler is numbered as tray n. Eq. (18) describes its dynamics.

dxn
dt

¼
Vxn−Vyn þ Lxn−1−Lxn

Mn
(18)

Factorizing Eq. (18), Eq. (19) is obtained.

dxn
dt

¼
Vðxn−ynÞ þ Lðxn−1−xnÞ

Mn
(19)

Solving V to represent Eq. (19) as a function of the heating power (QB) based on Eq. (7), Eq. (20)

is obtained.

dxn
dt

¼
QB

H
vap
1 xn þH

vap
1 ð1−xnÞ

 !

xn−yn
Mn

� �

þ
Lðxn−1−xnÞ

Mn
(20)

Then, considering

yn ¼
αnxn

1−ðαn−1Þxn
(21)

the non-linear equation that represents boiler dynamics is finally represented in Eq. (22).

dxn
dt

¼
QB

H
vap
1 xn þH

vap
1 ð1−xnÞ

 !

xn
Mn

� �

1−αn

1−ðαn−1Þxn

� �

" #

þ
Lðxn−1−xnÞ

Mn
(22)

4.4. State-space non-linear model for a binary batch distillation column

In this section, the distillation column sub-models shown in Eqs. (14), (17) and (22) are presented

in a state-space representation having the form shown in Eq. (23).

_x ¼ Axþ Bu (23)

This representation is used in a specific study case, a 12-tray distillation column including

a boiler and a condenser, using a binary mixture in a batch operation. Compositions
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x ¼ ½x1, x2,…, x12� are considered as states of the model and u ¼ ½R,QB�
T as inputs of the model.

Matrices A and B are shown in Eqs. (24) and (25), respectively.

A ¼

−
L

M1

Vf ðx2,α2Þ

M1
0 0 ⋯ 0 0

L

M2

−L−Vf ðx2,α2Þ

M2

Vf ðx3,α3Þ

M2
0 ⋯ 0 0

0
L

M3

−L−Vf ðx3,α3Þ

M3

Vf ðx4,α4Þ

M3
⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯
L

M12
−

L

M12

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(24)

B ¼

Vx1
M1

0

0 0

⋮ ⋮

0 0

0
x12−f ðx12−α12Þ

�

H
vap
1 x12 þH

vap
1 ð1−x12Þ

�

M12

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(25)

5. Takagi-Sugeno fuzzy model for a binary batch distillation column

The Takagi-Sugeno fuzzy representation describes the system dynamics based on linear sub-

models interpolation and fuzzy rules [18].

Rule for model j:

If z1ðtÞ is M1jj, z2ðtÞ is M2j,… and zpðtÞ is Mpj

Then:

xðtÞ ¼ ∑
r

j¼1
AjxðtÞ þ BjuðtÞ (26)

where j = 1, 2,…, r, Mj is the fuzzy set, r is the sub-model number, x is the state vector, u is the

input vector, Aj is the state matrix for sub-model j, Bj is the input matrix for sub-model j and

zjðtÞ is the scheduling measurable variable (state variables or external disturbances).

Given ½xðt, Þ, uðtÞ, zðtÞ�, the complete fuzzy model is obtained by using a singleton-type

fuzzifier, a product-type defuzzifier mechanism and the gravity centre. The Takagi-Sugeno

fuzzy model for the non-linear system is expressed in Eq. (27).

Mathematical Modelling of Batch Distillation Columns: A Comparative Analysis of Non-Linear and Fuzzy Models
http://dx.doi.org/10.5772/66760s

65



_xðtÞ ¼
∑r

j¼1ωj

�

zjðtÞ
�

½AjxðtÞ þ BjuðtÞ�

∑r
j¼1ωj

�

zjðtÞ
� (27)

where the weight ωj

�

zjðtÞ
�

is 0 or a positive value, such that the sum of all the weights is

positive; thus, the normalized weight, hi, is calculated in every rule from the zj membership

functions in the Mjk set. It is well known by fuzzy logic that hj ¼ hj½zðtÞ� ≥ 0 and

∑r
j¼1hj½zjðtÞ� ¼ 1, as expressed in Eq. (28).

hj½zjðtÞ� ¼
ωj

�

zjðtÞ
�

∑r
j¼1ωj

�

zjðtÞ
� (28)

The system expressed in Eq. (27) is equivalent to the system in Eq. (29).

_xðtÞ ¼ ∑r
j¼1hj½AjxðtÞ þ BjuðtÞ� (29)

5.1. Application to a binary batch distillation column

In this chapter, the specific study case is a 12-tray distillation column, including a boiler and a

condenser, using an ethanol-water mixture in a batch operation. In the Takagi-Sugeno fuzzy

model the liquid (L) and vapour (V) molar flows are proposed as parameters; the nominal

operating ranges in steady state are:

L ¼ ½0:418783, 2:97801�

V ¼ ½0:418783, 2:97801�
(30)

According to these parameters, the Takagi-Sugeno fuzzy model that interpolates between four

linear models based on the following rules is obtained:

Rule 1:

if V is Vmin and if L is Lmin (31)

Then:

_x1ðtÞ ¼ A1xðtÞ þ B1uðtÞ (32)

Rule 2:

if V is Vmin and if L is Lmax (33)

Then:

_x2ðtÞ ¼ A2xðtÞ þ B1uðtÞ (34)
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Rule 3:

if V is Vmax and if L is Lmin (35)

Then:

_x3ðtÞ ¼ A3xðtÞ þ B2uðtÞ (36)

Rule 4:

if V isVmax and if L is Lmax (37)

Then:

_x4ðtÞ ¼ A4xðtÞ þ B2uðtÞ (38)

where:

A1 ¼ fVmin,Lmin,G{x1,α1},…,G{x12,α12},M1,…,M12g
A2 ¼ fVmin,Lmax,G{x1,α1},…,G{x12,α12},M1,…,M12g
A3 ¼ fVmax, Lmin,G{x1,α1},…,G{x12,α12},M1,…,M12g
A4 ¼ fVmax, Lmax,G{x1,α1},…,G{x12,α12},M1,…,M12g

(39)

B1 ¼

Vmin � x1
M1

0

0 0

⋮ ⋮

0 0

0
x12−gðx12,α12Þ

ðH
vap
EtoHx12 þH

vap
H2O

ð1−x12ÞÞ �M12

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

B2 ¼

Vmax � x1
M1

0

0 0

⋮ ⋮

0 0

0
x12−gðx12,α12Þ

ðH
vap
EtoHx12 þH

vap
H2O

ð1−x12ÞÞ �M12

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(40)

The membership functions (µ(z)) for the fuzzy set are determined by:

Eq. (41) for vapour V:

μðVÞ
μVmin ¼

Vmax−V

Vmax−Vmin

μVmax ¼ 1−μVmin

8

<

:

(41)

Eq. (42) for liquid L:
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μðVÞ
μLmin ¼

Lmax−L

Lmax−Lmin

μLmax ¼ 1−μLmin

8

<

:

(42)

The normalized weights are given by Eq. (43):

h1ðV, LÞ ¼ μVminμLmin

h2ðV, LÞ ¼ μVminμLmax

h3ðV, LÞ ¼ μVmaxμLmin

h4ðV, LÞ ¼ μVmaxμLmax

8

>

>

<

>

>

:

(43)

The Takagi-Sugeno fuzzy model proposed for the distillation column is represented in Eq. (44).

xðtÞ ¼ ∑
r

i¼1
hiðL,VÞðAixðtÞ þ BiuðtÞÞ (44)

6. Models experimental validation and comparison

The Takagi-Sugeno fuzzy model is validated in Matlab by using experimental data from a 12-

tray batch distillation column with variable reflux, using an ethanol-water mixture and con-

sidering the characteristics presented in Table 1.

The initial molar composition of ethanol in the boiler is 0.2216, considering that the feed

volume corresponds to 96%Vol ethanol.

The characteristics of the process inputs for the study case, the heating power (QB) and the

reflux valve opening (R) are shown in Table 2.

Figure 3 presents the temperatures estimated by the Takagi-Sugeno model for the trays in the

column body. The temperature increment and decrement due the reflux (R) action can be seen

in all the trays.

Figure 4 presents the temperature graphics corresponding to the condenser (a) and to the

boiler (b) in the non-linear and Takagi-Sugeno model. Temperature variations existing during

the heating power (QB) and reflux changes (R) are shown. It can be seen that there exist a

difference between the results obtained by both models due the reflux action, this difference is

provoked by the fixed operating points for liquid and vapour flows in the Takagi-Sugeno

model; however, this difference is small (less than 1.5%).

Parameter Value Units

EtOH volume in boiler 2000 mL

H20 volume in boiler 2000 mL

Process total pressure 637.42 mmHg

Table 1. Mixture initial parameters.
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In Figure 5, the composition graphics estimated for the distillation column trays by the Takagi-

Sugeno fuzzy model are presented, these composition values vary according to the tray

position.

In Figure 6, the simulation results obtained by the non-linear and Takagi-Sugeno models for

the light component composition in the condenser (a) and the boiler (b) are presented. It can be

seen that the composition behaviour in both trays varies according the heating power (QB) and

reflux (R) changes, as shown in Table 2.

Input Signal Time

QB Step 0–800 J 0 min

R Total 0 min

QB Step 800–1000 J 3.3 min

QB Step 1000–1250 J 5.98 min

R Pulse (ton = 6 s, toff = 6 s) 12.61 min

QB Step 1250–1100 J 14.78 min

QB Step 1100–950 J 17.15 min

QB Step 950–1100 J 19.36 min

R Total 23 min

QB Step1100–1250 J 24.88 min

Table 2. Input parameters.

Figure 3. Plate temperatures in the distillation column.
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Figure 7 shows the liquid and vapour molar flow behaviour during the distillation process. It

can be seen the process dynamics when reflux or heating power changes exist.

The error percentage in the Takagi-Sugeno model compared to the non-linear models, calcu-

lated by the function shown in Eq. (45), is graphically represented in Figure 8. It can be seen

that the error behaviour in the condenser (a) and the boiler (b) has a maximum value of 1.5%

due to the reflux changes.

Figure 4. a) Condenser and b) Boiler temperatures, non-linear and Takagi-Sugeno models.

Figure 5. Plate temperatures in the distillation column.
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e ¼
jxTS−xNLj

xNL

100% (45)

Figure 6. a) Condenser and b) Boiler temperatures obtained by non-linear and Takagi-Sugeno models.

Figure 7. Liquid and vapour molar flows.
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7. Conclusions

This chapter presents the analysis and design of a state-space non-linear model and the Takagi-

Sugeno fuzzy model for a batch distillation column using a binary mixture. The state-space

non-linear model is based on differential equations considering compositions, temperatures

and molar flows in the column. The linear fuzzy model is based on four rules, considering as

parameters the liquid and vapour molar flows.

Both, the state-space non-linear and the linear fuzzy models are simulated in Matlab consider-

ing real input parameters (heating power and reflux) from a 12-tray batch distillation pilot

plant using an ethanol-water mixture. The light component compositions and the tempera-

tures in each tray of the column are calculated by both models. Besides, the obtained results are

compared considering the same operating parameters, this comparison has the aim to verify

the adequate functioning of the non-linear state-space and the Takagi-Sugeno models in order

to analyse the existing differences.

The Takagi-Sugeno fuzzy model presents small differences in the estimations of the composi-

tion component and the tray temperatures when a reflux disturbance is presented due that the

reflux affects directly the operating points established in this model; however, these differences

are small enough to be neglected and both models converge under any operating condition.

The Takagi-Sugeno fuzzy model for a distillation column represents an alternative tool that

takes advantage of the fuzzy control theory, allowing to facilitate the design and implement

nonconventional control strategies for non-linear systems, however, if a higher resolution

response is required it could be convenient to consider the non-linear model.

Figure 8. a) Condenser and b) Boiler error percentages.
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