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Abstract

Understanding the electrochemical processes responsible for energy storage in batteries
is critical for designing of next-generation batteries. The conventional laboratory-scale
characterization instruments provide limited information required for better under-
standing of electrochemical reaction mechanisms. Synchrotron radiations have very
high brilliance and broad energy range extending from far-IR through the hard X-ray
region. The availability of synchrotron radiation is driving technical and theoretical
advances in scattering and spectroscopic techniques from last couple of decades. These
advances in synchrotron radiation-based characterization techniques have made it pos-
sible to study the underpinning issues of energy storage materials. An electrochemical
road map based on much more knowledge-driven approach can be drawn by utilizing
synchrotron-based element-specific spectroscopic as well as scattering techniques.
Herein, we introduce various scenarios where synchrotron radiation-based characteri-
zation methods provide inherent advantages and flexibility in obtaining detailed mech-
anistic information along with structural studies.

Keywords: synchrotron radiation, energy storage material, Li-ion battery, XRD,
nanostructures, XAS, local structure

1. Introduction

Synchrotron radiation is emitted by charged particles, traveling at speeds relative to the speed

of light when accelerated by magnetic fields. The major advantages of synchrotron radiation

include very high intensity, tunable energy range, and inherently linear polarization [1]. How-

ever, one major drawback is the limited availability of the national and international
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synchrotron radiation facilities. The availability of synchrotron radiation, with its characteris-

tics of high brilliance, particular collimation, and multi-wavelength accessibility, continues to

drive technical and theoretical advances in scattering and spectroscopy techniques. An exciting

area being developed is the exploitation of these advances in synchrotron radiation surface

and bulk-specific probe techniques to study the underpinning issues of energy storage mate-

rials.

The long-term endurance of batteries and other electrochemical devices, used in highly

demanding applications like electric vehicles, is closely related to the ability of the cathode

and anode materials to accommodate and release guest ions without any structural damage. A

challenge in developing the understanding of energy storage process in batteries is in the

direct study of the electrochemical reactions involved during battery operation. The character-

ization tool required needs to provide element-specific as well as overall structural information

with high resolution. Synchrotron radiation-based measurements under operating conditions

of batteries are critical in order to map the mechanistic causality between the local and atomic

structure of functional components of batteries and their electrochemical characteristics. In this

chapter, we will examine various scenarios where synchrotron radiation-based X-ray methods

provide inherent advantages and flexibility in obtaining detailed mechanistic information

along with structural studies.

2. Synchrotron radiation-based X-ray scattering techniques

2.1. Wide-angle X-ray scattering (WAXS)

X-ray photons interact with matter in different ways including coherent scattering, Compton

scattering, photoelectric interaction, and pair production. If the interaction of the X-ray pho-

tons is coherent and elastic, the interaction is called X-ray diffraction (XRD) or Bragg scatter-

ing. A distribution of electrons in matter will interact with a photon wave to produce an

interference-modulated scattering pattern, called a diffraction pattern. If multiple identical

electron distributions are periodically placed in space, the scattering from each of them will

interact with that from the others and will result in destructive interference in most of the

direction other than a few allowed directions. These allowed directions can be calculated by

considering the lattice, and hence a crystalline structure can be fully resolved by using diffrac-

tion pattern. Bragg’s law is a useful model to describe the relation between the allowed

scattering angles (2θ), the photon wavelength (λ), and an inter-planar distance (d) between

parallel planes; see Eq. (1):

2d sinθ ¼ nλ (1)

The recorded diffraction peak from a sample will have an angular width due to the broadening

from the instrument. Additionally, the peaks can be broadened by the finite size of the crystal-

lites. The peak broadening does not correlate with the particle size, but with the coherent

domain length where long-range order is preserved [2]. Synchrotron radiation covers a large

range of energies and that allows for superior data acquisition. In the case of XRD, it enables
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the ability to probe many different crystallographic planes at the same time, resulting in fast

and rich data acquisition. The use of high energy, sometimes referred to as hard X-rays, is

advantageous because these X-rays are not absorbed well in a solid material and therefore

allow for deep penetration. These properties of synchrotron radiation, coupled with overall

high intensities, allow for rich data collection and experimentation that were previously not

possible. Experimental setup for synchrotron radiation-based high-energy XRD is shown in

Figure 1. As the high-energy photons are able to fully penetrate the cell, these measurements

are conducted in the transmission mode in order to obtain 2D diffraction patterns. This also

means that the cathode and anode can be investigated simultaneously.

2.1.1. Case study

Rechargeable Li-ion batteries are electrochemical energy storage devices of choice in porta-

ble electronics due to their high-specific energy density and now becoming increasingly

popular for grid storage and electrical vehicles. In Li-ion battery, electrodes operate by

reversible Li-ion insertion and extraction during charge and discharge. High-rate Li-ion

battery electrode materials usually make solid solutions with Li over a large composition

range in order to avoid phase transformation during (de)lithiation. Phase transformations,

during cycling, are associated with small or negligible volume changes. For example, the

layered compound LiNi1/3Mn1/3Co1/3O2 makes a solid solution and shows moderate volume

changes; however, the high-voltage spinel Lix(Ni0.5Mn1.5)O4 (0 < x < 1) shows only a small

volume change (3%) for the two-phase region [3]. LiFePO4, however, displays excellent high-

rate performance when nanosized, despite undergoing a two-phase transformation to FePO4

during delithiation, along with small volume change of 6.8% [4]. The limited Li solubility in

LiFePO4 and FePO4 indicates that (de)lithiation occurs via a two-phase reaction, where the

relative LiFePO4 and FePO4 amount is changed by a moving phase boundary, and not via a

solid solution. The Li solubility increases by decreasing particle size, as a result of the

increased interfacial energy per unit volume. By considering this interfacial energy, ex situ

Figure 1. Schematic diagram of synchrotron radiation-based X-ray scattering technique.
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diffraction studies of LiFePO4 nanoparticles suggest that once an energetically unfavorable

LiFePO4-FePO4 interface is formed, this interface quickly moves through the particle so as to

return to the most stable LiFePO4 or FePO4 state, so only LiFePO4 and FePO4 particles are

observed by ex situ characterization techniques.

Recently published in situ XRD investigations performed on micrometer-sized LiFePO4 show

the emergence of a metastable crystalline phase with an intermediate Li composition of Li0.6

−0.75FePO4 when cycled at high rates [5]. Whereas, studies on nanometer-sized LiFePO4 parti-

cles are limited to low [6] and moderate [7] current rates, and only small deviations in

stoichiometry from LiFePO4 and FePO4 were observed during cycling. Due to the faster

transport kinetics of nanoparticles, a high current rate is required to reach the kinetic limit of

a phase transformation including an in situ XRD setup with high X-ray intensity and a fast

read detector so that the reaction can be probed with high time resolution. By studying the

nanoparticles under high current rates, Liu et al. [8] were able to force enough particles to

transform simultaneously so that the reacting particles can be detected and the nature of the

phase transformations that occur at an overpotential can be determined.

In situ diffraction patterns during the first five cycles of LiFePO4 with an average size of

186 nm at 10 C galvanostatic charge-discharge are shown in Figure 2(a). All peaks in the

diffraction patterns can be indexed to either the Li-rich Li1−αFePO4 phase or the Li-poor

LiβFePO4 phase. During charge, peaks representing Li1−αFePO4 phase disappear, and these

peaks reappear on discharge; conversely LiβFePO4 peaks appear on charge and disappear on

discharge. Interestingly, they observed the appearance of positive intensities between the

8.15–8.4, 13.95–14.1, and 15.15–15.4, 2θ ranges, which shows the formation of phases, in

which the lattice parameters are different from those of LiFePO4 and FePO4. A closer view

of individual diffraction patterns in selected 2θ regions is shown in Figure 2(b). All of the

reflections exhibit highly symmetrical profiles at the beginning of the first charge; however,

the LiFePO4 (2 0 0) and (3 0 1) reflections start to broaden asymmetrically toward higher

angles with the charge. The most significant asymmetrical broadening is observed on dis-

charge in patterns (f) and (g), where the (2 0 0) reflections from both phases are connected by

a positive intensity band. Similar trend is observed in the second cycle as well. Neither the

peak position nor the peak shape of LiFePO4 is restored to that of the original state by the

end of the second cycle. All selected peaks shift toward higher angle and become broad, as

shown in pattern (r). This peak shift shows a decrease in the unit cell volume, which will in

turn reduce the accessible capacity of LiFePO4 at high rates. So, at the end of each cycle, the

Li composition is not restored to stoichiometric LiFePO4, instead a solid solution (Li1

−αFePO4) is formed with a smaller unit cell volume than that of the stoichiometric LiFePO4.

By using synchrotron radiation-based wide-angle X-ray scattering technique and doing

further analysis like profile fitting by convoluting separate contributions from size and

lattice-parameter variations with appropriate analytical functions, they further confirmed

that phase transformations in nanoparticulate LiFePO4 proceed, at least at high rates, via a

continuous change in structure rather than a distinct moving phase boundary between

LiFePO4 and FePO4.
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Figure 2. The variations of XRD pattern during the galvanostatic charge and discharge at a rate of 10 C. (a) The image

plot of diffraction patterns for selected reflections during the first five electrochemical cycles. The corresponding voltage

curve is plotted to the right. (b) Selected individual diffraction patterns during the first two electrochemical cycles stacked

against the voltage profile [8].
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2.2. Small-angle X-ray scattering (SAXS)

The structural characterization of nanoscale systems is a very active area of research these days

not only in energy storage material system but in variety of other scientific disciplines as well.

Nanoscale systems can be studied with real-space imaging or reciprocal space scattering

techniques. X-ray scattering techniques provide reciprocal space data, whereas electron

microscopy-based imaging techniques usually provide real-space data. A distribution of elec-

tron density at nanometer length scales will scatter an X-ray beam to low angles, while that in

the atomic scale will scatter to high angles. Therefore, small-angle X-ray scattering (SAXS) is a

technique to study material structures at small angles or large distances. SAXS is a powerful

technique to determine, not only the object’s size, size distribution, shape, surface structure,

relative positions of particles, but it can also be used for the structure factor analysis. The size

distribution function is a key piece of information that can be obtained from SAXS. Collected

data can be fitted, when the shape of a particle is known or can be assumed, to get the size

distribution. SAXS form factor analysis provides useful information at the single-particle level;

the structure factor allows to figure out the organization of particle systems in the structure.

In recent years, the development of synchrotron radiation X-ray sources has made possible to

adopt novel approaches to utilize X-ray scattering technique for nanoparticle research. SAXS is

nondestructive and provides structural data averaged over macroscopic sample volumes.

Modern synchrotron radiation-based SAXS is capable of structural characterization of sample

in its working state because of its tunable flux and energy that is particularly useful for

nanoparticle research especially for electrochemical energy storage systems.

2.2.1. Case study

SAXS is a useful characterizing technique for characterization of Li-ion batteries and other

energy storage materials. Conventional Li-ion batteries suffer from capacity loss due to several

failure mechanisms associated with the strain induced in anode and cathode materials upon

electrochemical cycling. Ordered mesoporous materials have been considered as potential

candidates for the next-generation electrode materials. There are several advantages associated

with mesoporous electrode materials, for example, the ordered framework of mesopores

which can act as a physical buffer for the volume changes, and it reduces the diffusion path

length to promote easy Li and electron transport. These structures offer intrinsic high specific

surface area that provides large active surface between electrolyte and electrode material.

SAXS is an ideal technique to study ordered mesoporous structures. Recently, Park et al. [9]

have developed an in situ synchrotron-based small-angle X-ray scattering (SAXS) technique to

investigate the nanostructural changes of ordered mesoporous materials during cycling for

further understanding the Li storage reactions.

Information on nanostructural changes of an electrode material from SAXS allows to

understand fine details of nanostructured electrode dynamics during electrochemical

cycling. They performed in situ SAXS studies on the meso-CoxSny anode materials to

probe the mesoscopic structural changes during its electrochemical cycling to understand

the behavior of the entire electrode with different Co contents. In situ SAXS data including

contour projection for each meso-CoxSny composition during the first cycle are shown in
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Figure 3. All the in situ SAXS patterns indicate that the present meso-CoxSny materials

retain highly ordered meso-structures, even though the intermetallic electrodes are known

to form Li alloys during lithium insertion. There are no significant changes in the relative

scattering intensities of SAXS patterns, when a discharge current is applied, until the

discharge potential reaches to 0.2 V. While discharging below 0.2 V, the scattering peaks

move slightly toward the lower angle, and their intensity is decreases. These results

indicate that the meso-structures of all the meso-CoxSny electrodes are retained until

0.2 V and then small expansion of mesoscopic cell volume and somewhat loss of meso-

structural periodicity take place during the Li-Sn alloying reaction. Both the intensities

and positions seem to be recovered to the initial state after the complete cycle, indicating

the structural stability of meso-CoxSny electrodes.

In order to get more insight of the in situ SAXS results, dQ/dV data, relative peak intensities,

and mesoscopic lattice parameters were plotted against the cell voltage for the meso-CoxSny
electrodes as shown in Figure 4. This data indicates about 19% decrease of relative SAXS peak

intensity and 14% expansion of meso-structural cell volume in the meso-Co0.5Sn0.5 electrode

after the full discharge. In meso-Co0.3Sn0.7 electrode, there is only 13% change in the peak

intensity, whereas the meso-structural cell volume expansion is 41% that is much larger than

that of the meso-Co0.5Sn0.5. The initial discharge capacities of the meso-Co0.3Sn0.7 and meso-

Co0.5Sn0.5 electrodes are 1321 and 822 mAh/g, respectively, due to the different amount of

electroactive Sn. Figure 4(f) shows a significant 52% decrease in the SAXS peak intensity with

relatively large volume change of 30% in the meso-Co0.1Sn0.9 electrode, while its initial dis-

charge capacity is 1493 mAh/g. These in situ SAXS results for meso-CoxSny electrodes during

cycling directly provide roles of the inactive Co element as a chemical buffer; meanwhile, the

well-defined nanoporous system acts as a physical buffer to accommodate the volume changes

in the electrode. In situ SAXS reveals that the mesoscopic volume and meso-structural order

change reversibly during cycling. It indicates that reliable nanostructure is developed and that

relieves severe internal strain induced by huge volume change upon the repeated electrochem-

ical reactions.

Figure 3. Color-coded 3D contours and projection maps showing SAXS data collected from ordered meso-CoxSny
electrodes during in situ experiment: (a) meso-Co0.5Sn0.5, (b) meso-Co0.3Sn0.7, and (c) meso-Co0.1 Sn0.9 [9].
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3. Synchrotron radiation-based X-ray absorption techniques

3.1. Hard X-ray absorption spectroscopy (HXAS)

X-ray absorption spectroscopy (XAS) is a powerful technique that can characterize aII forms of

matter, irrespective of their degree of crystallinity. Traditionally, diffraction-based characteri-

zation methods are being used for structural investigations, and reliable structural information

can be determined for materials that exhibit a long-range structural order. In contrast XAS can

probe the local structure of disordered solids, liquids, as well as amorphous materials. XAS has

vast application area ranging from coordination chemistry, catalysis, biology, and surface

physics to material chemistry. One of the major advantages of XAS is its atomic selectivity

which makes it possible to study the local structure of each different constituent of a sample.

Sample preparation for XAS is very simple, and experiments can be performed in situ.

XAS spectrum can be divided in two parts, namely, X-ray absorption near-edge structure

(XANES) and extended X-ray absorption fine structure (EXAFS). In XANES phenomenon, an

element-specific signal is generated, typically using a synchrotron radiation source. A core

electron absorbs the energy of incident X-rays and gets excited beyond the Fermi level, leaving

behind a core hole. The synchrotron radiation sources can provide energy that is right for

desired electron transitions. When a sample is exposed to X-rays, it will absorb part of the

Figure 4. (a–c) Color-coded contour projection maps during in situ experiment with corresponding voltage profile and

(d–f) the changes in lattice parameters and resolved peak-relative intensities with the corresponding dQ/dV plot for meso-

Co0.5Sn0.5, meso-Co0.3Sn0.7, and meso-Co0.1Sn0.9, respectively [9].
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incoming photon beams. Other phenomena occurring are heat, X-ray fluorescence, production

of unbound electrons, and of course the scattering of X-rays. The absorption of X-rays can be

measured quantitatively, and it follows exponential decay given by the Beer’s law [10].

The EXAFS phenomenon arises from the quantum mechanical interference of the scatter-

ing of a photoelectron by the potential of the surrounding atoms. A photoelectron emitted

by the photo-absorbing atom propagates as a spherical wave and spreads out over the

solid. The amplitude of all the reflected electron waves adds either constructively or

destructively to the spectrum of the absorbing atom as shown in Figure 5(a) and 5(b)

respectively, and hence the X-ray absorption coefficient exhibits a typical oscillation. A

crucial issue is the recognition that the photoelectron is not infinitely long lived; it decays

as a function of time and distance, and thus the EXAFS cannot probe long-range dis-

tances. EXAFS can give only local structural information of about several angstroms

around the selected atomic species.

The recent availability of high-brightness synchrotron radiation sources has resulted in a

prosperous development of XAS technique, and it is finding wide application area including

the energy storage material field.

3.1.1. Case study

Major challenges faced by Li-ion batteries are demand for high-energy density, capacity reten-

tion, safety, and low cost. In order to achieve the higher-energy density than that of currently

commercialized ones, metal oxides are being considered as potential anode materials due to

their high-energy density arising from conversion and alloying reactions [11]. SnO2 is a candi-

date anode material for future batteries, and previous studies show that SnO2 anode

undergoes an irreversible conversion reaction in the initial cycle followed by a reversible

alloying reaction of Sn [12, 13]:

SnO2 þ 4Liþ þ 4e− ! Snþ 2Li2O 711mAh=gð Þ (2)

Figure 5. Constructive and destructive interference of electron wave during and XAS event.
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Snþ xLiþ þ xe− ! LixSn 783mAh=gð Þ 0 << x << 4:4ð Þ (3)

Reaction based on Eq. (2) is the main reason for initial irreversible capacity of this anode
material, whereas reaction based on Eq. (3) is responsible for reversible capacity of these
electrode materials in the subsequent cycles. Surprisingly, reported capacity of nanostruc-
tured SnO2-based anode materials is higher than the abovementioned theoretical capacity
(783 mAh/g). To understand this anomalous capacity, Kim et al. [14] conducted the synchro-
tron-based XAS experiments on mesoporous SnO2 anode material. The combination of XRD
and XAS was used to probe the bulk and local structure. The XRD peaks almost disappeared
(not shown here) after discharging below 0.7 V indicating that mesoporous SnO2 converts to
an amorphous nano-Li

x
SnO2 phase, so XRD alone was unable to further characterize this

material.
Figure 6(a) shows selected Sn K-edge XANES and EXAFS patterns in the initial discharge
region of the first cycle. The oxidation state of Sn in the mesoporous SnO2 is 4+. The
reduction of Sn takes places in the beginning of discharge, and the Sn K-edge XANES
spectra show prominent shift toward lower-energy values. This reduction of Sn during
conversion reaction effects the local environment around the Sn atom. The first prominent
peak in Sn K-edge EXAFS spectra corresponds to the Sn-O interaction in the first coordina-
tion shell, and the broad peaks in 2.2–3.9 Å region are due to the Sn-Sn, Sn-O, and Sn-Sn
interactions in the subsequent coordination shells. The intensity of these peaks decrease
significantly during discharge due to displacement of reacting species during the conver-
sion reaction. Figure 6(b) shows XAS data obtained in the middle discharge region of the
first cycle. In this region, Sn K-edge XANES spectra show only negligible shift toward
lower-energy values. However, Sn K-edge intensities decrease in this region, showing the
formation of metallic Sn. After discharging beyond 600 mAh/g, the intensity of the Sn-O
peak decreases, a new peak at around 2.6 Å emerges, which corresponds to the Sn-Sn(Li)
pair in the Li

x
Sn alloy, and the intensity of this new peak increases with the increase of the

Li/Sn ratio. The intensity of the peaks representing the Sn-O peaks gradually drops, and
that of the Sn-Sn(Li) peak increases during this discharge region. The representative peaks
for Sn-O bond disappear when the discharge capacity reaches 1500 mAh/g, which shows
the completion of the conversion reaction. So, the remaining discharge capacity can be
assigned to the alloying reaction only. Figure 6(c) shows the XAS data obtained from the
mesoporous SnO2 electrode in the last discharge region of the first cycle. XANES data
obtained in this discharge region show a shift toward high energy of the Sn K-edge. During
the alloying reaction, charge redistribution takes place to minimize the electrostatic energy
which results in shifts of Sn K-edge. In the EXAFS spectra, the amplitude of the Sn-Sn peak
continuously decreases in this discharge region. Due to increase in the Li/Sn ratio, the
amount of Li around Sn increases. Li has a much smaller electron-scattering cross section
compared to Sn. So, the intensity of the Sn-Sn(Li) peak decreases when the Li/Sn molar ratio
exceeds 3 [15]. This trend of XANES and EXAFS data suggests that the capacity in this deep
discharge region is obtained only by Li alloying in the LixSn phase until it achieves its
nominal composition of Li4.4Sn.
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Figure 7(a) shows XAS data taken from the mesoporous SnO2 electrode in the beginning of

charge. The Sn K-edge XANES spectra shift reversibly toward lower-energy values, and

EXAFS spectra show the rise of Sn-Sn(Li)-related peaks, suggesting that the dealloying

Figure 6. Sn K-edge XANES and EXAFS spectra with corresponding voltage profile taken in (a) the first discharge region,

(b) the middle discharge region, and (c) the last discharge region of the first cycle [14].
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reaction is taking place in this voltage region. After the cell was charged to 500 mAh/g, the

intensity of the Sn-Sn(Li) peaks starts to decrease and that of Sn-O peak increases, as shown in

Figure 7(b). Appearance of the Sn-O peak and damping of the Sn-Sn peak are only possible

when Li2O formation is at least partially reversible, along with the formation of the SnO
x

phase. These results suggest that the reversible charge capacity at the end of the charge can be

assigned to dealloying of Li
x
Sn phase as well as the conversion reaction of Sn into the SnO

x

phase. After achieving charge capacity of 900 mAh/g, peaks representing the Sn-O coordina-

tion shell grow with small change of the Sn-Sn peak, indicating that reversible charge capacity

is mainly achieved by conversion reaction in this region. XANES spectra do not show notice-

able shift in this charge region. The overall EXAFS data in the first cycle show that active

material in SnO2 does not come back to its initial composition after one complete electrochem-

ical cycle; it changes into metallic Sn with a small quantity of amorphous SnO
x
along

with Li
x
Sn phase. In short, local structure analyses via hard XAS technique successfully

demonstrated the origin of high capacity of mesoporous SnO2 beyond its reported theoretical

capacity.

Figure 7. Sn K-edge XANES and EXAFS spectra with corresponding voltage profile taken in (a) the first charge region

and (b) the last charge region of the first cycle [14].
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3.2. Soft X-ray absorption spectroscopy (SXAS)

Soft XAS is an XAS technique that uses soft X-rays, with energies ranging from 150 to 1200 eV.
This energy range covers the K-edge of light elements, for example, B, C, N, O, and F, along with
the L2,3 edges of the first-row transition metal elements. In an XAS experiment, tunable X-rays hit
the sample and 1s electrons are ejected when the X-ray reaches a specific energy, such as the K-
edge energy of oxygen (532 eV). The resulting core hole is relaxed either by transfer of electron
from higher levels into the core hole which leads to the emission of fluorescent X-rays or by
releasing the Auger electrons. A schematic diagram of the core hole relaxation process is shown
in Figure 8. Both the fluorescent X-rays and the Auger electron signals can be utilized to get XAS
spectra as both the signals are proportional to the incident X-ray absorption. The fluorescent X-
rays possess higher escape depth of about 2000 Å, contrary to the Auger electrons, which have
an escape depth of only about 50 Å. Because of this difference in escape depths, different
information can be collected from fluorescent X-rays and Auger electrons. The fluorescent X-ray
signal is more sensitive about the bulk structure, whereas the Auger electron yield is responsive
for the surface structure. By measuring fluorescent and electron yields simultaneously, informa-
tion about both surface and bulk can be obtained in the same experiment [16].

3.2.1. Case study

Thermal stability is a critical issue related to the safety of the rechargeable batteries. Tradition-
ally, it is studied by using thermo-analytical techniques like TGA, or there are some studies by
using in situ XRD. Yoon et al. utilized in situ temperature-dependent soft XAS measurements
for the first time, in order to understand the role of different transition metals in thermal
degradation of the charged LiNi0.8Co0.15Al0.05O2 electrode [17]. They monitored the element-
selective structural changes in the charged cathode material on the surface and in the bulk
during heating of electrode material. The findings of their study provide important guidelines
to design new electrode materials with enhanced thermal safety.

Normalized Ni L-edge spectra of Li0.33Ni0.8Co0.15Al0.05O2 cathode using fluorescent yield (FY)
mode at various temperatures are shown in Figure 9(a), and the partial electron yield (PEY)

Figure 8. Schematic diagram of principle of (a) absorption, (b) fluorescent, and (c) Auger electron-yield soft X-ray
absorption spectroscopy.
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mode spectra are shown in Figure 9(b). Due to spin-orbit interaction of the core hole, the

absorption spectrum splits into two energy bands, Ni 2p3/2 (L3 edge) and Ni 2p1/2 (L2 edge).

Changes in energy position of these bands can indicate valence-state variations during the

heating process as energy position shifts about 1 eV per oxidation-state change [18]. Ni L3 and

L2 spectra obtained in the bulk sensitive fluorescent yield mode do not show energy position

changes. Li0.33Ni0.8Co0.15Al0.05O2 material is based on layered structure with R3m space group,

and the change into the Fd3m structure during heating would not involve a valence-state

change or shift in energy position of L-edges. However, the energy position of Ni L3 and L2

spectrum moves to lower-energy values in case of surface-sensitive electron yield mode, and a

rather prominent shift takes place at around 200°C that shows the presence of a NiO-type rock

salt structure on the surface at this temperature. Figure 9(c) and (d) shows normalized Co L-

edge XAS spectra at various temperatures using FY and PEY mode, respectively. Unlike the Ni

L-edge spectra, the electron-yield spectra of the Co species do not show energy shifts. There

are no visible changes in both the FY and the PEY spectra which show that cobalt ions have

better thermal stability compared to the nickel ions. Partial substitution of nickel by cobalt in

the cathode materials enhances its thermal stability.

Figure 9. Normalized XAS spectra of Li0.33Ni0.8Co0.15Al0.05O2 cathode material at different temperatures using (a) Ni

L-edge FY mode, (b) Ni L-edge PEY mode, (c) Co L-edge FY mode, and (d) Co L-edge PEY mode [17].
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Figure 10 shows the normalized O K-edge XAS spectra of Li0.33Ni0.8Co0.15Al0.05O2 cathode

material at various temperatures, using FY mode and PEY mode. The first prominent absorp-

tion peak at 528.5 eV corresponds to transition from oxygen 1s orbital to a hybridized state of

metal 3d-O 2p orbitals. The oxygen K-edge spectra contain information associated with transi-

tions to hybridized states of O 2p-Ni 4sp and other empty orbitals in that energy region. Like

the L-edge spectra, there is no significant change in the fluorescence-yield spectra, but the

surface-sensitive electron-yield spectra show a significant decrease of the peak at 528.5 eV

when temperature rises above 200°C. The PEY data show other distinct differences as well.

The intensity of the distinct peak at ~534 eV is decreasing, whereas that of the peak at ~532 eV

is increasing with rising temperature. The features at around 532 eV and 534 eV are associated

with the presence of NiO and Li2CO3, respectively, as shown by the spectra of the standards in

Figure 10(b). Upon heating, intensity of the features at 534 eV decreases which suggests that

carbonate present on the surface is gradually decomposed. Conversely, the intensity of the

532 eV peak increases with temperature, particularly above 200°C, and the intensity of the

528.5 eV peak decreases. These observations indicate the formation of reduced divalent

nickel oxide. This finding is in accordance with the Ni L-edge measurements. The presence

of NiO-type rock salt structure and its increased formation at electrode surface with increas-

ing temperature indicates nickel oxides tend to release oxygen at higher temperature. The

oxygen K-edge spectra are consistent with the data obtained from the Ni L-edge and point

toward the initiation of thermal reduction reactions around Ni sites on the surface of the

cathode sample material.

These investigations demonstrated the capability of in situ soft XAS techniques to investigate

thermal behavior of cathode materials and show that there is no valence-state change in the

bulk despite the layered structure of the Li0.33Ni0.8Co0.15Al0.05O2 cathode material converts to

spinel structure. The surface-sensitive PEY measurements reveal that this electrode material

loses oxygen at high temperatures leading to a lower oxidation state of Ni and formation of

NiO-like rock salt structure. No evidence of a surface reaction near Co sites in the investigated

Figure 10. Normalized O K-edge XAS spectra of Li0.33Ni0.8Co0.15Al0.05O2 cathode material at different temperatures using

(a) FY mode and (b) PEY mode [17].
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temperature range was found which shows that the Co is more stable at elevated temperatures

compared to the Ni in Li0.33Ni0.8Co0.15Al0.05O2. The capability of soft XAS to discriminate the

surface and bulk electronic structures with element specificity makes it a valuable addition to

the advanced synchrotron-based characterization technique that help understand thermal

behavior of battery electrodes.

4. Conclusion

The application of synchrotron-based characterization techniques to investigate energy storage

materials is playing a major role in the fundamental understanding of the electrochemical

reaction mechanism of energy storage materials. This chapter provides an overview about

various X-ray synchrotron-based characterization techniques and their applications to elec-

trode materials to characterize the nano- and mesoporous phase dynamics, long-range crystal

order, and local and electronic changes during the electrochemical cycling of electrode mate-

rials. The combination of these techniques can provide critical information to reveal the elec-

trochemical reaction mechanism and functional properties of electrode materials in order to

better understand the existing energy storage systems and help design modern electrode

materials for future applications. Given the recent developments, it can be expected that

application of synchrotron-based characterization techniques will become increasingly impor-

tant in development of high-performance and stable energy storage materials.
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