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Abstract

In this overview we describe the main plant-derived bioactive compounds used in cancer 
therapy which has the cell cytoskeleton as therapeutic target. Three major classes of these 
compounds are described: antimitotics with microtubule-destabilizing and—stabilizing 
effects, plant-bioactive compounds that interact with intermediate filaments/actin, and 
plant-bioactive compounds that interact with intermediate filaments like keratins and 
vimentin. We also focus on the molecular aspects of interactions with their cellular targets: 
microtubules, intermediate filaments, and microfilaments. Some critical aspects of cardiac 
side effects of cancer chemotherapy are also discussed, focusing on cardiac cytoskeleton 
and protective effect of plant-derived compounds. The application of plant bioactives in 
the treatment of cancer has resulted in increased therapeutic efficacy through targeting 
the cytoskeleton, respectively, prevention of the injury of cytoskeletal components elicited 
by chemotherapeutics.

Keywords: plant-derived compounds, cancer therapy, microtubules, intermediate 
filaments, microfilaments

1. Introduction

Chemotherapy is routinely used for cancer treatment. Since tumor cells lose many of the regula-

tory pathways of the normal cells, they continue to divide without control. Chemotherapeutic 
drugs try to solve these abnormalities, but sometimes the toxicity of allopathic treatments creates 
a significant problem.

The cytoskeleton constitutes the supporting framework of the cell, and it is composed of three 
types of cytosolic filaments: microtubules, intermediate filaments, and microfilaments. The 
entire cytoskeletal network is a dynamic structure which regulates the cell structure, and it 
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is involved in many cellular functions such as movement, transport, or cell division [1]. The 

cytoskeleton is one of the main therapeutic targets in cancer cells [2].

Various cancer therapies use plant-derived bioactive products. There are four classes of 

plant-derived anticancer drugs currently used in oncotherapy: vinca alkaloids (vinblas-

tine, vincristine), epipodophyllotoxins (etoposide and teniposide), taxanes (paclitaxel and 
docetaxel), and camptothecin derivatives (camptothecin and irinotecan) [3]. To date, new 
generations of vinca alkaloids, camptothecins, and epothilones as well as a novel class of 
taxanes have been developed. Some of these are in clinical use, others in clinical trials.

The major inconvenience in using antimicrotubule agents in oncotherapy is that these com-

pounds cause significant side effects such as neutropenia and neurotoxicity and because of 
their limited efficacy as single agents [3].

This review describes the main natural compounds identified in the last year as potential 
anticancer agents, which have cell cytoskeleton as therapeutic target. We focus on the interac-

tions of plant-derived anticancer drugs with all three types of cytosolic filaments: microtu-

bules, intermediate filaments, and microfilaments. In addition, we summarize the most recent 
advances in the understanding of the molecular aspects of these interactions.

Some critical aspects of cardiac side effects of cancer chemotherapy are also discussed, focusing 
on cardiac cytoskeleton and protective effects of plant-derived compounds.

2. Microtubules as chemotherapeutic targets of plant-derived bioactives

Microtubules are dynamic structures involved in different cellular processes including cell 
division, where they are the most important constituents of the mitotic spindle apparatus dur-

ing the M phase of cell division [4]. They are polymers composed of α- and β-tubulin heterodi-
mers, characterized by high dynamics of polymerization/depolymerization, resulting in the 
elongation or shrinkage of the filaments. Polymerization of microtubules occurs when α- and 
β-tubulin monomers bind to a GTP at the nucleotide exchangeable site (E-site) in β-tubulin 
and the non-exchangeable site (N-site) in α-tubulin. Once GTP is hydrolyzed, it becomes non-
exchangeable, which matches the addition of the next tubulin dimer to the plus (+) end of the 
microtubule. Upon depolymerization, the GTP cap is detached, allowing the microtubules 
depolymerize releasing the α-/β-tubulin heterodimers into the cytoplasm. Subsequently, the 
GDP attached to another free β-tubulin and can exchange to GTP at the E-site, before another 
polymerization cycle begins [4, 5].

Dynamic instability is regulated by a number of microtubule-associated proteins (MAPs), 
which bind to stabilize the microtubules [6]. MAP phosphorylation induces its dissociation 
leading to microtubule instability. Some cytokines have a critical role in the regulation of 
MAPs and microtubule dynamics, such as controlling centromere localization Cdc2 kinases, 
mitogen-activated protein kinases ERK, controlling cell migration JNK, and the main serine/
threonine phosphatases, type 1 (PP1) and type 2A (PP2A) [7–10].
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The dynamic ability of microtubules to polymerize and depolymerize is essential for cellular 

division and chromosome segregation during mitosis. Due to their crucial roles in divid-

ing cells, microtubules have been considered a major target for cancer therapy. Microtubule-
interacting plant-derived biomolecules, namely, antimitotics, can be classified into two main 
groups based on their apparent mechanisms of action: microtubule-destabilizing agents 

act as tubulin polymerization inhibitors, and microtubule-stabilizing agents act as tubulin 
polymerization promoters [11].

2.1. Microtubule-destabilizing agents

Vinca alkaloids and colchicines prevent the polymerization of tubulin and promote the depo-

lymerization of microtubules.

Vinca alkaloids are a series of biologically active agents isolated from Catharanthus roseus (Vinca 

rosea) with a potent antitumor activity, related to their ability to inhibit the polymerization of 
microtubules and preventing cell division [12]. There are approximately 130 vinca alkaloids 
distributed in different vegetal tissues: vincristine, vinblastine, and yohimbine in the aerial 
parts; catharanthine and vindoline in leaves; and almalicine and reserpine in roots [13]. They 

have demonstrated clinical efficacy in a broad spectrum of cancers, both as single agents and in 
combination. Vincristine, vinblastine, and vindesine are the first vinca alkaloids used as anti-
tumor drugs. Vinorelbine is the first new second-generation vinca alkaloid, while vinflunine, 
a bis-fluorinated vinorelbine derivative, was synthesized by superacid chemistry and studied 
in phase I–III clinical trials [14, 15].

The vinca alkaloids are dimeric compounds consisting of two multi-ringed subunits, vin-

doline and catharanthine, linked by a carbon-carbon bridge [16]. They act by binding spe-

cifically to β-tubulin and block its ability to polymerize with α-tubulin into microtubules, 
thus disrupting the mitotic spindle. This blocks mitosis and kills actively dividing cells. The 

results indicate that vinorelbine and vinflunine affect microtubule dynamics differently from 
vinblastine and proved to be weak binders [17].

Vincristine is used in the treatment of hematological and lymphatic neoplasms, whereas vin-

blastine in breast cancer, testicular cancer, choriocarcinoma, and vindesine in non-small cell lung 
cancer or breast cancer. Vinorelbine is useful for the treatment of non-small-cell lung cancer, and 
vinflunine has been used in the treatment of bladder, non-small-cell lung, and breast cancers [17].

Similar to Vinca alkaloids, colchicine extracted from plants of the genus Colchicum (autumn 

crocus) is a microtubule-destabilizing agent at high concentrations and stabilizes microtubule 
dynamics at low concentrations [18]. It first binds to soluble tubulin, leading to a complex that 
copolymerizes into the ends of the microtubules and prevents the elongation of the microtubule 

polymer. It is severely toxic to normal tissues at high dose, which limits its use in cancer thera-

pies [19]. Colchicine showed different antitumoral effects which include inhibition of metastatic 
potential [20] and angiogenesis [21], cell blebbing through a Rho/Rho effector kinase (ROCK)/
myosin light-chain kinase (MLCK) pathway [22], decrease of ATP influx into mitochondria [23].

Novel microtubule-destabilizing plant-bioactive compounds are summarized in Table 1.
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Active substance/herbal 

formulation

Mechanism of action Therapeutic use References

Flavonoids isolated from 

Tanacetum gracile

—Modulate microtubule 

depolymerization by activating mitotic 

spindle checkpoint

—Bind at α- β interfacial site of tubulin

Breast cancer [24]

Artelastin isolated from the wood 
bark of Artocarpus elasticus

—Radial structure disorganization of 
the microtubule network

—Kinetochores are not affected

Breast cancer [25]

Podoverine A isolated from 
Podophyllum versipelle

—Mitotic arrest and inhibition of 

microtubule polymerization by 

targeting the vinca-binding site on 

tubulin

Renal cancer
Breast cancer

[26]

Plinabulin chemical probe 
KPU-244-B3

—Binds in the boundary region 

between α- and β-tubulin near the 
colchicine-binding site

—Induce tubulin depolymerization

Fibrosarcoma [27]

2′-Hydroxy-2,4,6-trimethoxy- 
5′,6′-naphthochalcone

—Disruption of microtubular networks 
by inhibition of tubulin polymerization

—Failure of mitotic spindle 

formation and blocking mitosis at the 

prometaphase or metaphase-anaphase 

transition

Colon cancer [28]

Aqueous extract of ginger —Disruption of interphase 
microtubule network of A549 and 
HeLa cells
—Inhibition of temperature-

dependent reassembly of cold-treated 

depolymerized microtubule of A549 
and HeLa cells

Cervical carcinoma

Lung carcinoma

[29]

Safranal —Inhibition of tubulin assembly (IC
50

 

was obtained at 72.19 µM)
—Binds between α- and β-tubulin 
closer to alpha-tubulin and hydrogen 

bond with Gly 142
—Hydrophobic interactions play 
critical roles for safranal molecule 

stabilization in binding site

Cancer therapy [30]

Isochaihulactone —Inhibition of tubulin polymerization 

in a concentration-dependent manner 

in A549 non-small-cell lung cancer cells
—Cause G2/M phase arrest and 
apoptosis in a time- and concentration-

dependent manner

Lung cancer [31]

Carnosol —Modulation of autophagic markers 

microtubule- associated protein 1A/1B 
light-chain 3 I (LC3 I) to microtubule- 
associated protein 1A/1B light-chain 
3 II (LC3 II) and p62 in MDA-MB-231 
cells

Breast cancer [32]
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2.2. Microtubule-stabilizing agents

Taxanes are the main class of microtubule-stabilizing agents, which prevent the depolymer-

ization of microtubules and promote the polymerization of tubulin to microtubules.

One of the most important plant compounds in the fight against cancer was discovered in 
the bark of Taxus brevifolia—taxol, now named paclitaxel, which has become one of the most 

Active substance/herbal 

formulation

Mechanism of action Therapeutic use References

Angelica shikokiana methanol 
extract (AME)

—AME and all isolated compounds 
inhibited tubulin polymerization

—Angelicin and kaempferol-3-O-
rutinoside were the most active 

compounds

—Phenolic compounds and 
furanocoumarins showed binding 

affinity to colchicine-binding site
—Quercetin, kaempferol, luteolin, 
chlorogenic acid, and methyl 
chlorogenate exhibited the strongest 
activity against histone deacetylase 8 

(HDAC8) and the highest affinity to 
trichostatin A-binding site.

Human hepatocellular 
carcinoma, 
rhabdomyosarcoma 

(RD), colorectal 
carcinoma, human 
epithelioma, and 
human breast 

adenocarcinoma

[33]

Alkaloids from beach spider Lily 
(Hymenocallis littoralis)

—Interrupt polymerization of 

microtubules in Hep-G2 cells
Hepatocarcinoma [34]

DYZ-2-90 —Binds to microtubules and rapidly 

induces tubulin depolymerization

Colorectal cancer [35]

Indicine N-oxide (INO) —200 µM induced a mitotic 

block of about 22% in HeLa cells; 
300 µM concentration-induced 

depolymerization of interphase 

microtubular network

—The effect was similar to the 
depolymerizing effects of the drugs 
such as colchicine and vinblastine, 
although the concentration used here 

was 1000-fold higher than those drugs

—Binds to the tubulin dimer through 

hydrogen bonds and hydrophobic 

interactions

—INO does not make any interactions 
with the amino acid residues on the 

tubulin dimer that were reported to be 

interacting with the taxol or colchicine, 
but INO-binding site partially overlaps 
with the griseofulvin-binding site 

(docking)

Cervical cancer [36]

Table 1. Potential plant-bioactive compounds that interact with microtubules as microtubule-destabilizing agents for 
cancer therapy.
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effective drugs against breast and ovarian cancer and has been approved for the clinical treat-
ment of cancer patients. Since the first discovery of paclitaxel in the 1960s, a variety of other 
microtubule-stabilizing agents have been derived primarily from natural resources [37]. The 

molecular mechanism includes polymerization of tubulin to stable microtubules and also inter-

acts directly with microtubules, stabilizing them against depolymerization and thereby blocks 
cells in the G2/M phase of the cell cycle [38]. The binding of taxol to β-tubulin in the polymer 
results in cold-stable microtubules even in the absence of exogenous GTP. Hydrogen/deute-

rium exchange (HDX) coupled to liquid chromatography-electrospray ionization MS demon-

strated a marked reduction in deuterium incorporation in both β- and α-tubulin in the presence 
of taxol and contributed to increased rigidity in taxol microtubules and complementary to that 
due to GTP-induced polymerization [39].

Initially obtained from Taxus brevifolia bark, paclitaxel is now a semisynthetic product of 
10-deacetylbaccatin III, which is extracted from the needles of the Taxus baccata. Similarly, 
docetaxel, a second-generation taxane, was directly obtained semisynthetically by esterification 
from the inactive taxane precursor 10-deacetylbaccatin III [40]. Paclitaxel and docetaxel bind 
to the specific binding sites of tubulin, which is different from the binding site of guanosine 
triphosphate, vinblastine, colchicine, and podophyllotoxin [41].

Docetaxel has a 1.9-fold higher affinity for the site than paclitaxel and induces tubulin polymer-

ization at a 2.1-fold lower critical tubulin concentration. The effect on the cell cycle is different: 
paclitaxel inhibits the cell cycle traverse at the G2/M phase junction [42], while docetaxel produces 
its maximum cell-killing effect against cells in the S phase [43].

To decrease the toxicity and enhance delivery and distribution, new taxane formulations of 
micelles were investigated, including nanoparticles, emulsions, and liposomes [44]. Com-

pounds such as Abraxane, CT-2103, and docosahexaenoic acid (DHA)-paclitaxel are examples 
of new taxanes with higher activity than paclitaxel in taxane-resistant cancers, as well as in 
tumors that have been unresponsive to paclitaxel [16].

Protopine is a benzylisoquinoline alkaloid isolated from Opium poppy, Corydalis tubers, and 
Fumaria officinalis. It stabilizes tubulin polymerization process but has no affinity to taxol-
binding site. It induces a marked increase of tubulin polymerization in a dose-dependent 

manner in human hormone-refractory prostate cancer (PC-3 cells), similar to paclitaxel. It 
enhances microtubule assembly and formation of mitotic spindles in PC-3 cells [45].

Taccalonolides are plant steroids possessing a C2–C3 epoxide group and an enol-lactone 
isolated from Tacca leontopetaloides, Tacca plantaginea, Tacca chantrieri, Tacca plantaginea, Tacca 

integrifolia, etc. They act as microtubule stabilizers by binding to another microtubule site 
than taxol resulting in the formation of microtubule bundles and leading to cell cycle arrest 
and apoptosis. It is also reported that taccalonolides bind to β-tubulin near the lumen of 
microtubule, which is different from the taxol-binding site stabilizers which bind to α-tubulin 
protofilaments [46–49].
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Recent study shows that the dietary flavonoid fisetin binds to tubulin and stabilizes microtubules 
with binding characteristics far superior than paclitaxel. It induces upregulation of microtubule-
associated protein (MAP)-2 and microtubule-associated protein (MAP)-4 and increases α-tubulin 
acetylation, an indicator of microtubule stabilization [50].

3. Microfilaments as chemotherapeutic targets of plant-derived bioactives

Actin filaments are composed of globular actin (G-actin) which polymerizes into filamentous 
(F) actin and participates in many important cellular processes including cell division and 
cytokinesis, cell signaling, vesicle and organelle movement, cell junction establishment, and 
maintenance.

Like microtubules, actin microfilaments can change rapidly their structure in response to 
external stimuli. Actin polymerization is stimulated by nucleating factors such as the Arp2/3 
complex, which mimics a G-actin dimer in order to stimulate actin polymerization [51]. Actin 
binds ATP to stabilize microfilament formation and hydrolysis [52]. The growth of micro-

filaments is regulated by thymosin, which binds G-actin to lead the polymerizing process, 
whereas profilin binds G-actin and catalyzes the exchange of ADP to ATP, promoting mono-

meric addition to the plus end of F-actin [53].

During cytokinesis, disruption of actin polymerization can effect cellular structure. Cytoki-
nesis inhibitors such as cytochalasin B disrupt the actin cytoskeleton, and the cell is unable 
to divide [54] but is still able to initiate another mitotic event, continuing to form nuclei 
and eventually becoming enlarged and multinucleated [55, 56]. Cell lines derived from blad-

der, kidney, and prostate carcinomas become multinucleated when grown in cytochalasin 
B-supplemented medium, whereas cells from corresponding normal tissue remain mono- 
or binucleate under comparable conditions [55]. These particular features make tumor cells 

ideal targets for chemotherapy, as they have reduced cytoskeletal integrity and multiple 
nucleation and increased mitochondrial activity [57].

Actin filaments are also of substantial importance to cancer cell migration. Cancer cell migra-

tion can convert between mesenchymal and amoeboid types. This latter can occur, e.g., when 
cells are exposed to protease inhibitors [58] and thereby mesenchymal cancer cell invasion is 

repressed by specific targeting of protease function. Inhibiting RhoA/ROCK signaling pro-

motes the formation of multiple competing microfilament-derived lamellipodia that sup-

press amoeboid migration of tumor cells [59]. Tumor cells unable to move through amoeboid 

migration will switch to mesenchymal migration [60]. However, tumor cells exposed to pro-

tease inhibitors will move mainly through amoeboid migration. Using microfilament disrupt-
ing RhoA/ROCK inhibitors in combination with protease inhibitors would simultaneously 
block both types of cell migration.

Phytomedicine developed actin-targeted potential drugs, designed for cancer therapy (Table 2).
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4. Intermediate filaments as chemotherapeutic targets of plant-derived 
bioactives

Along with microfilaments and microtubules, intermediate filaments are the other component 
of the cytoskeleton that can be exploited in the clinical treatment of cancer. All intermediate 
filaments have a central alpha-helical domain that is composed of four protofibrils separated 

Active substance/herbal 

formulation

Mechanism of action Therapeutic use References

Resveratrol —50 µM resveratrol decreases Rac and Cdc42 
signaling to the actin cytoskeleton

—5 µM resveratrol increases Rac signaling to the 
actin cytoskeleton

Breast cancer [61]

Oleuropein —Disrupt actin filaments in a dose-dependent 
manner

Sarcoma [62]

Alkaloid mixture derived 
from Senna spectabilis—

cassine and spectaline

—Altered normal distribution pattern of F-actin 
filaments

Liver cancer [63]

Deoxyelephantopin (DET) —Affects the actin cytoskeleton network and 
downregulates calpain-mediated proteolysis of 

several actin-associated proteins

—Inhibition of proteolysis of actin cytoskeleton-

associated proteins identified by differential 
proteomic profiling

Lung metastasis 

of mammary 

adenocarcinoma

[64]

Cucurbitacin E —Disruption of the F-actin cytoskeleton
—Increases the filamentous or polymerized  
actin fraction

Prostate carcinoma  
cells

[65]

Cucurbitacin E —Damaged F-actin without affecting 
beta-tubulin

95D lung cancer cells [66]

Cucurbitacin I —Induced the co-aggregation of actin with 

phospho-myosin II by stimulation of the RhoA/
ROCK pathway and inhibition of LIM-kinase

HeLa cells [67]

Cucurbitacin B —Induced rapid and improper polymerization 

of the F-actin network

Myeloid leukemia  

cells

[68]

Jasplakinolide (JAS) —Rearranged the actin cytoskeleton
—JAS has a phalloidin-like action
—Distribution of actin filaments was different 
from that induced by cytochalasin D

Cancer cells [69]

Ganoderma lucidum extracts —Inhibits growth and induce actin 

polymerization

Bladder cancer cells [70]

4-Hydroxycoumarin —Disorganized the actin cytoskeleton correlated 
with reductions in cell adhesion to four 

extracellular matrix proteins and inhibition of 
random motility

Melanoma cell line 

B16–F10

[71]

Table 2. Plant-bioactive compounds which interact with actin for cancer therapy.
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by three linker regions [72]. The N- and C-terminus segments of intermediate filaments are 
non-alpha-helical regions of polypeptide sequences, associated with head to tail into protofila-

ments that pair up laterally into protofibrils; four of these protofibrils form an intermediate 
filament.

Whereas microfilaments and microtubules are actin or tubulin polymers, intermediate fila-

ments are composed of 50 different proteins classified into six types based on similarities in 
amino acid sequence [72]. In regard to potential chemotherapeutic targets, the most promising 
intermediate filaments are keratins, nestin, and vimentin.

4.1. Anti-keratin agents

Keratin and cytokeratin are intermediate filaments found in the cytoskeleton of epithelial 
tissue. There are twenty different keratin polypeptides (K1–K20) identified and classified 
into type I (K9–K20) and type II (K1–K8) intermediate filaments [73]. Keratins of importance 
to cancer therapy are keratin 8 (K8) and keratin 18 (K18), the most common and character-

istic members of intermediate filaments expressed in single-layer epithelial tissues [74, 75]. 

Oncogenes, which activate Ras signaling, stimulate expression of K18 through transcription 
factors [76]. However, aberrant K8 and K18 expression has been noticed in particularly 
invasive carcinomas [77, 78]. K18 was found to be a substrate of the cysteine-aspartic prote-

ases during epithelial apoptosis [77].

Based on aberrant keratin expression found in many cancers, these intermediate filaments 
present a novel chemotherapeutic target that need to be investigated.

Crude acetone extract of Bupleurum scorzonerifolium (AE-BS) showed antiproliferative activity, 
induced cell arrest in G2/M phase, and apoptosis in A549 human lung cancer cells [79]. In a 

further study, Chen et al. [73] noticed K8 phosphorylation after AE-BS treatment of A549 cells. 
The association of ERK1/2 activation with K8 phosphorylation may be related to the apoptotic 
effect of AE-BS.

4.2. Anti-vimentin agents

Vimentin functions as a regulator in cancer cells undergoing epithelial-mesenchymal transi-

tion (EMT), an important change during tumor progression where cells detached from their 
original tissue become highly motile and invasive. Studies have shown that quercetin pre-

vented epidermal growth factor (EGF)-induced EMT, migration, and invasion of prostate 
cancer cells by suppressing the expression of vimentin and N-cadherin [80]. Genistein, an 
isoflavone found in soybeans, fava beans, and lupine, has been shown to downregulate mes-

enchymal markers ZEB1, slug, and vimentin and therefore cause reversal of EMT in gem-

citabine-resistant pancreatic cancer cells [81]. Similarly, this flavonoid was able to decrease 
protein expression of vimentin, cathepsin D, and MMP-2 and thus suppressed epithelial-
mesenchymal transition and migration capacity of BG-1 ovarian cancer cells [82]. Other 
natural compounds, like silibinin, induced the morphological reversal of mesenchymal 
phenotype to epithelial phenotype through downregulation of vimentin and MMP-2 and 
upregulation of cytokeratin-18 [83]. Moreover, silibinin meglumine, a water-soluble form 
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of milk thistle silymarin, impedes the EMT in EGFR-mutant non-small-cell lung carcinoma 
cells by upregulation of the relative mRNA expression of CDH1 (E-cadherin) accompanied 
by downregulation of vimentin [84]. Berberine, a plant alkaloid present in various plants like 
Berberis, decreased the expression of the mesenchymal markers vimentin and fibronectin and 
restored the epithelial marker E-cadherin, thereby contributing to the reversal of EMT [85].

Piplartine, a biologically active component from Piper species (Piperaceae), also suppresses 
tumor progression and migration by disruption of the p120-ctn/vimentin/N-cadherin complex, 
which plays a critical role in tumor progression and invasion/metastasis [86].

Phenethyl isothiocyanate (PEITC), the main bioactive compound present in cruciferous 
vegetables, decreases breast and prostate tumor growth inhibition through vimentin sup-

pression [87]. Cucurbitacin E induced disruption of vimentin cytoskeleton in prostate car-

cinoma cells, while microtubules were unaffected [65]. The natural product withaferin A 
(WFA) exhibits antitumor activity by binding to vimentin and covalently modifying its cys-

teine residue, which is present in the highly conserved helical coiled coil 2B domain [88]. 

Penduletin and casticin, flavonoids from the Brazilian plant Croton betulaster, induced 
changes in the pattern of expression of the cytoskeletal protein vimentin and thereby inhibit 
the growth of human glioblastoma cells [89].

5. Protective effect of plant-bioactive compounds on anthracycline-induced 
cardiac cytoskeletal toxicity

Cardiotoxicity is the most serious side effect of antitumoral anthracyclines, which include 
adriamycin, doxorubicin, mitoxantrone, daunorubicin, or epirubicin [90]. The main cause 

of toxicity is their effect on the cardiac cytoskeleton, consisting of myofibrils disarray [91], 
including both structural and functional changes: troponin I and troponin C phosphoryla-

tion mediated by a doxorubicin-induced protein kinase C activation [92, 93] and decrease 

of troponin I, and changes of α-actin, creatine kinase, and myosin light-chain 2 expression 
[93]. In other studies, degradation of cardiac cytoskeletal proteins, including titin [94] and 

dystrophin [95], was observed. Recently, changes in the cardiac distribution of desmin have 
been detected, with areas of decreased expression in the cytoplasm and protein aggregation 
after mitoxantrone treatment [96, 97]. The use of plant bioactives might protect against the 

oxidative stress caused by anthracycline drugs, including cytoskeleton injuries. Our group 
recently demonstrated that the flavonoid chrysin inhibits mitoxantrone-triggered cardiomyo-

cyte apoptosis via multiple pathways, including decrease of the Bax/Bcl-2 ratio and caspase-3 
expression along with preservation of the desmin disarray [96].

6. Conclusions

Plant-derived bioactive molecules constitute promising tools for the treatment of cancer. The 
application of plant bioactives in the treatment of cancer has resulted in increased therapeutic 
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efficacy through targeting the cytoskeleton and prevention of cytoskeletal injuries due to che-

motherapy side effects. Research results testify both the evolution of knowledge coming from 
pharmacognosy and the great possibilities of future progress by means of a rational approach 

of natural product-based drug discovery or new pharmaceutical formulations.
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