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Abstract

The tumor necrosis factor superfamily (TNFSF) member and cytokine known as B-cell 
activation factor belonging to the TNF-family (BAFF) has been identified as one of the 
key factors in the selection and survival of B cells. Overexpression of BAFF in mice leads 
to autoimmunity, whereas BAFF-deficient mice lack mature B cells. Although under nor-
mal concentrations of BAFF, non–self-reactive B cells survived and autoreactive B cells 
were deleted, a higher concentration of BAFF contributed to the survival of autoreactive 
B cells and elevated autoantibody production. Lupus-prone mice have increased serum 
levels of BAFF during the onset and progression of disease. The serum BAFF levels are 
elevated in patients with autoimmune diseases, such as systemic lupus erythematosus, 
rheumatoid arthritis, Sjögren’s syndrome and ANCA-associated vasculitis, and showed 
positive correlations with autoantibodies. Based on the development of autoimmune dis-
orders in animal models of BAFF overexpression and the elevated levels of serum BAFF 
in patients with autoimmune diseases, it appears that BAFF may be associated with 
autoimmune processes and that BAFF may be a potential biomarker for disease activity 
in autoimmune diseases. BAFF may also be important as a therapeutic target in those 
diseases and several BAFF-neutralizing agents are currently undergoing clinical trials.

Keywords: B-cell activation factor belonging to the TNF-family, systemic lupus 
erythematosus, rheumatoid arthritis, Sjögren’s syndrome, systemic vasculitis, 
belimumab, atacicept

1. Introduction

B cells are associated with autoimmune diseases (in functions such as the production of 

pathogenic autoantibodies) and with multiple pathogenic functions such as autoantigen 
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uptake and transport, autoantigen presentation to T cells, the production of humoral factors 

and migration to sites of inflammation. As one of the key factors in the selection and survival 
of B cells, a closely related cytokine of the tumor necrosis factor (TNF) superfamily (TNFSF) 

was identified, i.e., the B-cell activation factor belonging to the TNF-family (BAFF). Here we 
review the physiology of BAFF and its receptors, the roles of BAFF and the effects of BAFF 
blockade in autoimmune diseases.

2. The basic characteristics of BAFF

2.1. BAFF and its receptors

BAFF (also known as B-lymphocyte stimulator) is a member of the TNF superfamily 13B 

(TNFSF13B) of proteins that regulate immune responses [1, 2]. The gene for BAFF is located 

on human chromosome 13q34 and on mouse chromosome 8 [3]. BAFF exists in two forms, 

a membrane-bound form and a soluble form. Membrane-bound BAFF can be released from 

cells via proteolytic cleavage from a furin protease site by metalloproteases and released in a 

soluble form [4].

Soluble BAFF mainly exists in the form of homotrimers. An in vitro study showed that 20 

BAFF trimers may associate to form a multimeric BAFF 60-mer (which exhibits a virus-like 

structure) at a neutral or alkaline pH; at an acidic pH, the BAFF 60-mer dissociates into BAFF 
trimers [5]. However, whether soluble BAFF does or does not form BAFF 60-mer in vivo is 

a controversial question [6]. BAFF is expressed on the surface of many cell types, including 

antigen-presenting cells (B cells, monocytes, macrophages, dendritic cells) [7, 8], neutrophils 

[9] and activated T cells [10]. BAFF mRNA has also been detected in bone marrow-derived 

stromal cells, astrocytes and fibroblast-like synoviocytes in response to proinflammatory 
cytokines [11].

Soluble BAFF binds to three receptors that are present on several immune cell types—i.e., 

BAFF-receptor (BAFF-R; also known as BR3 and TNF-receptor superfamily 13C), transmem-

brane activator and calcium modulator and cyclophilin-ligand interactor (TACI; also known 
as TNF-receptor superfamily 13B) and B-cell maturation antigen (BCMA; also known as 
TNF-receptor superfamily 17)—at various times during their differentiation [1]. BCMA is 

expressed on transitional type 1 (T1) cells [12] and on plasma cells [13, 14], whereas TACI and 

BAFF-R are expressed on innate immune B cells (marginal zone B cells and transitional type 

2 [T2] B cells) and mature B cells [12].

A proliferation-inducing ligand (APRIL), which is a member of the TNFSF (TNFSF13A), was 

identified as the homologous molecule of BAFF [15]. The gene for APRIL is located on human 

chromosome 17p13.1 and on mouse chromosome 11 [16]. Similar to soluble BAFF, soluble 

APRIL exists mainly in the form of homotrimers. APRIL differs from BAFF in that APRIL is 
not present on the cell surface. APRIL is processed by the Golgi apparatus, which involves 

cleavage at the furin protease site and the resulting soluble APRIL is released from the cell 

[17]. Although APRIL trimers are unable to form a multimeric 60-mer, APRIL trimers bind to 

heparan sulfate proteoglycans (HSPGs) and the binding of multiple APRIL to HSPGs enhances 
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local APRIL signaling [18]. Moreover, HSPGs provide a platform for APRIL multimerization, 
which promotes the occurrence of APRIL multimerization [19].

Thus, the BAFF system involves two ligands (BAFF and APRIL) and three receptors (BAFF-R, 

TACI and BCMA) and the ligands take three forms (membrane-bound, soluble homotrimers 

and the multimeric form) (Figure 1) [1]. However, APRIL binds to TACI and BCMA but not to 
BAFF-R [20]. Membrane-bound BAFF and the multimeric BAFF 60-mer binds to BAFF-R, TACI 

and BCMA, whereas the soluble homotrimers BAFF binds to only BAFF-R [20, 21]. BAFF-R 

is expressed on resting, marginal zone and germinal center B cells and TACI is expressed on 

mature B cells and plasma cells [20, 21]. BCMA was identified prior to BAFF-R as a receptor 
for BAFF [22, 23], but its expression is restricted to germinal center B cells, memory B cells and 

plasma cells [24–26]. BCMA is a high-affinity receptor for APRIL, whereas in humans BCMA 
binds BAFF with low affinity.

2.2. Functions of BAFF

The B cells differentiate from hematopoietic stem cells to pro-B cells, pre-B cells, immature B 
cells, T1 B cells, T2 B cells, mature B cells, activated B cells, memory B cells and plasma cells 

sequentially and the interaction of BAFF with BAFF-R is essential for the survival of T2 B 

Figure 1. The BAFF system involves two ligands (BAFF and APRIL) and three receptors (BAFF-R, TACI and BCMA) and 

the ligands take three forms (membrane-bound, soluble homotrimers and the multimeric form).
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cell [1, 22, 27]. Increased competition for BAFF results in a deletion of autoreactive B cells, 

whereas decreased competition for BAFF in the context of B-cell lymphopenia or increased 

levels of circulating BAFF results in a relaxation of the B-cell selection and a release of more 

autoreactive naïve B cells. BAFF-R is upregulated by B-cell receptor (BCR) ligation on mature 

B cells [28] and is expressed on resting memory B cells [14].

However, it is clear that the survival and reactivation of B-cell memory is BAFF-
independent. BAFF-R mediates most BAFF-dependent functions in the naïve B-cell pop-

ulation [29], whereas BCMA is needed for the optimal generation of long-lived plasma 

cells [30]. Survival of plasma cells expressing TACI and/or BCMA depends on either BAFF 

or APRIL secreted by dendritic cells and monocyte/macrophages in the lymph node or 

bone marrow [31]. In contrast, peritoneal B1 cells do not require BAFF or APRIL for their 

 survival [1].

BAFF also plays an important role in immunoglobulin production and class switching.  

T cell-independent type II responses require the interaction of multimeric BAFF 60-mer 

or membrane-bound BAFF with TACI [32–34]. TACI-deficient mice have decreased serum 
IgM and decreased IgM responses to T-independent antigens, but they have increased 

B-cell numbers and develop an autoimmune phenotype [35]. BAFF induces the CD40-

independent immunoglobulin-class switching through the interaction of B cells and the 

dendritic cells; human dendritic cells upregulate BAFF and APRIL induced immunoglobu-

lin-class switch from Cμ to Cγ and/or Cα genes in B cells in the presence of IL-10 and TGF-β 
and in the presence of IL-4, BAFF and APRIL-induced immunoglobulin-class switch from 

Cμ to Cε [35]. IgG responses are much less BAFF-dependent and class-switching to IgA 

appears to be dependent upon the interaction of APRIL, multimerized by proteoglycans, 

with TACI [36, 37].

BAFF is an essential component of the innate-immune response and is induced in myeloid den-

dritic cells by type I interferons (IFNs) [38]. BAFF upregulates toll-like receptor (TLR) expres-

sion, promotes B-cell survival and promotes immunoglobulin class-switching and plasma cell 

differentiation together with interleukin (IL-6) [39, 40]. The activation of TLR-9 in B cells by oli-

godeoxynucleotides containing CpG motifs upregulates the expression of TACI and increases 

BCR-mediated signaling [39, 41]. In contrast, the activation of TLR-4 in B cells by lipopolysac-

charides upregulates BAFF-R and induces the activated B cells to become susceptible to Fas/

CD95-mediated apoptosis [42].

2.3. BAFF-R signaling

Membrane proximal signaling by BAFF-R has been attributed to the TNFR-associated fac-

tor (TRAF) molecules, which bind directly or via adapter molecules to intracellular domains 

of TNFRSF members [43, 44]. Although only TRAF3 binds BAFF-R directly [45, 46], signal-

ing occurs via the concerted actions of TRAF2 and TRAF3, which negatively regulate the 

receptor [43]. Thus, mice lacking TRAF2 or TRAF3 exhibit a phenotype consistent with BAFF 

transgenic mice and can persist in vitro in the absence of survival factors as well as in vivo in 

the absence of BAFF [47–50]. On the other hand, the inactivation of TRAF3 also allowed for 
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the formation and maintenance of the marginal zone B-cell compartment [49, 50], indicating 

that both BAFF-dependent survival and differentiation signals are dependent upon TRAF2/
TRAF3. TRAF2 and TRAF3 are recruited, leading to the release of NF-κB-inducing kinase 
(NIK), which phosphorylates IKK1, leading to p100 processing to p52 and the activation of 

NF-κB (Figure 2).

TACI intracellular domain interacted with TRAF2, TRAF5 and TRAF6 and these interactions 

induce NF-κB and JNK activations [51, 52]. On the other hand, in immunoglobulin class-

switch signaling, TACI can activate NF-κB in the myeloid differentiation primary response 
protein 88 (MyD88)/the interleukin-1 receptor-associated kinase 4 (IRAK4)-dependent man-

ner similar to TLR signaling [53]. MyD88 and TRAF2 bind to the same region of TACI and 

acts cooperatively to activate NF-κB [53]. BCMA, BAFF-R and CD40 do not share the ability 

to bind MyD88.

BCMA-deficient mice have normal B-cell development and the life span of mutant B lym-

phocytes is comparable to that of wild-type B cells [54]. Moreover, the humoral immune 

responses of BCMA-deficient mice to T-cell-independent and -dependent antigens were 
also intact [54]. However, in BCMA-deficient mice, the reduced number of long-lived IgG-
producing bone marrow plasma cells was demonstrated compared with wild-type mice [13] 

and BCMA may be the receptor on plasma cells critical for plasma cell survival. An overex-

pression of BCMA in human embryonic kidney 293 cells activated canonical NF-κB signaling 
and  coimmunoprecipitation studies indicated that BCMA could interact with NIK and the 

Figure 2. Signaling of three BAFF receptors (BAFF-R, TACI and BCMA).
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IKK complex [55, 56]. Consistently, the survival of long-lived plasma cells does not require 

BAFF but is dependent upon APRIL [18, 57]. Thus, much remains to be known regarding 

BCMA signaling by APRIL/BAFF in terminally differentiated plasma cells.

3. BAFF in autoimmune diseases

3.1. Animal models

3.1.1. BAFF-deficient or transgenic models

Mice deficient in BAFF lack T2 B cells, mature marginal zone and follicular B cells and have 
significantly reduced spleen weights, whereas B-cell differentiation and/or proliferation in 
bone marrow, T1 B cells and other hematopoietic cell lineages appear normal [22, 58]. BAFF-

deficient mice have a reduction in the total serum immunoglobulin level and show dimin-

ished T cell-independent and T cell-dependent antibody responses [22, 58]. On the other 

hand, the phenotypes of BAFF-, BCMA-, TACI- and BAFF-R-deficient mice clearly indicate 
that the BAFF survival signal in transitional and mature B cells is mediated by BAFF-R in mice 

and not through BCMA and TACI [22, 34, 54, 58, 59].

Mice transgenic (Tg) for BAFF have vastly increased numbers of mature B and effector T cells 
and they develop autoimmune-like manifestations such as the presence of high levels of rheu-

matoid factors (RFs), circulating immune complexes, anti-DNA autoantibodies and immuno-

globulin deposition in the kidneys, closely mimicking human systemic lupus erythematosus 

(SLE) and Sjögren’s syndrome (SjS) [47, 60, 61]. These Tg mice showed also severe enlarge-

ment of the spleen, lymph nodes and Peyer’s patches because of an increased number of B220 

cells and hypergammaglobulinemia contributed by elevations of serum IgM, IgG, IgA and 

IgE was observed [61].

Older BAFF-Tg mice demonstrate characteristics of SjS, such as enlarged salivary glands due 

to inflammation and leukocytic infiltrates and reduced saliva production as a consequence 
of acinar cell destruction [62]. BAFF induced the survival of a subset of splenic immature 

B cells, referred to as T2 B cells [63]. BAFF treatment allowed T2 B cells to survive and dif-

ferentiate into mature B cells in response to signals through the B-cell receptor (BCR) [63]. 

The T2 and the marginal zone B-cell compartments were particularly enlarged in BAFF Tg 

mice [63].

Immature transitional B cells are targets for negative selection, a feature thought to pro-

mote self-tolerance [63]. Although BAFF overexpression did not affect the development 
of self-reactive B cells normally deleted in the bone marrow or during the early stages 

of peripheral development, BAFF overexpression rescued from deletion of selfreactive B 

cells, which normally deleted around the late T2 stage of peripheral development [64]. 

Moreover, self-reactive B cells normally selectively deleted from the marginal zone repop-

ulated this compartment by BAFF overexpression [64]. This partial subversion of B-cell 

self-tolerance is likely to underlie the autoimmunity associated with BAFF overexpression 

(Figure 3).
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3.1.2. Animal models of autoimmune diseases

In two murine models of human SLE, MRL/Mp-lpr/lpr and NZB/W F1 mice, there are 

increased serum levels of BAFF that seem to correlate with autoimmune kidney damage [60]. 

In NZB/W F1 mice, treatment with soluble TACI-Ig fusion protein inhibits the development of 

proteinuria and prolongs survival of these mice [60]. In BXSB murine lupus model, treatment 

with soluble fusion protein consisting of human BAFF-R and human mutant IgG4 Fc resulted 

in significant reduction in peripheral and splenic B-cells and in proteinuria [65]. In SLE-prone 

NZM 2328 mice deficient in BAFF, serum autoantibody levels and glomerular IgG and C3 
depositions were significantly reduced compared with wild-type NZM 2328 mice [66] and 

those clinical and pathological responses were more resistant to disease-promoting properties 

of IFN-α [67].

3.2. Human autoimmune diseases

Similar to BAFF-R-deficient mice, humans with the BAFF-R gene deletion have severe B-cell 
lymphopenia. B cells are arrested at the transitional B-cell stage and this condition pres-

ents with adult-onset antibody-deficiency syndrome [68]. Humans with this condition have 
diminished numbers of mature B cells, e.g., follicular, marginal zone and memory B cells and 

their T-independent immune responses are severely impaired.

In relation to the possible role of BAFF in autoimmunity, patients with autoimmune diseases 

such as SLE, RA, SjS and antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis 

(AAV) have all been shown to have elevated levels of BAFF.

3.2.1. Systemic lupus erythematosus

The BAFF levels of 110 plasma samples and 40 serum samples from 150 SLE patients were 

found to be elevated compared to the samples from 40 normal controls [69]. In that study, the 

Figure 3. The associations B-cell maturation or B-cell self-tolerance and BAFF expressions.
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SLE patients with high levels of BAFF exhibited significantly higher levels of antidouble-strand-
DNA antibody in each of the IgG, IgM and IgA classes compared to the SLE patients with low 

levels of BAFF and the normal controls [69]. In a study of serum BAFF levels in 185 patients 

with various systemic immune-based rheumatic diseases (including 95 with SLE, 67 with RA, 

23 with other diseases), serum BAFF levels were elevated in 21% of the 185 patients and those 

levels in the SLE patients correlated with the antidouble-strand-DNA antibody titers [70].

In a longitudinal study of serum BAFF levels in 68 SLE patients, the serum BAFF levels were 

persistently or intermittently elevated in 50% of the patients and the blood BAFF mRNA 
levels were also elevated in 61% of the patients [71]. In SLE patients with elevated serum 

BAFF levels, treatments with high-dose corticosteroids led to a marked reduction of the 

serum BAFF levels [71]. Regarding the association of serum BAFF levels with disease activ-

ity, those levels were correlated with not only antidouble-strand-DNA antibody titers but 

also the safety of estrogens in lupus erythematosus: National Assessment (SELENA) version 

of the systemic lupus erythematosus disease activity index (SLEDAI) score in 245 patients 

with SLE [72].

Of the peripheral blood mononuclear cells (PBMCs) from normal controls, only CD14+ cells 

(monocytes) expressed surface BAFF and this expression tended to be very modest, whereas 

the level of BAFF expression was frequently increased in PBMCs from SLE patients and some 

CD14− cells as well as CD14+ cells were present [71]. In another SLE cohort of 60 patients, the 

peripheral blood leukocyte levels of BAFF mRNA were correlated with the serum BAFF protein 

levels and the BAFF mRNA levels were more closely associated with serum immunoglobulin 

levels and SLEDAI scores than were the serum BAFF protein levels [73]. In 75 SLE patients, 

elevated serum BAFF and elevated PBMC BAFF mRNA levels in active SLE patients were 

observed compared with those in stable SLE patients and controls and those levels in active SLE 

patients with proteinuria were higher than those in active SLE patients without proteinuria [74].

BAFF-R expressions on CD27−CD38low (resting naïve) and CD27+CD38low (resting mem-

ory) B cells were equivalent between SLE patients and controls, but those expressions on 

CD38+ (germinal center) B cells and CD27+CD38++ (plasmablast) cells were reduced com-

pared to controls [75]. The occupancy of BAFF-R on B cells from SLE patients would render 

them less responsive to exogenous BAFF [75]. BAFF-R expressions on CD19+IgD+CD27−, 
CD19+IgD+CD27+ and CD19+IgD−CD27+ B cells in SLE patients were reduced compared 
to controls [76]. Decreased BAFF-R expressions on CD19+ B cells were more obvious in 

SLE patients with nephritis, whereas the expression of TACI on CD19+ B cells in lupus 

nephritis was upregulated [76].

BAFF-R expressions on CD19+ B cells were correlated with negative SLEDAI scores [76], but 

TACI expression in CD19+ B cells was positively correlated positively with the SLEDAI score 

[77]. The expression of BAFF-R on CD19+ cells (B cells) in active SLE patients was downregu-

lated compared to those in stable SLE patients and controls and the expression of BAFF-R on 

CD19+ cells was negatively correlated with serum BAFF levels and BAFF mRNA levels in 

PBMCs [74]. Thus, elevated BAFF in serum and PBMCs and a reduced expression of BAFF-R 

and overexpression of TACI on B cells were demonstrated in SLE.
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3.2.2. Rheumatoid arthritis

It was demonstrated that serum BAFF levels in 67 rheumatoid arthritis (RA) patients were 

higher than those in 48 normal controls and elevated serum BAFF levels were correlated 

with serum IgG levels and RF titers in 42 RA patients [70]. The serum BAFF levels in 

53 patients with RA were higher than those in 39 healthy controls, but lower than those in 

41 patients with Sjögren’s syndrome [62]. In 129 patients with autoimmune diseases includ-

ing 28 RA patients, elevated serum levels of BAFF correlated with RF titers [78]. Elevated 

serum BAFF levels were observed in an early RA stage: serum BAFF levels were higher in 

48 early RA patients (disease duration <1 year) compared to 48 patients with rheumatic 

disease other than RA or 50 healthy controls, but not 49 patients with longstanding RA 

(disease duration >1 year) [79]. In 48 early-RA patients, the serum BAFF levels correlated 

with IgG-, IgA- and IgM-RF titers and anti-CCP antibody levels [79]. Thus, serum BAFF 

levels were elevated in RA patients and those levels were associated with autoantibodies, 

including RF titers.

Synovial fluid levels of BAFF in RA patients were more elevated than the serum BAFF lev-

els in the same patients and the synovial fluid and serum BAFF levels were correlated with 
each other [80]. The synovial fluid levels of BAFF in RA patients were also correlated with 
monocyte, lymphocyte, neutrophil and total nucleated cell counts [80]. In mononuclear 

cells extracted from the synovium of RA patients, BAFF and BAFF mRNA were expressed 

on B cells, T cells and monocytes [81]. In that study, BAFF was not expressed on the sur-

face of fibroblast-like synoviocytes (FLSs) extracted from the synovium of RA patients, but 
BAFF mRNA was detected in FLSs [81]. There was no difference in BAFF mRNA of FLSs 
from the synovial tissue of RA patients compared with those from patients with osteoar-

thritis and the normal controls, but the BAFF mRNA of those cells was enhanced by IFN-γ 
or TNF-α [82]. In cocultures of peripheral B cells with FLSs from synovial tissue of RA 

patients, the expression of RAG genes—which could induce a revision of the B-cell receptor 

genes, resulting in autoreactivity—was induced in peripheral B cells by BAFF and IL-6 [83]. 

Moreover, a BAFF-dependent class switch recombination was demonstrated in the cocul-

ture of peripheral B cells with FLSs from synovial tissue of RA patients [84]. These findings 
suggested that the overexpression of BAFF may be associated with autoimmunity at sites 

of inflammation in RA.

There was no difference in the BAFF-R expression on peripheral naïve B (CD19+CD27−) 
and memory B (CD19+CD27+) cells among RA patients before treatment, RA patients dur-

ing remission and normal controls, but the BAFF-R expression on both types of B cells in 

RA patients at relapse was significantly lower than that in the RA patients before treatment 
and the normal controls [85]. Although the BAFF-R expressions on PBMCs and B cells were 

reduced, BAFF-R in synovial tissues from RA patients was highly expressed [86].

However, in another study, the BAFF-R expression on peripheral B cells increased with dis-

ease progression (very early, early and established RA) and the TACI expression on periph-

eral B cells increased in all stages of RA patients [87]. Thus, elevated BAFF in serum and 

synovial tissue of RA was demonstrated, but the BAFF-R expression varied.
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3.2.3. Sjögren’s syndrome

It was demonstrated that serum BAFF levels in 41 patients with SjS were higher than those 

in 53 SLE patients, 53 RA patients and 39 healthy controls [62]. In the investigation of both 

serum BAFF and APRIL, in a comparison with six healthy donors the serum levels of both 

BAFF and APRIL in 29 SjS patients were elevated, but compared with SjS patients without 

anti-SSA antibody, only the serum APRIL levels in the SjS patients with anti-SSA antibody 

were elevated [88].

Although the serum BAFF levels failed to correlate with anti-SSA antibody, anti- SSB antibody 

or RF in those studies, several other studies demonstrated that the serum BAFF levels corre-

lated with autoantibodies [78, 89, 90]. In 49 patients with SjS, elevated serum levels of BAFF 

were demonstrated compared to those in 47 healthy controls and there was a strong correlation 

between the serum BAFF levels and anti-SSA antibodies and RF levels [89]. In 129 patients with 

autoimmune diseases including 58 SjS patients, elevated serum levels of BAFF in the SjS group 

were correlated with anti-SSA antibody [78]. In an investigation of 127 SjS patients, elevated 

serum levels of BAFF in SjS correlated with anti-SSA and anti-SSB antibodies [90]. Serum BAFF 

levels in SjS patients with hypergammaglobulinemia were also elevated compared to those of 

patients with normal IgG levels [91].

The serum BAFF levels in SjS patients with the formation of ectopic germinal centers were 

elevated compared to those of patients without ectopic germinal centers [92]. BAFF mRNA 

expression and production in circulating monocytes and T cells from SjS patients by IFN-α 
stimulation were higher than those from normal controls [93]. The expression of BAFF and 

its mRNA were also demonstrated in T cells infiltrating labial salivary glands of biopsy 
specimens from SjS patients [94]. In salivary glands, BAFF expressions were also observed in 

IFN-stimulated salivary gland epithelial cells [95] and infiltrating B cells [96]. These findings 
suggested that BAFF may be associated with the immunopathogenesis of SjS.

Unstimulated peripheral monocytes from 13 SjS patients produced higher amounts of BAFF 

and IL-6 compared to those of 12 healthy donors [97]. In that study, the expressions of BAFF-R 

and transcription factors regulating IL-6 in monocytes from SjS patients were also elevated. 

Thus, BAFF may also be associated with monocyte activation.

Although elevated BAFF in serum and salivary glands of SjS patients were demonstrated, the 

BAFF-R expression varied. The expression of BAFF-R on peripheral B cells in 20 SjS patients 

was decreased compared to that in 15 controls and there was no difference in BAFF-R mRNA 
levels of B cells between SjS patients and controls [98]. On the other hand, in a study of BAFF-R 

expression in the salivary glands, the expression of BAFF-R on B cells was observed, but the 

expressions of TACI and BCMA were not [96].

Serum BAFF levels differed among SjS patients with and without lymphoproliferative disor-

ders (lymphoma or prelymphomatous manifestations): higher levels of serum BAFF in 42 SjS 

patients with lymphoproliferative disorders were demonstrated compared to those in 34 SjS 

patients without these disorders [99]. A higher frequency of the minor T allele of the rs9514828 

BAFF polymorphism in the high-risk SjS group for lymphoma was demonstrated [100].  

Moreover, in SjS patients with younger-age onset (at <40 years old), the generalized odds ratio 
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for the development of mucosa-associated tissue lymphoma was 6.1 in the presence of the 

BAFF-R His159Tyr mutation [101]. These findings suggested that BAFF may also associated 
with an increased risk of progression to lymphoma.

3.2.4. ANCA-associated vasculitis

Several studies of serum BAFF levels in AAV patients have been reported. It was demon-

strated that the serum BAFF levels in 46 granulomatosis with polyangiitis (GPA) patients were 

significantly elevated compared to those of 62 healthy controls [102]. Elevated serum BAFF 

levels were observed in untreated GPA patients, but that level in corticosteroid-treated GPA 

patients was approximately the same as in the healthy controls. Similarly, elevated serum 

BAFF levels were observed in 87 patients with proteinase-3 (PR3)-AAV compared to the levels 

of 31 healthy controls, but the BAFF levels in relapsed patients did not differ from those in 
patients without relapse [103]. In a study of 22 GPA patients, serum BAFF levels were corre-

lated independently and inversely with PR3-ANCA levels, but did not correlate with clinical 

parameters, i.e., the Birmingham vasculitis activity score (BVAS), the vasculitis damage index 

(VDI) and the disease extent index (DEI) and with the serum C-reactive protein (CRP) level 

[104]. Thus, serum BAFF levels in GPA were elevated, but the association between the BAFF 

level and the PR3-ANCA titer was not established.

Among three types of AAV (41 patients with GPA, 16 patients with microscopic polyangiitis 

[MPA] and four patients with eosinophilic GPA), elevated serum levels of BAFF were observed 

only in GPA patients [105]. However, several studies demonstrated that serum BAFF levels 
were elevated in MPA patients [106, 107]. In myeloperoxidase (MPO)-AAV, the serum BAFF 

levels in 23 active vasculitis patients were higher than those in 24 inactive vasculitis patients, 

13 inactive vasculitis patients with infectious complication and 20 controls [106]. Moreover, 

there were significant positive correlations between the serum levels of BAFF and the BVAS 
results, the serum CRP levels and the MPO-ANCA titers.

Similar to those findings, in a study of 121 patients with MPO-AAV (100 of whom had MPA, 
18 had GPA and three had renal-limited vasculitis), the serum BAFF levels were significantly 
elevated in both the patients with active disease and those in remission compared to healthy 

controls, although the patients with active disease still had significantly higher levels than 
those in remission. In that study, the serum BAFF levels correlated well with the BVAS results 

and the erythrocyte sedimentation rate (ESR), but they did not correlate with the MPO-ANCA 

titer [107]. Thus, serum BAFF levels in MPA were elevated, but the association between the 

BAFF level and the MPO-ANCA titer was not clear.

In an in vitro study of BAFF expression and release in stimulated neutrophils, treatment with 

PR3-ANCA-IgG significantly increased BAFF expression in neutrophils compared to the 
expression in untreated and normal IgG-treated cells [108]. Supernatants from PR3-ANCA-

IgG-stimulated neutrophils were shown to contain increased levels of BAFF compared to 

those from untreated and normal IgG-treated neutrophils [108]. Supernatants from neutro-

phils treated with PR3-ANCA but not normal IgG induced an increase in the cell viability of 

a B-cell line [108]. In a study of the in vitro IgG production in stimulated PBMCs from GPA 

patients, IL-21 enhanced the production of IgG, whereas stimulation with BAFF alone did 
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not result in increased IgG production [109]. However, the combination of BAFF and IL-21 
increased the IgG production more than IL-21 alone [109].

The combination of BAFF and IL-21 induced a significant enhancement in PR3-ANCA pro-

duction in PBMCs isolated from ANCA-positive patients in comparison with ANCA-negative 

patients [109]. The stimulatory effect on IgG and PR3-ANCA production by BAFF and IL-21 
was further enhanced by the addition of exogenous factors (oligodeoxynucleotides contain-

ing CpG motifs) [110]. These findings suggested that elevated BAFF may be associated with 
ANCA production by autoreactive B-cell survival.

Decreased expression of BAFF-R on circulating B cells and decreased expression of TACI on 

circulating memory B cells were demonstrated [110]. In another study, there was no differ-

ence in soluble TACI levels among active MPO-AAV patients, inactive MPO-AAV patients 

and controls [111]. On the other hand, in a histological study of biopsy samples from eight 

patients with GPA, activated B cells in nasal mucosa were located alongside PR3-expressing 

cells and BAFF-producing cells and BAFF-R-expressing B cells were also identified in the 
nasal mucosa [112]. The expression of BCMA on plasma cells, lymphocytic and fibroblast-like 
cells in sinonasal biopsy specimens from GPA patients were elevated, compared to those from 

nonautoimmune inflammatory rhinosinusitis [113]. In this study, TACI-expressed cells dis-

playing plasma-cell-like morphology were present in sinonasal biopsy specimens from only 

GPA patients [112]. Although elevated serum BAFF in AAV was demonstrated by several 

investigations, further studies of BAFF-R in AAV were needed.

3.2.5. Other autoimmune diseases

In addition to systemic autoimmune diseases, the serum BAFF level is also elevated in organ-

specific autoimmune diseases. Antiglomerular basement membrane (GBM) disease is an auto-

immune disease characterized by the presence of anti-GBM autoantibodies. The most common 

clinical features include rapidly progressive glomerulonephritis and/or alveolar hemorrhage 

(goodpasture disease). The serum levels of BAFF in patients with anti-GBM disease were sig-

nificantly higher than those in normal controls [114]. Although serum BAFF levels were not 

correlated with anti-GBM antibodies titers, those levels were associated with the percentage 

of glomeruli with crescents. Elevated serum BAFF levels were also demonstrated in patients 

with Graves’ disease [115], autoimmune pancreatitis [116], myasthenia gravis [117], idiopathic 

thrombocytopenic purpura [118] and multiple sclerosis [119].

4. Anti-BAFF agents in autoimmune diseases

Several biologic drugs have recently been developed in an attempt to block the BAFF-BAFF 
receptors pathway: belimumab, atacicept, tabalumab and blisibimod. Belimumab is a human 

monoclonal antibody that antagonizes the effect of BAFF by binding to the free form of the 
cytokine [120]. Atacicept is a TACI-Fc fusion protein that binds to and blocks the receptor 

for both BAFF and APRIL [121]. It acts both in homotrimers and heterotrimers and results 

in diminished plasma cell survival and antibody production in mice and humans [121]. 
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Tabalumab and blisibimod both block the two biologically active forms of BAFF; tabalumab 
is a human monoclonal antibody and blisibimod is a fusion polypeptide protein [122].

Animal models have shown that BAFF antagonists substantially delay the onset of disease in 

SLE-prone NZB/W mice [59, 123, 124] and prevent collagen-induced arthritis in DBA1 mice 

[125]. Clinical trials of anti-BAFF agents have also been performed as described below.

4.1. Belimumab

Belimumab was the first anti-BAFF drug to be evaluated in RA patients. In a phase II study, 
patients fulfilling the American College of Rheumatology (ACR) criteria for RA for equal to or 
greater than 1 year who had at least moderate disease activity while undergoing therapy with 

a stable disease-modifying antirheumatic drug (DMARD) and failed equal to or greater than 1 

DMARD were randomly assigned to placebo or belimumab 1, 4, or 10 mg/kg treatment, admin-

istered intravenously (IV) on days 1, 14 and 28 and then every 4 weeks for 24 weeks (n = 283) 

[126]. The American College of Rheumatology 20% improvement criteria (ACR20) responder 

rates after 24 weeks of treatment with placebo and belimumab 1, 4 and 10 mg/kg, defined as 
the primary endpoint, were 15.9, 34.7, 25.4 and 28.2%, respectively, indicating relatively low 

efficacy of belimumab in this RA cohort [126]. This study was followed by an optional 24-week 

extension (n = 237) in which all patients received belimumab and patients received belimumab 

had an ACR20 response of 41% at 48 weeks [126].

Three major trials of belimumab in SLE have been reported. In a phase II study, patients 

with a SELENA-SLEDAI score equal to or greater than 4 (n = 449) were randomly assigned 

to belimumab (1, 4, or 10 mg/kg) or placebo in a 52-week trial [127]. There was no signifi-

cant reduction in SELENA-SLEDAI scores from baseline; 19.5% in the combined belimumab 
group versus 17.2% in the placebo group. The median time to first SLE flare was 67 days in 
the combined belimumab group versus 83 days in the placebo group.

The BLISS-52 trial included 865 SLE patients with moderate-to-severe disease (SELENA-

SLEDAI score equal to or greater than 6) and positive ANA and/or anti-dsDNA who were ran-

domized to receive IV belimumab 1 mg/kg (n = 289) or 10 mg/kg (n = 290) or placebo (n = 288) 

[128]. Fifty-eight percent of the autoantibody-positive SLE patients in the 10 mg/kg belimumab 

group showed an improved systemic lupus erythematosus responder index (SRI) at week 52 

versus 44% in the placebo group. In the patients treated with belimumab 1 mg/kg, 51% had 

an improved SRI value at week 52, which was also a significantly better response than placebo 
group. In addition, belimumab was shown to be well tolerated; it reduced disease activity and 
improved serologic activity, prevented flares and reduced corticosteroid use.

The BLISS-76 study was conducted in 819 patients who were randomized to receive IV beli-

mumab 1 mg/kg (n = 271) or 10 mg/kg (n = 273) or placebo (n = 275) for 72 weeks [129]. The 

primary efficacy endpoint in this study was the same as the BLISS-52 trial and 43.2% of the 
SLE patients in the 10 mg/kg belimumab group were SRI responders versus 33.5% in the pla-

cebo group at 52 weeks, although at 76 weeks there was no significant difference in response 
rate among three treatment groups (response rates at week 76 were 32.4, 39.1 and 38.5% with 

placebo, 1 mg/kg belimumab and 10 mg/kg belimumab, respectively).
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In a phase II open-label clinical trial of belimumab for SjS, a total of 30 SjS patients were 

treated with 10 mg/kg belimumab in weeks 0, 2 and 4 and every 4 weeks until week 24. The 

mean dryness, fatigue and pain visual analogue scale (VAS) values changed from 7.8 to 6.2 (p 

= 0.0021), 6.9 to 6.0 (p = 0.0606) and 4.6 to 4.7, respectively. However, there was no significant 
change in the salivary flow or the Schirmer’s test score [130].

4.2. Atacicept

Similar to the outcome with belimumab, a Phase Ib study or 73 RA patients treated with six 

escalating doses of atacicept demonstrated good local and systemic tolerability to the drug. 

Patients received atacicept or placebo as single doses (70, 210, or 630 mg) or as repeated doses 

given at 2-week intervals (three doses of 70 mg, three doses of 210 mg, or seven doses of 420 mg), 

followed by 10 weeks of trial assessments, with a follow-up assessment at 3 months after the 

final dose [131]. Treatment-related decreases in immunoglobulin (particularly IgM) and RF 

levels were evident and a clear decrease in anticitrullinated protein antibodies was observed 

in the cohort that received seven doses of 420 mg [131]. However, further studies with ataci-
cept did not demonstrate significant efficacy in RA patients with inadequate response to 
methotrexate (MTX) [132] or tumor necrosis factor antagonists [133].

In a 52-week Phase II/III study of atacicept in SLE, at screening (day 14), patients were started 

on a regimen of high-dose corticosteroid (the lesser of 0.8 mg/kg/day or 60 mg/day predni-

sone) and mycophenolate mofetil (MMF; 0.5 g twice daily, increased to a maximum of 1.5 g 
twice daily). From Day 1, atacicept (150 mg, subcutaneously, twice weekly for 4 weeks, then 

150 mg weekly for a planned 48 weeks) was initiated with MMF along with a tapered dose of 

corticosteroid [134]. However, the trial was terminated after the enrollment of six patients, due 
to an unexpected decline in serum IgG and the occurrence of serious infections; three of four 
atacicept-treated patients developed serious infections in association with low IgG levels [134].

In another 52-week Phase II/III study, patients with moderate-to-severe SLE were random-

ized to atacicept 75 mg or atacicept 150 mg administered subcutaneously or placebo twice-

weekly for 4 weeks, then weekly for 48 weeks [135]. Although there was no difference in 
flare rates or time to first flare between the atacicept 75 mg and placebo groups, flare rates 
in patients treated with atacicept 150 mg were decreased compared with placebo (flare rate 
43 and 60%, respectively; odds ratio [OR]: 0.49) and atacicept 150 mg was associated with a 
significant delay in time to first flare (hazard ratio [HR]: 0.56) [135]. Both atacicept doses were 

associated with reductions in total immunoglobulin levels and anti-dsDNA antibodies and 

with increases in C3 and C4 levels [135]. However, enrollment in the atacicept 150 mg arm 
was discontinued prematurely due to two deaths.

4.3. Tabalumab

In a Phase II study of tabalumab in RA, patients who were naïve to biologic therapy received 

infusions of tabalumab (30, 60, or 160 mg) or placebo at weeks 0, 3 and 6 in combination with 

MTX and were evaluated for 24 weeks [136]. The percentages of patients achieving an ACR20 

response at week 16 in the 30-mg, 60-mg and 160-mg groups were significantly greater than 
the percentage of patients achieving an ACR20 response in the placebo group (57.6, 67.6, 51.5 

and 29.4%, respectively) [136]. In a Phase II dose-ranging study [137], RA patients on stable 
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MTX (n = 158) were randomized to receive 1, 3, 10, 30, 60, or 120 mg tabalumab or placebo sub-

cutaneously every 4 weeks for 24 weeks. The observed ACR50 response rate was significantly 
higher with only the 120 mg dose versus placebo at week 12 (33.3 vs. 11.1%) and week 20 

(33.3 vs. 8.3%), but not at week 24. The ACR20 response rate was significantly higher with 120 
mg versus placebo at week 12 (66.7 vs. 33.3%) and week 24. No other dose was significantly 
different from placebo at any time point for ACR20, except 60 mg at week 4 (38.5 vs. 11.1%).

However, in a 52-week Phase III study that enrolled 1041 patients with moderate-to-severe RA 
despite ongoing MTX, the evaluation of subcutaneous tabalumab 120 mg every 4 weeks or 90 mg 

every 2 weeks versus placebo, there were no significant differences in ACR20 responses at week 
24 among treatment groups [138]. Another Phase III trial (called the FLEX-O study) enrolled 1004 

patients who received subcutaneous 120 mg tabalumab every 4 weeks, 90 mg tabalumab every 

2 weeks, or placebo over 24 weeks with a loading dose double the planned dose (240 mg, 180 mg, 

or placebo) at baseline. No differences in the ACR20 response rates were observed at week 24 
(34.4, 33.5 and 31.5%) or any other measures of efficacy across the treatment groups [139].

In another Phase III study, 456 patients with active RA were evaluated after 24-week treat-

ment with subcutaneous tabalumab (120 mg every 4 weeks or 90 mg every 2 weeks) versus 

placebo, with loading doses (240 or 180 mg) at week 0. There was no significant difference in 
week 24 ACR20 responses among the three groups (17.6, 24.3 and 20.0%) per a nonresponder 

imputation analysis [140].

In a study of tabalumab in SLE, a total of 2288 SLE patients were randomized (n = 1164 in 

ILLUMINATE-1 and n = 1124 in ILLUMINATE-2) to receive tabalumab or placebo [141, 142]. 

In the ILLUMINATE-1 study, 1164 patients with moderate-to-severe SLE (SELENA-SLEDAI 

score equal to or greater than 6 at baseline) received subcutaneous injections of tabalumab or 

placebo, starting with a loading dose (240 mg) at week 0 and followed by 120 mg every 2 weeks 

(n = 387), 120 mg every 4 weeks (n = 389), or placebo (n = 388). Similar proportions of patients in 

each group achieved an SRI-5 response at week 52 (31.8, 35.2 and 29.3% placebo), but an SRI-5 

response was achieved with 120 mg every 4 weeks (37.0 vs. 29.8% placebo), but not 120 mg 

every 2 weeks (34.1%) and significant reductions in anti-dsDNA antibodies, increases in C3 and 
C4 and reductions in total B cells and immunoglobulins were observed with tabalumab [141].

In the ILLUMINATE-2 study, 1124 patients with moderate-to-severe SLE (SELENA-SLEDAI 

score equal to or greater than 6 at baseline) received subcutaneous injections of tabalumab 

or placebo, starting with a loading dose (240 mg) at week 0 and followed by 120 mg every 2 

weeks (n = 372), 120 mg every 4 weeks (n = 376), or placebo (n = 376). An SRI-5 response at 

week 52 was achieved in the 120-mg every 2 weeks regimen (38.4 vs. 27.7%, placebo), but 

not with the less-frequent 120 mg every 4 weeks regimen (34.8%) [142]. Anti-dsDNA levels 

decreased in both tabalumab groups as early as week 4 and continued to decrease, remaining 

well below baseline levels through week 52.

4.4. Blisibimod

In the phase Ia study of single-dose blisibimod, SLE patients with mild disease that was stable/

inactive at baseline enrolled into one of seven dose cohorts: 0.1, 0.3, 1.0, or 3.0 mg/kg subcuta-

neous or 1.0, 3.0, or 6.0 mg/kg intravenous blisibimod and subjects were sequentially enrolled 
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into one of four dose cohorts: 0.3, 1.0, or 3.0 mg/kg subcutaneous or 6.0 mg/kg intravenous 

in phase Ib study of multiple-dose blisibimod [143]. Blisibimod changed the constituency of 

the B-cell pool and single and multiple doses of blisibimod exhibited approximate dose-pro-

portional pharmacokinetics across the dose range 1.0–6.0 mg/kg. The PEARL-SC study was 

a 24-week treatment, Phase IIb randomized trial of 547 SLE patients with moderate-to-severe 

disease (SELENA-SLEDAI) score equal to or greater than 6 at baseline) who received placebo 

or blisibimod at one of three dose levels in an evaluation of the efficacy and safety of blisibi-
mod [144]. Although the SRI-5 response rates were not significantly improved in the pooled 
blisibimod groups compared with placebo, they were higher in the patients randomized to 

the highest dose of blisibimod (200 mg once-weekly) compared to the pooled placebo group 

at week 20. In the patients with protein:creatine ratios of 1–6 at baseline, significant reductions 
in proteinuria were observed with blisibimod. Significant changes in anti-dsDNA antibodies, 
complement C3 and C4 and reductions in B cells were observed with blisibimod treatment.

5. Conclusion

Based on the results of studies of autoimmune disorders in animal models of BAFF over-

expression and the elevated levels of serum BAFF observed in patients with autoimmune 

diseases, it appears that BAFF may be associated with autoimmune processes and that BAFF 

may be a potential biomarker for disease activity in autoimmune diseases. BAFF may also be 

important as a therapeutic target in those diseases and several BAFF-neutralizing agents are 

currently undergoing clinical trials.
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